Какие лаки краски и эмали наиболее часто применяют при электромонтажных работах кратко

Обновлено: 02.07.2024

Лаки - это растворы пленкообразующих веществ: смол, битумов, высыхающих масел, эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. По своему назначению электроизоляционные лаки делят на пропиточные, покровные и клеящие.

Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью закрепления их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. Покровные лаки позволяют создать защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями с целью получения слюдяных электроизоляционных материалов (миканиты, микалента и др.).

Эмали представляют собой лаки с введенными в них пигментами - неорганическими наполнителями (окись цинка, двуокись титана, железный сурик и др.). Пигменты вводятся с целью повышения твердости, механической прочности, влагостойкости, дутостойкости и других свойств эмалевых пленок. Эмали относятся к покровным материалам.

По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отверждения высокой температуры - от 80 до 200° С, а вторые высыхают при комнатной температуре. Лаки и эмали горячей сушки, как правило, обладают более высокими диэлектрическими, механическими и другими свойствами. С целью улучшения характеристик лаков и эмалей воздушной сушки, а также для ускорения отверждения их сушку иногда производят при повышенных температурах - от 40 до 80° С.

Основные группы лаков имеют следующие особенности. Масляные лаки образуют после высыхания гибкие эластичные пленки желтого цвета, стойкие к влаге и к нагретому минеральному маслу. По нагревостойкости пленки этих лаков относятся к классу А. В масляных лаках используют дефицитные льняное и тунговое масла, поэтому они заменяются лаками на синтетических смолах, более стойкими к тепловому старению.

Масляно-битумные лаки образуют гибкие пленки черного цвета, стойкие к влаге, но легко растворяющиеся в минеральных маслах (трансформаторное и смазочное). По нагревостойкости эти лаки относятся к классу А (105° С). Глифталевые и масляно-глифталевые лаки и эмали отличаются хорошей клеящей способностью по отношению к слюде, бумагам, тканям и пластмассам. Пленки этих лаков обладают повышенной нагревостойкостью (класс В). Они устойчивы к нагретому минеральному маслу, но требуют горячей сушки при температурах 120-130° С. Чисто глифталевые лаки на основе немодифицированных глифталевых смол образуют твердые негибкие пленки, применяемые в производстве твердой слюдяной изоляции (твердые миканиты). Масляно-глифталевые лаки после высыхания дают гибкие эластичные пленки желтого цвета.

Кремнийорганические лаки и эмали отличаются высокой нагревостойкостью и могут длительно работать при 180-200° С, поэтому они применяются в сочетании со стекловолокнистой и слюдяной изоляцией. Кроме этого, пленки обладают высокой влагостойкостью и стойкостью к электрическим искрам.

Лаки и эмали на основе полихлорвиниловых и перхлорвиниловых смол отличаются стойкостью к воде, нагретым маслам, кислым и щелочным химическим реагентам, поэтому они применяются в качестве покровных лаков и эмалей для защиты обмоток, а также металлических деталей от коррозии. Следует обратить внимание на слабое прилипание полихлорвиниловых и перхлорвиниловых лаков и эмалей к металлам. Последние вначале покрывают слоем грунта, а затем лаком или эмалью на основе полихлорвиниловых смол. Сушка этих лаков и эмалей производится при 20, а также при 50-60° С. К недостаткам такого рода покрытий относится их невысокая рабочая температура, составляющая 60-70° С.

Лаки и эмали на основе эпоксидных смол отличаются высокой клеящей способностью и несколько повышенной нагревостойкостью (до 130° С). Лаки на основе алкидных и фенольных смол (фенолоалкидные лаки) имеют хорошую высыхаемость в толстых слоях и образуют эластичные пленки, могущие длительно работать при температурах 120-130° С. Пленки этих лаков обладают влаго - и маслостойкостью.

Водно-эмульсионные лаки - это устойчивые эмульсии лаковых основ в водопроводной воде. Лаковые основы производят из синтетических смол, а также из высыхающих масел и их смесей. Водно-эмульсионные лаки пожаро - и взрывобезопасны, потому что в их составе нет легковоспламеняющихся органических растворителей. Из-за малой вязкости такие лаки имеют хорошую пропитывающую способность. Их применяют для пропитки неподвижных и подвижных обмоток электрических машин и аппаратов, длительно работающих при температурах до 105° С.

5. Электроизоляционные компаунды

Компаунды представляют собой изоляционные составы, которые в момент использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые - для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.

Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.

Компаунды МБК изготовляют на основе метакриловых эфиров и применяют как пропиточные и заливочные. Они после отвердевания при 70-100° С (а со специальными отвердителями при 20° С) являются термореактивными веществами, которые могут использоваться в интервале температур от -55 до +105° С.

о своему применению электроизоляционные лаки принято разделять на пропиточные, покрывные и клеящие. Также лаки разделяют по классам нагревостойкости – B (130 C ͦ), F (155 C ͦ), H (180 C ͦ), С (220 С ͦ). По технологии применения электроизоляционные лаки могут быть горячей (печной) и холодной (воздушной) сушки.

Пропиточные лаки

Пропиточные электроизоляционные лаки применяются для изоляции обмоток электрических машин в том числе тяговых, крановых и других электродвигателей, работающих в тяжёлых условиях эксплуатации, катушек трансформаторов и других электротехнических конструкций. Как правило, непропитанная катушка уже имеет слой изоляции стекловолокнистой, полимерной либо слюдинитовой природы.

ропитка позволяет заполнить воздушные поры, имеющиеся в слое нелакированной изоляции и устранить возможность возникновения внутренней ионизации, предотвратив тем самым разрушение органической части изоляции и выход ее из строя. По завершению пропитки происходит цементирование отдельных витков обмотки слоев и прокладок в одно монолитное целое. Таким образом, исключается возможность перемещения отдельных витков и катушек в пазу ротора и устраняется возможность их вибрации.

Основное назначение пропитки - увеличить срок службы изоляции обмоток и всей конструкции в целом. Огромное значение в получении монолитности и равномерности проникновения пропиточного состава играет правильный выбор оборудования, соблюдение технологи режимов пропитки, а также совместимость химической природы пропиточного состава и связующего, находящегося внутри нелакированного электроизоляционного слоя проводника (слюдинитовой ленты).

ропиточные лаки должны обладать хорошей пропитывающей способностью, способностью высыхания в толстом слое, цементирующей способностью, а так же не разрушать первичный слой изоляции проводника. Полученная после пропитки лаковая пленка должна иметь высокую электрическую прочность, обладать хорошей теплопроводностью, химической стойкостью.

Выбор пропиточного лака зависит от многих факторов: типа применяемого проводника и уже имеющегося у него нелакированного изоляционного слоя, мощности двигателя (генератора) условий эксплуатации электрической машины (класс нагревостойкости, механические и химические воздействия) и др.

Химическая структура пропиточного лака - модифицированный глифталь, полиэфирэпоксид, модифицированный олигоимидалкид, полиэфирциануратимид и т.д. Сушка пропитанных лаком обмоток производится при температуре 125 –140°С. Отличительная особенность – хорошая высыхаемость в толстом слое.

Покрывные лаки

Лак электроизоляционный,Лак электроизоляционный купить

Покрывные лаки предназначены преимущественно для создания защитного электроизоляционного покрытия на пропитанных обмотках, а также для покрытия металлов, различных электроизоляционных деталей из гетинакса, текстолита и других материалов. Они образуют механически прочную, гладкую, блестящую, влагостойкую пленку на поверхности твердой изоляции (часто - на поверхности предварительно пропитанной пористой изоляции). Такая пленка повышает напряжение поверхностного разряда и поверхностное сопротивление изоляции, создает защиту лакируемого изделия от действия влаги, растворителей и химически активных веществ, а также улучшает внешний вид изделия и затрудняет прилипание к нему загрязнений.

В отдельных случаях некоторые покрывные лаки (так называемые эмаль-лаки) наносят не на твердую изоляцию, а непосредственнона металл, образуя на его поверхности электроизоляционный слой (например, изоляция эмалированных проводов, изоляция листов электротехнической стали в расслоенных магнитопроводах электрических машин и аппаратов).

производстве проводов с эмалевой изоляцией наибольшее значение имеют синтетические клеящие лаки, на долю которых приходится около 90% всех эмалированных проводов. Остальная часть изготавливается при помощи масляных лаков. Покрывные лаки должны иметь хорошие электрические характеристики, влагостойкость и нагревостойкость, оптимально быстро высыхать, проявлять хорошую адгезию к покрываемой поверхности и способность образовывать твердую и механически прочную пленку. Как и к пропиточным лакам, в зависимости от условий эксплуатации и назначения электротехнического оборудования к покрывным лакам могут быть предъявлены и дополнительные требования, как, например, повышенная влаго- и термостойкость, стойкость к воздействию нефтяных масел и химически активных сред.

Клеящие электроизоляционные лаки

Клеящие лаки применяются в производстве слюдяных, фольгированных, пленочных и других композиционных материалов, а также для склеивания листов расслоенных магнитопроводов. С их помощью склеиваются между собой твердые электроизоляционные материалы. Основные требования, предъявляемыми к таким лакам, являются: высокая клеящая способность, хорошие и электрические и механические показатели, технологичность (стабильность пределов вязкости и содержания нелетучих веществ, температурных режимов и интервалов переработки лака.

Клеящие лаки, ровно как и лаки покрывные, имеют ту же химическую природу, что и пропитывающие, т.е. существуют алкидно-фенольные, битумно-масляные и др. виды клеящих лаков. Полиэфирноэпоксидный клеящий лак применяется для изготовления слюдопластовой ленты для электрической изоляции машин напряжением до 6,6 кВ и мощностью до 100 кВт.

Кремнийорганический клеящий лак, модифицированный эпоксидной смолой, служит для цементации полюсных катушек электрических машин.

Классфикация по технологии применения

Лаки печной (горячей) сушки

У лаков печной сушки отвердевание пленки возможно лишь при температурах значительно выше комнатной (от 100° С и выше). В лаках печной сушки применяют термореактивные пленкообразующие вещества (глифталевые, резольные и другие смолы),отвердевание которых обусловлено процессами полимеризации, требующими повышенных температур.

Лаки горячей сушки, как правило, обладают более высокими механическими и электрическими характеристиками. Лаки горячей сушки на основе блокированных изоцианатов могут применяться для электроизоляционных покрытий медныхпроводов, пригодны для работы в условиях тропического климата. Лаки горячей сушки, полученные смешением равных частей полимерных глицидных эфиров бисфенола А с температурой размягчения 85 - 100е и феноло-формальдегидного конденсата ( 1 моль фенола и 1 8 моля формальдегида) с добавкой 2 % фенолята натрия.

Эпоксидно-меламиновые лаки горячей сушки сочетают в себе достоинства эпоксидных и меламиновых лаков. Полученные из них покрытия обладают высокой прочностью и светостойкостью меламиновых лаков, а также высокой эластичностью и отличнойадгезией к металлу-свойствами, присущими эпоксидным лакам. Кроме того, эти лаки имеют хорошую стойкость к действию многих химических реагентов и обладают хорошими электроизоляционными свойствами. Они применяются для лакирования консервных банок, холодильников, стиральных машин. В электротехнике их используют в качестве покрытий для медной проволоки.

Лаки воздушной (холодной) сушки

У лаков воздушной сушки отвердевание пленки происходит при комнатной температуре. К лакам воздушной сушки относятся шеллачные, эфироцеллюлозные и некоторые другие. Время высыхания лака воздушной сушки определяется следующим образом. Пропитывают испытуемым лаком полоски бумаги толщиной 0,05 мм и площадью 100x200 мм2. В случае испытания лака воздушной сушки пропитанные бумажные полоски сушат при температуре 20° С в хорошо вентилируемом помещении. Затем на поверхность лакированной бумаги накладывается кусочек фильтровальной бумаги размером 20x20 мм, который прижимается к поверхности лакированной бумаги грузом 200 г, действующим на металлическую пяту площадью в 1 см2. Это испытание продолжается в течение 30 сек. Лак считается высохшим, если после снятия груза фильтровальная бумага не прилипает к поверхности лакированной бумаги и не оставляет на ней волокон. При этом отмечается время высыхания лака при 20° С.

Электроизоляционные эмали

Электроизоляционными эмалями называют лаки, в пленкообразующую основу которых, введены мелкодисперсные неорганические пигменты. В электротехнике наиболее востребованы покрывные эмали. Они служат для образования финишного электроизоляционного слоя деталей электрических машин (лобовые части катушек двигателей, детали и элементы соединение электрических цепей подверженных поверхностному воздействию электрической дуги). Полученное покрытие должно обладать хорошей адгезией к покрываемому материалу, повышенной твердостью, химостойкостью, трекингостойкостью, низкой влагопроницаемостью. Пленка должна быть гладкой, не иметь отлипа, чтобы на ней не задерживались пыль и прочие загрязнения.

Элеткроизоляционные компаунды

В электроизоляционной промышленности под компаундами подразумевают составы без растворителей, применяющиеся для пропитки обмоток, заливки, заполнения пустот электрических машин. По этой причине, как правило, требуется однократнаяпропитка обмоток. В сравнении с пропиточными лаками преимуществами компаундов являются высокая механическая прочность обмоток, хорошая теплопроводность и низкое значение tg δ( тангенса угла диэлектрических потерь) при повышенных температурах.

электроизоляционные лаки химтэк ярославль купить оптом.jpg

Сегодня для электрической изоляции оборудования и рабочих узлов применяются лакокрасочные материалы на основе различных пленкообразователей. Но основная роль в задаче по обеспечению электроизоляции принадлежит поликонденсационным смолам, из которых производятся различные эмали и лаки. Под поликонденсационными смолами подразумеваются алкидные, фенольные, алкильные, эпоксидные и другие материалы. Трансформаторы и конденсаторы, электромоторы и резисторы, радиодетали и электрически активные узлы машин, провода, обмотка – все это требует электрической изоляции, которую успешно обеспечивают электроизоляционные лаки и эмали.

В свою очередь наряду с электроизоляционными характеристиками эти материалы обладают также физико-механическими и декоративными свойствами, предоставляя комплексное решение проблемы окраски электрооборудования. Среди главных технологических требований, выставляемых к таким электроизоляционным лакокрасочным изделиям, является их способность быстро просыхать в толстом объеме (порядка нескольких миллиметров), достаточно высокая термостойкость (как правило – до 150-160°С), и термоусадчивость (уменьшение коэффициента термического растяжения), а также многие другие свойства. Каждый из таких обязательных показателей – это обеспечение безопасности жизни и здоровья человека, работающего с электрооборудованием. Чаще всего электроизоляционными ЛКМ покрывают поверхности механизмов и машин – статоры и роторы, эксплуатируемые в электрически опасных условиях.

Также ими пропитывают обмотки машин, генерирующих или модулирующих электрический ток, красят внутренние части трансформаторов, электрических станций и подстанций. Способ нанесения электроизоляционных лакокрасочных материалов может быть разным, в зависимости от консистенции краски или лака, используемого для разбавления растворителя, вида и типа поверхностей и изделий, которые предстоит обработать, также условий, в которых они будут эксплуатироваться. Поэтому в современной промышленности используются самые различные варианты нанесения электроизоляционных лакокрасочных материалов на поверхности и узлы электрооборудования, среди которых:

  • Пропитка – ЛКМ пропитывают полимерные ткани, войлоки, обмотку электродвигателей;
  • Окунание – детали на определенное время окунают в ЛКМ;
  • Струйный облив – детали подставляют под струю ЛКМ
  • Распыление – ЛКМ наносится методами пневматического или безвоздушного распыления.

Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, то для оценки стойкости электрической изоляции к воздействию температуры приняты классы нагревостойкости в соответствии с ГОСТ 8865. Классы нагревостойкости изоляции Обозначение класса нагревостойкости Y A E B F H 200 220 250 Температура, °C 90 105 120 130 155 180 200 220 250 Класс нагревостойкости изоляции электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях. Изоляция под действием данной максимальной температуры должна иметь нагревостойкость не менее температуры, соответствующей классу нагревостойкости электротехнического изделия.

Электроизоляционные лакокрасочные материалы можно классифицировать по следующим признакам:

  • битумные (БТ);
  • алкидные - глифталевые (ГФ);
  • кремнийорганические (КО);
  • меламино-алкидные (МЛ);
  • полиэфирные (ПЭ);
  • эпоксиэфирные (ЭФ);
  • эпоксидные (ЭП) и т.д.
  • электроизоляционные лаки;
  • электроизоляционные эмали.

В электротехнической и электронной промышленности нашли широкое применение следующие марки электроизоляционных лаков и эмалей: Электроизоляционные лаки. Лак БТ-99 – предназначен для покрытия обмоток электрических машин и аппаратов, а также других изделий, работающих внутри помещения. Лак БТ-99 редставляет собой смесь раствора нефтяного битума специального с алкидным лаком с добавлением растворителя и сиккатива. После высыхания лак образует однородную черную гладкую пленку без механических примесей. Сушка лака до степени 3 производится как при естественных условиях в течение 24 часов, так и при 107 оС в течение получаса. Термоэластичность пленки лака при 150 оС составляет 1 час.Электрическая прочность пленки (т.е. та минимальная напряженность электрополя, при превышении которой пленка лака начинает проводить ток) при 20 оС – не менее 55 МВ/м. Гарантийный срок хранения лака БТ-99 – 12 мес. с даты изготовления.

Термоэластичность пленки лака – 48 ч, электрическая прочность – не менее 70 МВ/м.

Гарантийный срок хранения лака - 12 месяцев со дня изготовления.

Кроме перечесленных марок электроизоляционных лаков можно также упомянуть:

Лак КО-916, предназначенный для покрытия электротехнической стали, электронных плат, пропитки обмотки электроприборов, а так же для получения стекловолокнистой изоляции на проводах. Лак КО-916 представляет собой раствор в этилцеллозольве полиметилфенилсилоксановой смолы, модифицированной полиэфиром.

В зависимости от температуры высыхания и назначения выпускаются две марки эмали:

  • ГФ-92ХС серая и красно-коричневая – для покрытия неподвижных обмоток электрических машин;
  • ГФ-92ГС серая – для покрытия неподвижных и вращающихся частей обмоток электрических машин и аппаратов.

Время высыхания эмали ГФ-92ХС – 24 ч при 20 оС, ГФ-92ГС – 3 ч при температуре 105 – 110 оС. При высыхании эмаль образует ровное, гладкое, глянцевое покрытие, обладающее термоэластичностью от 1 до 10 ч в зависимости от цвета эмали и режима высыхания. Электрическая прочность эмали ГФ-92 – не менее 30 МВ/м при 20 оС.

Эмаль наносится на поверхность методами распыления, окунания и наливом. Перед нанесением эмаль разбавляется до рабочей вязкости сольвентом, ксилолом, толуолом или смесью ксилола с нефрасом или уайт-спиритом в соотношении 1:1. Исходная вязкость эмали ГФ-92 составляет 20 – 70 с по вискозиметру ВЗ-246 с диаметром сопла 6 мм. Гарантийный срок хранения эмали 12 месяцев с даты изготовления. Наряду с эмалью ГФ-92 используются и другие марки электроизоляционных эмалей: Эмаль ЭП-992 горячей сушки различных расцветок. Применяется для покрытия лобовых частей, секций катушек и других узлов и деталей электрических машин и аппаратов с изоляцией класса нагревостойкости F (до 155 оС), в том числе для вращающихся частей (якорей, роторов), и для окрашивания постоянных непроволочных резисторов.

Эмали марок ЭП-992П, ЭП-992Р, ЭП-992У горячей сушки различных расцветок. Применяются для окрашивания постоянных непроволочных резисторов, других радиодеталей, узлов и блоков электро- и радиоаппаратуры. Эмаль марки ЭП-992П отличается повышенной стойкостью к покрывным лакам для печатных плат, термоциклированию (диапазон температур от - 60 до +155)°С, а также к кратковременному действию расплава припоя. Эмаль ЭП-992Р имеет высокую тиксотропию. Эмаль марки ЭП-992У имеет высокий сухой остаток. Максимальная рабочая температура покрытия эмалей составляет плюс 155°С (класс нагревостойкости F).

Эмаль ЭП-9111 – эмаль воздушной (естественной) сушки. Применяется для покрытия обмоток и деталей электрических машин и аппаратов (в том числе вращающихся частей) с изоляцией класса нагревостойкости F. Отличается высокой скоростью высыхания покрытия на воздухе (2 ч до степени 3), высокими диэлектрическими свойствами и атмосферостойкостью покрытия. Возможна и горячая сушка покрытия при температурах 110 - 130°С в течение 30 – 60 мин. Эмаль ЭФ-9155 – эмаль воздушной (естественной) сушки различных цветов. Предназначена для получения электроизоляционных покрытий обмоток, узлов и деталей электрических машин и аппаратов (в том числе вращающихся частей) с изоляцией класса нагревостойкости F. Эмаль образует эластичное и глянцевое покрытие, высыхающее на воздухе до степени 3 в течение не более 4 ч (полное высыхание – не более 24 ч).

Работа электрических машин связана с влиянием на их обмотки ряда неблагоприятных факторов. Протекание электрического тока через обмотку при стандартных условиях сопровождается выделением тепла, что приводит к повышению ее температуры.


Использование электроизоляционного лака снижает негативное влияние на изоляцию обмотки вышеуказанных воздействий.


Содержание

Необходимость применения электроизоляционных лаков

Целью пропитки электроизоляционным лаком является:


Электроприборы подвергаются вибрациям, вызванным работой магнитного поля. На роторы электродвигателей действуют значительные центробежные силы. Обмотки любых моторов: от бытового блендера до турбины электростанции подвержены действию сил инерции и внутренних напряжений.










Виды лаков для электроизоляции

Все подобные изоляционные материалы подразделяются на собственно лаки и электроизоляционные эмали.


По составу можно встретить в продаже:

  • Битумные;
  • Меламино-алкидные;
  • На основе органических соединений кремния;
  • Эпоксиэфирные;
  • Глифталевые с добавлением алкидных соединений;
  • На основе эпоксидки.


Логично разделить лаки по химическому составу и способу нанесения. Типичные электроизоляционные пропиточные лаки делятся на две группы: требующие растворения и без растворителей.

  • Лаки на основе растворителей представляют собой смесь жидких полиэфирных смол, эпоксидных алкидов с сшивающими агентами, такими как амино- и фенольные смолы. Характерной особенностью этих лаков является наличие в их составе ~ 50% летучих органических веществ.
  • Растворители в процессе высыхания лаки должны испаряться, становясь источником загрязнения воздуха, редко источником энергии после горения. Температурный класс этих лаков — B, F и иногда H.
  • Их преимуществом является простота нанесения, обычно низкая вязкость, устойчивость к загрязнениям, очень хорошая стабильность при хранении, хорошая гибкость покрытий. Недостатки — высокая эмиссия летучих органических веществ, длительное время высыхания, кипение в условиях вакуумной пропитки.
  • В эту группу лаков также входят лаки на водной основе, которые иногда отличаются отличными эксплуатационными свойствами после затвердевания, но всегда требуют поддержания режима высокой чистоты линий и пропитанных элементов.


Электроизоляционные лаки, не содержащие растворителей, обязаны своим названием реактивным разбавителям, которые химически включаются в структуру полимера в процессе высыхания краски.










В зависимости от типа используемого реактивного растворителя лаки без растворителей делятся на лаки без стирола и без стирола. В обоих случаях это растворы ненасыщенных полиэфирных или полиэфиримидных смол.


Способы лакирования приборов и конструктивных элементов

Самым простым методом обработки электроизоляционным лаком является метод погружения. Проникновение лака внутрь обрабатываемой поверхности происходит под действием выталкивающей силы, возникающей из-за того, что плотность пропиточного лака выше плотности воздуха.


В некоторых случаях проникновению лака способствует меньшее поверхностное натяжение лака по отношению к поверхностному натяжению обмоточных проводов. Преимущество такого метода — низкая стоимость и возможность использования лаков на основе растворителей с высоким давлением паров растворителей.


Недостатком метода погружения является опасность неполной пропитки, особенно обмоток из проволоки с шелковой оплеткой.

  • Дальнейшим развитием метода погружения является вакуумная пропитка, она заключается в первоначальном создании вакуума в автоклаве, содержащем пропитываемый узел машины (намотанный статор или ротор), поддержание вакуума в течение заданного времени и всасывание лака в автоклав под действием создаваемого вакуума.
  • Этот метод, благодаря хорошей сушке пропитанного устройства, удаляющему большую часть воздуха из внутренней части обмотки, увеличивает плавучесть лака, обеспечивая гораздо более полную пропитку по сравнению с методом погружения, особенно обмоток, изготовленных из плетеная проволока.


Недостатком способа является дороговизна эксплуатации установки, необходимость ее периодического осмотра, повышенные требования к применяемым лакам (отсутствие пенообразования из-за кипения смеси растворителей в условиях низкого давления).










Нанесение лака давлением и вакуумом

Самым передовым методом пропитки устройств является метод давления-вакуума, который является технологическим развитием вакуумного метода.


Процесс обработки включает четыре фазы:

  • Нагрев обмотки или других конструктивных элементов перед ее помещением в автоклав;
  • Сушка в автоклаве в условиях интенсивного вакуума (~ 1 мбар);
  • Введение лака в автоклав и циклическое создание вакуума;
  • Уменьшение вакуума и создание избыточного давления до ~ 3 бар.


Проникновение лака внутрь высохшей обмотки и поверхности обрабатываемых приборов обеспечивает лучшую пропитку даже с высоковязкими пропитками.


Недостатком метода является стоимость монтажа, необходимость обеспечения UDT-надзора, необходимость использования более дорогих лаков без растворителей во избежание вспенивания лака. Вышеупомянутые методы можно использовать для пропитки как крупных, так и мелких деталей машин.


Капельное нанесение лака

Капельный метод заключается в нанесении низковязкого реактивного лака на узел вращающейся спиральной машины. Пропитанный компонент предварительно нагревают в сопротивлении или в печи.










В процессе распыления лака намотанный ротор или статор одновременно нагревается и вращается. Капельный метод требует настройки реологических свойств лака и его реакционной способности, времени разбрызгивания, температуры намотки и равномерного распределения лака по всей пропитываемой поверхности.

  • Неправильная настройка вышеперечисленных параметров приводит к неполной пропитке, например, лак загустеет на поверхности, не проникая в обмотку или не пропитывая всю поверхность обмотки.
  • Слишком низкая температура поверхности или низкая реактивность лака могут быть причиной того, что пропитка не загустела, а затем может загрязнить элементы конструкции, прилегающие к обмотке (например, коммутатор, корпус статора).


Преимущество капельной пропитки: невысокая стоимость оборудования, скорость процесса, небольшой расход.

Читайте также: