Как связаны между собой понятия объект моделирования и вычислительный эксперимент кратко

Обновлено: 02.07.2024

Центральное место в информатике занимает компьютерное моделирование . Современный имитационный эксперимент коренным образом отличается от эксперимента в классической естественной науке, основная цель которого — воспроизведение в материализованном виде идеализированных экспериментальных ситуаций, направленное на подтверждение отдельных следствий из общих теоретических положений. В неклассическом естествознании важную роль сегодня играет идеализированный компьютерный эксперимент, позволяющий проимитировать, проанализировать и рассчитать различные варианты возможного поведения исследуемой сложной системы. Незаменимым компьютерный эксперимент становится также в современной инженерной деятельности и проектировании.

Моделирование функционирования системы на ЭВМ позволяет уже на ранних этапах проектирования представить систему как целостный объект. Анализировать модель можно, принимая научно обоснованные решения по выбору наиболее подходящей реализации отдельных компонентов системы с точки зрения их взаимосвязи и взаимного функционирования, учесть заранее различные факторы, влияющие на систему в целом, и условия ее функционирования, выбрать наиболее оптимальную структуру и наиболее эффективный режим ее работы. Для сложных человеко-машинных систем такой анализ невыполним средствами традиционного моделирования, и ему обязательно требуется компьютерная поддержка. Поскольку без использования современной вычислительной техники просто невозможно учесть те многочисленные данные о сложной системе, которые необходимы исследователю и проектировщику, особенно если иметь в виду их разнородность, связанную с использованием знаний различных дисциплин и участием в создании таких систем разнообразных специалистов. Такая автоматизация имитационного моделирования направлена на расширение возможностей исследователя и проектировщика для прогнозирования поведения системы в различных меняющихся условиях и выбора адекватных этим условиям решений. Создание диалоговых систем позволяет значительно расширить аналитические средства, повысить качество и обоснованность решений проектных и исследовательских задач и существенно сократить время их выработки.

Имитационное моделирование на ЭВМ позволяет исследовать сложные внутренние взаимодействия в системе, изучать влияние структурных изменений на ее функционирование, а также влияние изменений в окружающей среде, для чего в модель вносят соответствующие трансформации и наблюдают их воздействие на поведение системы. На основе полученных в результате моделирования данных разрабатываются предложения по улучшению существующей структуры системы или созданию совершенно новой ее структуры. Влияние этих нововведений можно проверить с помощью имитации еще до их практического внедрения для предварительной проверки новых стратегий и решений, предсказания на модели узких мест, имеющихся в системе, описания и прогнозирования на ней возможных путей естественного развития имитируемой системы в различных условиях и обоснования выбора вариантов ее структуры при соответствующих изменениях этих условий. Это позволяет автоматизированным способом формировать и распознавать структуры, оптимизировать их по заданному критерию, осуществлять имитацию динамики системы на этих структурах и оценивать качество вариантов моделей проектируемой системы.

Первоначально модель выдается необязательно в строго формализованном виде, а на содержательном уровне — в языке, наиболее приближающемся к естественному, поэтому такую модель часто называют вербальной. На следующем этапе она должна быть представлена уже в виде математической модели с помощью различных языков программирования. Экспериментирование с моделью на компьютере заключается в изменении условий функционирования объекта моделирования, генерации вариантов модели, предсказывающих поведение системы в гипотетически изменившихся условиях. Выбор наиболее пригодного для данных условий варианта модели и оптимизация этого варианта являются проектными задачами и находятся в прямой зависимости от целей исследования или проектирования. Такой выбор диктуется, прежде всего, содержательными критериями, т.е. интерпретацией модели, заключающейся в определении области и границ, в которых результаты, полученные на модели, являются справедливыми для исследуемой или проектируемой системы. Наряду с формализацией имитационные модели выполняют также важную эвристическую функцию, особенно при моделировании динамики различных исследуемых процессов. Даже в случае достаточно тривиальных моделей компьютерное моделирование дает возможность представить результаты исследования яснее, проще и быстрее.

Компьютерное моделирование – это процесс математического моделирования на компьютере, осуществляемый с целью прогнозирования поведения или результатов реальной или физической системы.

Введение

Компьютерное моделирование является одним из передовых методов научных исследований, используемым в самых разных областях человеческой деятельности. Вычислительный эксперимент считается разновидностью компьютерного моделирования.

Вычислительным экспериментом по модели является эксперимент, выполняемый при помощи компьютерной модели для прогнозирования разных состояний системы и её реакции на различные входные воздействия. Использование вычислительного эксперимента даёт возможность замены дорогостоящего натурального эксперимента вычислениями на компьютерном оборудовании. Такой эксперимент может позволить за небольшой интервал времени и при малых финансовых тратах выполнить изучение значительного количества версий проектируемого процесса или объекта в разных режимах его использования. Это позволяет существенно сократить сроки проектирования сложного объекта или процесса и их пуск в эксплуатацию. Техническим оснащением таких работ обычно выступает компьютер, поэтому данную процедуру почти всегда отождествляют с компьютерным моделированием.

Компьютерное моделирование и вычислительный эксперимент

Компьютерное моделирование и вычислительный эксперимент стали передовым инструментарием, способ научного познания, новыми технологиями из-за растущей потребности в переходе от изучения линейных системных математических моделей, для которых уже есть подробное теоретическое обоснование, к изучению математических моделей сложных систем нелинейной структуры, анализ которых никогда не бывает простым и однозначным.

Новые методы научных исследований, которыми являются компьютерное моделирование и вычислительный эксперимент, предполагают совершенствование математического аппарата, применяемого при формировании математических моделей, уточнение и усложнение самих математических моделей.

Самыми перспективными направлениями для вычислительных экспериментов считаются крупные научно-технические и социально-экономические проблемы мирового сообщества, такие как, реализация проектов реакторов атомных электростанций, плотин для гидроэлектростанций, формирование сбалансированных планов для отдельных отраслей, регионов, страны в целом и другие.

Готовые работы на аналогичную тему

В отдельных процессах, в которых натурные эксперименты опасны для здоровья и даже жизни человека, вычислительные эксперименты выступают как единственно возможное средство исследований. К примеру, в термоядерном синтезе, в освоении космоса, в проектировании и исследовании химического и иных опасных производств.

При этом стандартных проблем моделирования не очень много, и для них будет создан удобный пользовательский интерфейс в границах единого универсального пакета. Формирование универсального пакета из стандартного набора модулей, ориентированных на пользователей, не обладающих глубокими познаниями в сфере программирования и численного моделирования, должны привести к тому, что компьютерное моделирование превратится в доступный инструментарий научных работников, инженеров и других специалистов.

Весь набор программных средств, предназначенных для компьютерного моделирования, может быть поделен на две группы. К первой группе относятся программные пакеты, которые предназначены для разрешения непростых производственных и научно-исследовательских проблем в больших производственных или научных коллективах. Программные пакеты этой группы принято условно называть промышленными. Данные проекты нельзя осуществить без предварительных исследовательских работ, которые выполняют отдельные учёные или проектировщики. Отправной точкой в них считается гипотеза, а главной задачей является определение степени достоверности этой гипотезы.

Промышленные пакеты являются слишком сложными и громоздкими для осуществления исследовательских работ на ранних стадиях, а тем более осуществления процессов обучения. Для этих целей требуются специализированные программные приложения. Эти программы являются второй группой пакетов, которую принято именовать универсальной. Это означает, что они могут уступать по числу специальных возможностей промышленной группе, но при этом они считаются более простыми и доступными отдельным специалистам при разрешении сравнительно простых задач фактически из любых прикладных областей.

Универсальные пакеты должны обладать разнообразными численными библиотеками, способными решить широкий спектр проблем.

С появлением пакета Simulink, универсальные, то есть не предназначенные для конкретных прикладных областей, пакеты для моделирования и исследований систем, обладающих динамическим характером, превратились в повседневную реальность.

Отличительной особенностью передовых пакетов считается использование объектно-ориентированного подхода, позволяющего без проблем пополнить и осуществить модификацию разрабатываемой библиотеки, которая представляет, как правило, очерёдность усложняющихся моделей с непрерывно требующими сравнения свойствами.

Но фактически каждый существующий сегодня и повсеместно применяемый пакет не предназначен в полном объёме для осуществления полноформатного вычислительного эксперимента. Из всего набора нынешних пакетов моделирования следует всё-таки выделить пакеты Model Vision Studium(MVS) и Any Logic, которые являются самыми приспособленными для реализации достоверных компьютерных экспериментов.

Аннотация: В лекции рассмотрена суть компьютерного моделирования. Рассмотрены методы решения математических задач.

Компьютерное моделирование как новый метод научных исследований основывается на:

  1. построении математических моделей для описания изучаемых процессов;
  2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты , начальные и граничные условия, исследовать, как при этом будет вести себя объект . Более того, можно спрогнозировать поведение объекта в различных условиях.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.).

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

В заключение подчеркнем еще раз, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

В задачах проектирования или исследования поведения реальных объектов, процессов или систем математические модели, как правило, нелинейны, т.к. они должны отражать реальные физические нелинейные процессы, протекающие в них. При этом параметры (переменные) этих процессов связаны между собой физическими нелинейными законами. Поэтому в задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА.

Согласно классификации приведенной в "лекции 1" :

Д – модель детерминированная, отсутствует (точнее не учитывается) влияние случайных процессов.

Н – модель непрерывная, информация и параметры непрерывны.

А – модель аналитическая, функционирование модели описывается в виде уравнений (линейных, нелинейных, систем уравнений, дифференциальных и интегральных уравнений).

Итак, мы построили математическую модель рассматриваемого объекта, процесса или системы, т.е. представили прикладную задачу как математическую. После этого наступает второй этап решения прикладной задачи – поиск или разработка метода решения сформулированной математической задачи. Метод должен быть удобным для его реализации на ЭВМ, обеспечивать необходимое качество решения.

Все методы решения математических задач можно разделить на 2 группы:

  1. точные методы решения задач;
  2. численные методы решения задач.

В точных методах решения математических задач ответ удается получить в виде формул.

Например, вычисление корней квадратного уравнения:

ax^2 + bx +c = 0,

x_1,2 = \frac<-b \pm \sqrt <b^2-4ac></p>
<p>>

или, например, вычисление производных функций:

y & =\sin(x), & y

или вычисление определенного интеграла:

\int_b^a \cos(x) dx = \sin(b) - \sin(a);

Однако, подставляя числа в формулу в виде конечных десятичных дробей, мы все равно получаем приближенные значения результата.

Для большинства задач, встречающихся на практике, точные методы решения или неизвестны, или дают очень громоздкие формулы. Однако, они не всегда являются необходимыми. Прикладную задачу можно считать практически решенной, если мы сумеем ее решить с нужной степенью точности.

Для решения таких задач разработаны численные методы, в которых решение сложных математических задач сводится к последовательному выполнению большого числа простых арифметических операций. Непосредственная разработка численных методов относится к вычислительной математике.

Примером численного метода является метод прямоугольников для приближенного интегрирования, не требующий вычисления первообразной для подынтегральной функции. Вместо интеграла вычисляется конечная квадратурная сумма:

\int_b^a f(x) dx \approx \sum_<i=1></p>
<p>^ f(x_i) \Delta x_i;

x1=a – нижний предел интегрирования;

xn+1=b – верхний предел интегрирования;

n – число отрезков, на которые разбит интервал интегрирования (a,b) ;

\Delta x_i

– длина элементарного отрезка;

f(xi) – значение подынтегральной функции на концах элементарных отрезков интегрирования.

Чем больше число отрезков n, на которые разбит интервал интегрирования, тем ближе приближенное решение к истинному, т.е. тем точнее результат.

Таким образом, в прикладных задачах и при применении точных методов решения, и при применении численных методов решения результаты вычислений носят приближенный характер. Важно только добиться того, чтобы ошибки укладывались в рамки требуемой точности.

Численные методы решения математических задач известны давно, еще до появления ЭВМ, но ими пользовались редко и только в сравнительно простых случаях в силу чрезвычайной трудоемкости вычислений. Широкое применение численных методов стало возможным благодаря ЭВМ.

Как связаны меж собой понятия объект моделирования и вычислительный эксперимент?

  • Пулуэктов Максим
  • Информатика
  • 2019-01-20 03:00:43
  • 7
  • 1

Если имеется настоящая система то для создания модели потребуется логико-математическая модель которая с помощью моделирующего алгоритма представит имитационную модель. Имея имитационную модель можно провести опыт используя вычислительный опыт и это воздействие покажет нам реальную систему.

Читайте также: