Как получить отрицательный заряд кратко

Обновлено: 29.06.2024

В прошлых уроках мы рассмотрели электрические явления, где одним телам передавался заряд от других, как взаимодействовали друг с другом наэлектризованные тела. Также вы уже обладаете знаниями о строении атомов и существовании электрического поля.

Используя эти знания, в данном уроке мы более глубоко рассмотрим физику электрических явлений и объясним, что же в них происходит.

Электрическая нейтральность

Все тела состоят из атомов. Атомы же состоят из протонов, нейтронов и электронов. При этом большое значение для нас имеет число протонов и электронов в атоме, ведь они определяют его заряд. Протоны имеют положительный заряд, а электроны — отрицательный. При этом заряд одного протона численно равен заряду одного электрона.

В обычных условиях, число электронов в атоме равно числу протонов. В таком случае положительный заряд всех протонов компенсируется отрицательным зарядом всех электронов. Суммарно выходит, что такой атом будет не иметь никакого заряда — будет электрически нейтральным.

Электрически нейтральное тело — это тело, в котором сумма всех отрицательных зарядов равна по абсолютному значению сумме всех положительных зарядов, и оно в целом не имеет заряда.

Положительно и отрицательно заряженные тела

Но некоторые тела имеют некоторый электрический заряд. В чем же суть, если изначально все атомы электрически нейтральны?

Электрически нейтральное тело получит отрицательный заряд, если получит дополнительные электроны от какого-нибудь другого тела. Тогда количество электронов в нем станет больше количества протонов.

Тело заряжено отрицательно в том случае, если оно обладает избыточным, по сравнению с нормальным, числом электронов.

Соответственно, если нейтральное тело, наоборот, теряет электроны и количество протонов в нем становится больше количества электронов, то оно обретает положительный заряд.

Тело обладает положительным зарядом, если у него недостаточно электронов.

Получается, что тела электризуются (получают электрический заряд), если они теряют или получают электроны.

Обратите внимание, что электризация происходит за счет изменения числа электронов, а не протонов. Протоны и нейтроны связаны сильнейшими взаимодействиями в ядре. Изменение числа протонов приводит к образованию атома нового химического элемента.

Потеря и приобретение веществами дополнительных электронов

Рассмотрим еще раз опыт с электризацией палочек о шелк и мех (рисунок 1).

Потерев стеклянную палочку о шелк, палочка обретает положительный заряд (рисунок 1, а). Значит, она теряет электроны.

Куда они деваются? Дело в том, что при трении электроны переходят со стеклянной палочки на шелк. В итоге, шелк обладает избыточным количеством электронов. Он обретает отрицательный заряд.

Теперь возьмем изначально нейтральную эбонитовую палочку и потрем ее о мех (рисунок 1, б). Она получит отрицательный заряд, а мех — положительный.

Объясняется это так же тем, что в ходе трения электроны переходят с меха на палочку. В итоге, на эбонитовой палочке образуется избыток электронов, а на мехе — их недостаток.

Почему при трении электроны переходят со стеклянной палочки на шелк и с меха на эбонитовую палочку, а не наоборот? Дело в том, что при взаимодействии двух тел из разных веществ электроны теряет то вещество, в котором силы притяжения электронов к ядру атомов меньше. Они переходят к тому веществу, в котором эти силы больше.

Закон сохранения электрического заряда

Если мы количественно определим заряды, которые в предыдущих опытах обретают мех и эбонитовая палочка (или шелк и стеклянная палочка), то увидим, что они равны.

Это логично, ведь сколько электронов ушло с меха, столько и получила эбонитовая палочка. Получается, что заряд не создается из ничего. Он был и изначально (просто суммарно в атоме был равен нулю), а после трения — разделился другим образом между телами.

Другие эксперименты только подтверждают этот факт. Так, при электризации тел выполняется закон сохранения электрического заряда.

Закон сохранения электрического заряда:
алгебраическая сумма электрических зарядов остается постоянной при любых взаимодействиях в замкнутой системе:
$q_1 + q_2 + q_3 + … + q_n = const$,
где $q$ — электрический заряд.

Обратите внимание! Этот закон выполняется только в замкнутой системе. Что это означает?

Замкнутая система — это такая система, в которую не входят извне и не выходят наружу никакие электрические заряды.

Свободные электроны

А какие именно электроны теряют вещества?

Снова вернемся к строению атома. В различных атомах электроны находятся на разных расстояниях от ядра. Взгляните, например на атом лития (рисунок 2).

Электроны, которые дальше находятся от ядра, слабее притягиваются к нему. Те, что находятся ближе к ядру, притягиваются сильнее. Особенно слабо удерживаются удаленные электроны в металлах.

Получается, что в металлах происходит следующее:
наиболее удаленные от ядра электроны могут покидать свое место и свободно двигаться между атомами этого вещества.

Такие электроны называют свободными. Зафиксируем это новое определение.

Свободные электроны — это электроны, которые покинули свое место в атоме, и свободно перемещаются между другими атомами вещества.

Ранее вы уже слышали о делении веществ на проводники и непроводники (диэлектрики). А сейчас мы докопались до их сути. Их природу определяет наличие или отсутствие именно свободных электронов. В проводниках они есть, а в диэлектриках — нет. Подробнее об этом мы поговорим в следующем уроке.

Передача электрического заряда

Проверим вышесказанное о проводниках. Если в них есть свободные электроны, то они могут переносить (передавать) электрических заряд.

Проведем опыт. Возьмем два электроскопа. Одних из них оставим незаряженным, а второй зарядим отрицательно. Соединим их с помощью металлического стержня (рисунок 3). Он будет являться проводником.

Мы увидим, что второй электроскоп тоже зарядился отрицательно.

Давайте объясним, как это произошло. В стержне есть свободные электроны. Когда мы соединяем его с электроскопами, они оказываются в электрическом поле заряженного электроскопа.

В итоге, эти свободные электроны придут в движение. Они направляются в сторону незаряженного электроскопа. Почему в его сторону? Заряженный электроскоп имеет отрицательный заряд и электроны тоже. Они отталкиваются и двигаются от него в единственное противоположное направление — в сторону незаряженного электроскопа. В результате и этот электроскоп обретает отрицательный заряд.

Притяжение наэлектризованных тел к ненаэлектризованным

Объясним еще одно электрическое явление. Мы говорили о том, что электрическое поле действует только на тела, которые имеют заряд. Но, если мы поднесем заряженную стеклянную палочку к изначально нейтральной гильзе из металлической фольги, то она будет притягиваться. Почему?

Рассмотрим это явление поэтапно (рисунок 3).

Гильза сделана из металла. Это означает, что в ней есть свободные электроны. Как только гильза окажется в электрическом поле палочки, на эти электроны будет действовать электрическая сила. Они придут в движение.

Наша палочка заряжена положительно. Свободные электроны гильзы перейдут на тот ее конец, который ближе к палочке (рисунок 3, а). Теперь этот конец гильзы заряжен отрицательно.

Соответственно, на другом конце гильзы образуется недостаток электронов. Другая сторона окажется заряжена положительно.

Рисунок 3. Передача электрического заряда от положительно заряженной стеклянной палочки незаряженной металлической гильзе

Отрицательно заряженный край гильзы притянется к положительно заряженной палочке (разноименные заряды притягиваются). Гильза коснется палочки. При этом часть свободных электронов перейдет с нее на палочку (рисунок 3, б).

Потеряв электроны, гильза оказывается положительно заряженной (рисунок 3, в).

Деление электрического заряда между телами

Посмотрим, как разделяется электрический заряд между двумя телами.

Проделаем простой опыт. Снова возьмем два одинаковых электроскопа. Один из них зарядим. Соединим их металлическим стержнем (рисунок 4).

После их соединения, мы увидим, что второй электроскоп зарядился. Половина заряда перешла на второй электроскоп. Первоначальный заряд поделился на две равные части.

Но что будет с зарядом, если электроскопы будут неодинаковые? Например, шар незаряженного электроскопа будет больше, чем шар первого.

Опыты показывают, что в таком случае на шар незаряженного электроскопа перейдет больше, чем половина заряда.

Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдет.

Слышали о заземлении? Оно основано как раз на вышесказанном факте. Соединив заряженное тело с землей, почти весь его заряд передается земному шару. Происходит это потому, что Земля очень велика по сравнению с другими телами, находящимися на ней. Так заземленное тело практически становится электрически нейтральным.

Упражнения

Упражнение №1
Почему можно наэлектризовать трением эбонитовую палочку, держа ее в руке, а металлический стержень нельзя?

Эбонит считается диэлектриком, электроны притягиваются к ядрам атомов с большой силой. Получив избыточные электроны при электризации, эбонит удерживает и их.

Металлический стержень — проводник. Даже если он получит дополнительные электроны, часть их будет спокойно перемещаться и перейдет на наше тело.

Упражнение №2
При наливании бензина корпус бензовоза при помощи металлического проводника обязательно соединяют с землей. Зачем это делают?

Дело в том, что на металлическом корпусе бензовоза может скапливаться определенный заряд (статическое электричество). Он может спровоцировать появление искры, что крайне взрывоопасно в сочетании с бензином и его парами.

Соединяя корпус бензовоза с землей, его заземляют. Заряд с корпуса уходит в землю и становится электрически нейтральным, появление искры невозможно.

Упражнение №3
Пластмассовая линейка, потертая шерстяной тканью, получила отрицательный заряд. Избыток или недостаток электронов образовался на ткани?

Если линейка получила дополнительные электроны, значит, по закону сохранения заряда, эти электроны потеряла ткань. Т.е., при электризации линейки электроны с ткани перешли на нее. Получается, что на ткани образовался недостаток электронов. Ткань обрела положительный заряд.

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.

Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством элементарных частиц. Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, - отрицательным.

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).


.

Носителем отрицательного заряда является электрон, положительного - протон. Нейтрон - нейтральная частица, не имеет заряда.

Величина элементарного заряда - электрона или протона, имеет постоянное значение и равна


Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом. А если присоединится один электрон лишний - получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим - это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) - притягиваются

Точечный заряд - это материальная точка, которая имеет электрический заряд.

Закон сохранения электрического заряда

Замкнутая система тел в электричестве - это такая система тел, когда между внешними телами нет обмена электрическими зарядами.

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.



На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

1) Элементарный электрический заряд - электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды оттал­киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло­жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря­дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы, в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц - нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е) — это наименьший электрический заряд, положи­тельный или отрицательный, равный величине заряда электрона:

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се­кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб­ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря­дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра­витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием, а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.


Электрический заряд является физической величиной, которая присуща некоторым элементарным частицам. Он проявляет себя через силы притяжения и отталкивания между заряженными телами посредством электромагнитного поля. Рассмотрим физические свойства заряда и виды зарядов.

Общее представление об электрическом заряде

Электричество в природе

Материя, которая имеет отличный от нуля электрический заряд, активно взаимодействует с электромагнитным полем и, в свою очередь, создает это поле. Взаимодействие заряженного тела с электромагнитным полем является одним из четырех типов силовых взаимодействий, которые известны человеку. Говоря о зарядах и видах зарядов, следует отметить, что с точки зрения стандартной модели электрический заряд отражает способность тела или частицы обмениваться носителями электромагнитного поля - фотонами - с другим заряженным телом или электромагнитным полем.

Одна из важных характеристик различных видов заряда - сохранение их суммы в изолированной системе. То есть общий заряд сохраняется сколь угодно длительное время независимо от типа взаимодействия, которое имеет место внутри системы.

Электрический заряд не является непрерывным. В экспериментах Роберта Милликена была продемонстрирована дискретная природа электрического заряда. Виды зарядов, существующие в природе, могут быть положительными или отрицательными.

Положительные и отрицательные заряды

Два вида электрических зарядов

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки - "кирпичики", образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Единица измерения

Виды зарядов, как положительные, так и отрицательные, в международной системе единиц СИ измеряются в кулонах. Заряд в 1 кулон - это очень большой заряд, который определяется как количество электронов, проходящих за 1 секунду через поперечное сечение проводника при силе тока в нем, равной 1 ампер. Одному кулону соответствует 6,242*10 18 свободных электронов. Это означает, что заряд одного электрона равен -1/(6,242*10 18 ) = - 1,602*10 -19 кулона. Это же значение, только со знаком плюс, характерно для другого вида зарядов в природе - положительного заряда протона.

Краткая история электрического заряда

Эксперименты Бенджамина Франклина

Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово "янтарь" в древнегреческом языке звучит как "электрон". Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как "электричество" и "электрический заряд". В своих работах Гилберт также смог различить магнитные и электрические явления.

Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века. Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены.

Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

Магнитный момент и электрический заряд

Виды заряда выделил еще Бенджамин Франклин. Их два: положительный и отрицательный. Два заряда одинакового знака отталкиваются, а противоположного - притягиваются.

С появлением квантовой механики и физики элементарных частиц было показано, что помимо электрического заряда частицы обладают магнитным моментом, который носит название спина. Благодаря электрическим и магнитным свойствам элементарных частиц в природе существует электромагнитное поле.

Принцип сохранения электрического заряда

Линии напряженности электрического поля

В соответствии с результатами множества экспериментов, принцип сохранения электрического заряда гласит, что не существует ни какого-либо способа разрушения заряда, ни его создания из ничего, и что в любых электромагнитных процессах в изолированной системе полный электрический заряд сохраняется.

В результате процесса электризации общее количество протонов и электронов не изменяется, существует лишь разделение зарядов. Электрический заряд может появиться в какой-либо части системы, где раньше его не было, но общий заряд системы при этом все равно не изменится.

Плотность электрического заряда

Под плотностью заряда понимается его количество на единицу длины, площади или объема пространства. В связи с этим говорят о трех типах его плотности: линейной, поверхностной и объемной. Поскольку существует два вида заряда, плотность также может быть положительной и отрицательной.

Несмотря на то что электрический заряд квантован, то есть является дискретным, в ряде опытов и процессов количество его носителей настолько велико, что можно считать, что они распределены по телу равномерно. Это хорошее приближение позволяет получить ряд важных экспериментальных законов для электрических явлений.

Закон Кулона

Шарль Огюстен де Кулон

Исследуя на крутильных весах поведение двух точечных зарядов, то есть таких, для которых расстояние между ними значительно превышает их размеры, Шарль Кулон в 1785 году открыл закон взаимодействия между электрическими зарядами. Этот закон ученый сформулировал следующим образом:

Величина каждой силы, с которой взаимодействуют два точечных заряда в покое, прямо пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния, разделяющего их. Силы взаимодействия направлены вдоль линии, которая соединяет заряженные тела.

Отметим, что закон Кулона от вида зарядов не зависит: изменение знака заряда лишь изменит направление действующей силы на противоположное, сохранив при этом ее модуль. Коэффициент пропорциональности в законе Кулона зависит от диэлектрической постоянной среды, в которой рассматриваются заряды.

Таким образом, формула для кулоновской силы записывается в следующем виде: F = k*q1*q2/r 2 , где q1, q2 - величины зарядов, r - расстояние между зарядами, k = 9*10 9 Н*м 2 /Кл 2 - коэффициент пропорциональности для вакуума.

Закон Кулона

Константа k через универсальную диэлектрическую постоянную ε0 и диэлектрическую постоянную материала ε выражается следующим образом: k = 1/(4*pi*ε*ε0), здесь pi - число пи, а ε > 1 для любой среды.

Закон Кулона не справедлив в следующих случаях:

  • когда заряженные частицы начинают двигаться, и особенно когда их скорости приближаются к около световым скоростям;
  • когда расстояние между зарядами мало по сравнению с их геометрическими размерами.

Интересно отметить, что математический вид закона Кулона совпадает с таковым для закона всемирного тяготения, в котором роль электрического заряда играет масса тела.

Способы передачи электрического заряда и электризация

Демонстрация явления элекризации

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами .

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики .

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

Электрическое поле

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами или .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка .

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент в системе СИ обычно записывают в виде:
где – электрическая постоянная .

В системе СИ элементарный заряд равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Читайте также: