Как определяется перемещение при равноускоренном движении кратко

Обновлено: 05.07.2024

Рассмотрим некоторые особенности перемещения тела при прямолинейном равноускоренном движении без начальной скорости. Уравнение, которое описывает это движение, было выведено Галилеем в \(XVI\) веке. Необходимо помнить, что при прямолинейном равномерном или неравномерном движении модуль перемещения совпадает по своему значению с пройденным путём. Формула выглядит следующим образом:

Зависимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость \(a(t)\) — прямая линия, которая лежит на оси времени.

Зависимость скорости от времени. Скорость со временем не изменяется, график \(v(t)\) — прямая линия, параллельная оси времени.

Правило определения пути по графику \(v(t)\): численное значение перемещения (пути) — это площадь прямоугольника под графиком скорости.


Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график \(a(t)\) — прямая линия, параллельная оси времени.

Зависимость пути от времени. При равноускоренном движении путь изменяется согласно квадратной зависимости: s = v 0 t + a t 2 2 . В координатах зависимость имеет вид: x = x 0 + v 0 x t + a x t 2 2 .


На этом уроке объясняется, как определить координату тела, пройденный путь и перемещение при прямолинейном равноускоренном движении. Дается историческая справка и вывод формулы на основе графического представления движения


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Перемещение тела при равноускоренном движении"

Прямолинейным равноускоренным движением называется движение, при котором скорость тела за любые равные промежутки времени изменялась на одинаковую величину. И основной характеристикой такого движения являлось ускорение — это физическая векторная величина, характеризующая быстроту изменения скорости.

Как определить координату тела, пройденный путь и перемещение при прямолинейном равноускоренном движении?

Это можно сделать, если рассмотреть прямолинейное равноускоренное движение как набор большого количества очень малых равномерных перемещений тела.

Первым решил задачу местоположения тела в определённый момент времени при ускоренном движении итальянский учёный Галилео Галилей. Галилей использовал наклонную плоскость с гладкой канавкой посередине, по которой скатывались латунные шары. По водным часам он засекал определённый интервал времени и фиксировал расстояния, которые за это время преодолевали шары. Галилей выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше (т.е. зависимость квадратичная). Это опровергало мнение Аристотеля, что скорость шаров будет постоянной.


Получим формулу для определения перемещения при равноускоренном движении графическим методом.

Известно, что при равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с тече­нием времени не остается постоянной, а меняется со временем согласно формуле


Т. е. скорость является линейной функцией, и поэтому графики скорости имеют вид прямой.


Прямая 1 соответст­вует движению с поло­жительным ускорением (скорость увеличивается), прямая 2 — движе­нию с отрицательным ускорением (скорость убывает).

График скорости разобьем на маленькие прямоугольные участки. Каждый участок будет соответствовать определённой постоянной скорости.


Необходимо определить пройденный путь за первый промежуток времени. Запишем формулу


Теперь посчитаем суммарную площадь всех имеющихся у нас фигур. А сумма площадей при равномерном движении – это полный пройденный путь.


Обратите внимание, от точки к точке скорость будет изменяться, тем самым можно получить путь, пройденный телом именно при прямолинейном равноускоренном движении.

Заметим, что при прямолинейном равноускоренном движении тела, когда скорость и ускорение направлены в одну сторону, модуль перемещения равен пройденному пути, поэтому, когда определяется модуль перемещения, то определяется и пройденный путь.

В данном случае можно говорить, что модуль перемещения будет равен площади фигуры, ограниченной графиком скорости и осью времени.


Фигура, ограниченная графиком скорости и осью времени есть не что иное, как прямоугольная трапеция. Из математики известна формула для нахождения площади трапеции. Площадь трапеции равна произведению половины суммы её оснований на высоту.


Следовательно, перемещение за все время tчисленно равно площади тра­пеции ОАВС. В нашем случае длина одного из оснований численно равна υoх, длина дру­гого — υх. Высота же ее чис­ленно равна t. Отсюда следует, что перемещение равно:


Подставим в эту формулу вместо υ равную ей величину υ0 + at.Тогда


Разделив почленно числитель на знаменатель, получим


Это есть уравнение перемещения в проекциях на ось координат.

При пользовании этой формулой нужно помнить, что s, υ0 и а могут быть как положительными, так и отрицательными — ведь это проекции векторов пути, начальной скорости и ускорения на ось X.

Теперь вспомним, что пройденный путь, равный в нашем случае модулю перемещения, выражается разностью: s = xx0

Если в уравнение подставить полученное нами выражение для S, то запишем закон, по которому движется тело при прямолинейном равноускоренном движении:


Это уравнение называется основным кинематическим уравнением равноускоренного движения.

Если тело движется из состояния покоя, график проходит через начало координат, фигура под графиком – прямоугольный треугольник, площадь которого равна половине произведения катетов.


Тогда формула для определения перемещения при­нимает вид:


Это уравнение перемещения при равноускоренном движении без начальной скорости.

x = x0 + at 2 /2

Это кинематическое уравнение равноускоренного движения , без начальной скорости.

Рассмотрим некоторые важные зависимости между величинами равноускоренного движения. Для равноускоренного движения без начальной скорости путь, пройденный телом, пропорционален квадрату времени. Значит, пути, пройденные телом за 1 с, 2 с, 3 с, 4 с будут относиться как квадраты последовательных натуральных чисел.



Для любого равноускоренного движения, пути, пройденные телом за любые равные промежутки времени, будут относиться как последовательный ряд нечетных чисел.



Основные выводы:

– Перемещение тела за все время t численно равно площади тра­пеции, ограниченной графиком скорости и осью времени.


уравнениеперемещения


кинематическое уравнение равноускоренного движения

– Для равноускоренного движения без начальной скорости путь, пройденный телом, пропорционален квадрату времени.

– Для любого равноускоренного движения, пути, пройденныетеломза любые равные промежутки времени, будутотноситьсякакпоследовательный ряд нечетных чисел.

Равноускоренное движение - это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение - частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Равноускоренное движение

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

Формулы для равноускоренного движения

​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v - v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = - 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = - 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v - v 0 ) 2 t .

Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения - нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 - v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.


Равноускоренное движение – это движение при равномерном изменении скорости. Рассмотрим перемещение при таком движении.

Перемещение при равноускоренном движении

Равноускоренное движение – это движение, в котором изменение скорости постоянно. Уравнение скорости при равноускоренном движении выражается следующей формулой:

Таким образом, график скорости при равноускоренном движении – это прямая, имеющая некоторый наклон по отношению оси абсцисс:

График скорости равноускоренного движения

Рис. 1. График скорости равноускоренного движения.

Для известного графика скорости перемещение равно площади фигуры между осью абсцисс, и графиком скорости от нулевого момента времени до времени $t$.

Эта фигура является трапецией, из геометрии известно, что ее площадь (и искомое перемещение) равна произведению полусуммы оснований на высоту. Высотой этой трапеции является время $t$, а основаниями – значение скорости в нулевой момент и в момент $t$. То есть:

Для получения окончательной формулы, надо поставить сюда предыдущую формулу, и прибавить перемещение в начальный момент (пусть оно будет иметь значение значение $x_0$).

Таким образом, окончательно получаем:

Это одна из основных формул кинематики. Она определяет перемещение тела $x$ в момент времени $t$, при условии, что в нулевой момент его перемещение было $x_0$, скорость $v_0$, а его движение равноускоренное с ускорением $a$.

В ряде задач известно не время, а начальная и конечная скорость. В этом случае время можно выразить из известных скоростей и ускорения. После подстановки получим:

Эту же формулу удобно применять, когда требуется найти конечную скорость при прохождении известного расстояния с равноускоренным движением.

Особенности перемещения

Из полученных формул можно видеть важные особенности равноускоренного движения.

Во-первых, время входит в формулу перемещения при равноускоренном движении во второй степени. Следовательно, графиком перемещения при равноускоренном движении является квадратичная парабола:


Рис. 2. График перемещения при равноускоренном движении.

Во-вторых, вектор перемещения будет изменяться монотонно только если вектор начальной скорости и ускорения направлены в одну сторону. Если же они направлены по-разному, то вектор перемещения будет изменяться более сложно.

В-третьих, из математики известно, что квадрат числа $N$ равен сумме $N$ первых нечетных чисел. А отсюда следует свойство равноускоренного движения, которое гласит, что перемещения, совершаемые телом за ряд последовательных одинаковых промежутков времени при равноускоренном движении, относятся друг к другу, как ряд первых нечетных последовательных чисел. Этот вывод впервые был получен Г. Галилеем.

Движением, близким к равноускоренному, являются первые секунды падения тел под действием силы тяжести, пока сопротивление воздуха не оказывает большого влияния. Когда скорость возрастает до некоторого предела (для легких тел – сантиметры в секунду, для тяжелых тел – метры в секунду), сила сопротивления воздуха становится слишком велика, и падение перестает быть равноускоренным.


Рис. 3. Влияние воздуха на падение тел.

Что мы узнали?

Перемещение при равноускоренном движении имеет квадратичную зависимость от времени. Перемещения, совершаемые телом за ряд последовательных одинаковых промежутков времени при равноускоренном движении, относятся друг к другу, как ряд нечетных последовательных чисел.

Читайте также: