Как глаз различает цвета физика кратко

Обновлено: 02.07.2024

image

Фото сетчатки в разрезе с электронного микроскопа.

Предисловие: краткая теория цвета и света

image


Видимый диапазон.

Свет — это электромагнитные (ЭМ) волны. Из всего разнообразия ЭМ излучения, как видно на картинке выше, наши глаза регистрируют только очень маленькую часть спектра.

Цвет характеризуется тремя величинами:

  1. — Тон
  2. — Насыщенность
  3. — Светлота

image


Спектр солнечного света.

Почему мы видим зелёные растения зелёными? Потому что они поглощают весь видимый свет, кроме зелёной части, которая отражается и попадает на сетчатку.

И последний факт перед погружением в физиологию: быстрее всего наша зрительная система реагирует на длину волны света 555 нм — это зелёный цвет с примесью жёлтого. Почему так сложилось? Это вопрос к эволюционной биологии — значит, нашим предкам в какой-то долгий период развития было необходимо хорошо различать этот цвет.

На графике ниже можно увидеть максимум чувствительности для дневного света и для сумерек:

Начнём с общей структуры сетчатки.

image

И ещё одна схема для закрепления знаний — всё то же самое, но вдруг кому-то так удобнее:

image

Обратите внимание на красные стрелочки внизу картинки — они указывают путь света сквозь структуры сетчатки. В верхней части схемы показаны рецепторы — палочки и колбочки.
Кого-то из вас может смутить то, что свет попадает сначала на нейроны в сетчатке, а потом на сами рецепторы.

Но не стоит переживать — если вы читаете этот текст и различаете цвета, значит у эволюции всё же получилось) Все слои нейронов сетчатки довольно прозрачны для видимого спектра — этого достаточно, чтобы свет попал на колбочки и палочки с минимальными искажениями.

Итак, сетчатка состоит из трёх типов рецепторов:

  1. палочки(rods),
  2. колбочки(cones),
  3. фоторецепторы(ipRGC).

Палочки содержат пигмент родопсин. Его наибольшая чувствительность находится в области около 510 нм — бирюзовый цвет.

Колбочки содержат пигмент йодопсин в трёх вариациях. Каждый колбочковый пигмент состоит из хромофора (производное ретинола(витамина А)) и опсина . Хромофор во всех колбочках одинаковый, в то время как опсин разный — это отличие как раз и задаёт разные спектры поглощения!


Немного о видах сигнала

Ниже показана фотография отдельного фоторецептора, помещённого в сверхтонкую пипетку.
На рецептор направлена полоска монохроматического света. Этот метод позволил измерить мембранный ток фоторецептора.


Процесс поглощения фотона и образования сигнала на выходе фоторецептора — фототрансдукция.

При попадании кванта света на фоторецептор в нём происходит распад пигмента и последующий каскад реакций. Рецептор гиперполяризуется от -40мВ до -70мВ. Сигнал на выходе из рецептора не импульсный, а градиентный, т.е. его напряжение зависит от интенсивности света. В результате прекращается передача глутамата от фоторецептора на синапс биполярной клетки и начинается выход нейромедиатора с биполярной на ганглиозную клетку. С ганглиозной клетки выходит импульсный сигнал (потенциал действия ПД), он имеет постоянную амплитуду и длину импульса.

Если на ганглиозную клетку поставить электрод и подключить его к аудио-системе, то при активации этой клетки можно услышать такой сигнал:


Пики поглощения колбочек:

  • коротковолновые (S) — 426 нм,
  • средневолновые (M) — 530 нм,
  • длинноволновые (L) — 557 нм.

Интересный факт, над которым учёные бились почти два столетия — почему при смешении синей и жёлтой красок получается зелёный цвет? Но если взять два источника света, перед одним поставить синее стекло, а перед другим — жёлтое, то в результате смешения получится белый! Этот вопрос удалось решить Герману Гельмгольцу.

image

Как читать график выше (смешение пигментов)? Очень важно понимать, что жёлтый в данном случае — это не чистый жёлтый с узким спектром в 580 нм, а широкополосный, т.е. это смесь жёлтого с зелёными и красными волнами.

Синий тоже не чистый спектр в 480 нм, а смесь синего с фиолетовым и зелёным.
В результате две смешанные краски или два стекла синего и жёлтого цветов, стоящие друг за другом, поглощают из белого цвета все длины волн, кроме средних — зелёных.

Если же взять монохроматические фильтры на 480 нм и 580 нм и поставить их друг за другом, то сквозь них не пройдёт ничего — не будет перекрытия спектра!

UPD: вопрос про особенности восприятия фиолетового цвета, заданный в комментариях под этой публикацией, был изучен. Ответ ниже.
Почему при попадании на сетчатку фиолетового цвета мы ощущаем его как синий с примесью красного?
Нужно внести маленькое уточнение в терминологию:
— фиолетовый — это спектральный цвет, т.е. цвет, который можно описать одним значением длины волны;
— пурпурный — смешанный или неспектральный цвет, т.е. его можно получить, смешав красный и синий цвета.
На графике спектральной чувствительности фоторецепторов видно, что длинноволновые колбочки имеют небольшой пик в области 400 нм — они активируются, когда мы смотрим на что-то пурпурное (или фиолетовое, кому так больше подходит).


Ещё немного физиологии

image

Слои нейронов сетчатки (по направлению прохождения сигнала):

  1. Фоторецепторы
  2. Горизонтальные клетки
  3. Биполярные клетки
  4. Амакриновые клетки
  5. Ганглиозные клетки

Биполярные клетки — одна из функций этих нейронов — передача сигнала от фоторецепторов к ганглиозным нейронам. Ближе к центру сетчатки один фоторецептор даёт сигнал на один биполяр, дальше от центра происходит конвергенция сигнала, т.е. один биполяр собирает сигнал от множества палочек. Как пример, на периферии зрительного поля на одну такую клетку могут поступать сигналы от 1500 палочек, что позволяет получить хорошую чувствительность зрения при слабом освещении.

Амакриновые клетки — так как на сегодня обнаружено более 33 подтипов данных нейронов, не вижу возможности описать их функции в нескольких абзацах. (Если у кого-то из читателей этой статьи будет свежая информация, то я с удовольствием её добавлю)

Ганглиозные клетки — основная функция — сбор сигнала от предыдущих слоёв нейронов и конвергенция в зрительный нерв. Суммарное количество фоторецепторов сетчатки 100-120 млн — будет превращено в 0,7-1,5 млн нервных волокон в зрительном нерве.
Ещё одна важная функция подтипа ганглиозных клеток ipRGC — регулирование циркадных ритмов в зависимости от яркости освещения и контроль светового рефлекса зрачка.

Теории цветового зрения

Описание теорий сделаю максимально кратким, потому что подробное изложение потянет на отдельную статью. Кому будут нужны подробности — список литературы в конце.

Эта теория предполагала наличие трёх типов рецепторов в сетчатке, которые порождают физиологическое ощущение красного, зелёного и синего. Промежуточные оттенки соответственно были истолкованы комбинацией базовых цветов (кардиналов).

Трихроматическая теория очень хорошо объясняет виды цветовой слепоты.

Чтобы понимать механизмы дальтонизма можно прибегнуть к такому эксперименту — предположим, у нас есть пациент страдающий монохромазией (все колбочки в его сетчатке имеют только один пигмент, не важно какой). На сетчатку данного человека посылается поток из 100 фотонов с длиной волны 520 нм (зелёный), а после — 100 фотонов 650 нм (красный). Наш монохромат не получит само ощущение цвета, но сможет отличить эти цвета по их яркости, так как короткие волны обладают большей энергией и их воздействие на фоторецепторы сильнее.

Если же количество длинноволновых фотонов увеличить, чтобы в итоге они вызывали такое же яркостное ощущение как и коротковолновые, то наш больной уже не сможет увидеть различия в источниках света.

Так происходит потому, что фоторецепторы на выходе из сетчатки выдают аналоговый импульсный сигнал — он не способен кодировать информацию о цвете.

Для минимального различия цветовых стимулов в сетчатке должны быть минимум два вида колбочковых пигментов. В этом случае сигнал разных уровней, идущий по разным нервным волокнам, будет в дальнейшем интерпретирован в цвет в зрительной коре.

Так и работают тесты для дальтоников — паттерны изображены разными цветами одинаковой яркости.

Ещё раз про вид сигнала — это аналоговые импульсы, не двоичный код. Сигнал несёт импульсы одинаковой амплитуды, но при этом может изменятся сама частота импульсации — 30 импульсов в секунду или 100.

Трихроматическая теория при всём своём успехе имела ряд недостатков — например, она не могла описать, почему при цветовой слепоте цвета никогда не пропадают единично (только красный или только синий) — хотя по логике самой теории должно быть именно так. А получается попарное выпадение цветов — зелёный вместе с жёлтым или красный и синий.

Примерно в 1870 году на сцену выходит Геринг со своей Опонентной теорией.

Кратко — суть теории в том, что она предлагает четыре базовых цвета, а не три. Эти цвета противоположны (оппонентны) друг другу:

  • красный/зелёный
  • жёлтый/синий
  • чёрный/белый

Сегодня для описания принята Теория двухэтапного цветового зрения или Теория двойной обработки. Её основоположником был Адольф фон Криз. Но свой финальный вид она обрела в 1957 г. благодаря физиологам Лео Гурвичу и Доротее Джеймсон.

Эта теория объединяет две предыдущих — показывая, что они не противоречат, а дополняют друг друга.

Благодаря развитию методов исследования в физиологии сейчас мы знаем, что первый этап обработки описывается трихроматической теорией, а второй — оппонентной.

С развитием молекулярной генетики были установлены пики поглощения для трихроматов:

  • короткие волны 426 нм
  • средние волны 530 нм
  • длинные волны 552 или 557 нм

Да, само ощущение цвета у всех нас немного отличается только по этой причине, но это вариант нормы.

Есть ещё и аномальные трихроматы, у которых имеются все необходимые пигменты, но они синтезируются в сетчатке в совершенно других пропорциях — из-за этого тот цвет, который вы ощущаете как синий, аномальный трихромат может ощущать как красный и есть большая вероятность, что и назовёт он его синим, так как в итоге он имеет все три вида пигментов, позволяющих ему просто различать цвета. Таких аномальных трихроматов можно выявить всё тем же трихроматическим уравниванием.

Подведём итог по теории двухэтапного цветового зрения. Все этапы обработки происходят на уровне сетчатки, прошу не путать с возникновением самого ощущения цвета в отделах зрительной коры.

  1. разделение света на три базовых цвета — Трихроматическая теория
  2. преобразование трёх цветов в три опонентные пары — Опонентная теория
  3. интерпретация сигнала в латеральном коленчатом теле ЛКТ
  4. формирование цветового феномена в зрительной коре
  • RGB содержит три канала — в каждом по одному цвету
  • LAB содержит три канала. Каналы a и b имеют по два цвета, а канал Lightness — чёрный и белый


Каков дальнейший путь сигналов из сетчатки после ЛКТ?

До недавнего времени областью зрительной коры, ответственной за распознавание цвета, считалась зона V4.

В 2018 году были проведены исследования по обновлению картирования мозга. Для этого использовались методы объединения данных фМРТ с ретинотопными данными. В результате оказалось, что в коре нет единственного центра, отвечающего за обработку цвета, этим занимаются минимум 6 зон, среди них зона, чувствительная к движению:

  • V1
  • V4
  • V8
  • VO
  • LOC
  • MT +

Понимаю, что изложение вышло слегка сумбурным, потому что пришлось изучить сотни страниц учебников и исследований. Надеюсь, вам было понятно и интересно :)

Фиалки – бесцветные, ваша помада оттенка bordo – бесцветная и даже любимое желтое платье не имеет цвета. Мир вообще бесцветен и был бы таким в наших глазах, если бы не свет.

Свет – это излучение, которое испускает нагретое тело или вещество в возбужденном состоянии, а цвет – характеристика этого света. Предметы сами по себе бесцветны, а мы видим цвет, когда их поверхность отражает электромагнитные волны видимого диапазона, то есть свет. То, как человек воспринимает цвет, зависит от степени освещенности предмета, источника света, а также физиологических особенностей и психологического состояния каждого из нас в конкретный момент.

Физика и биология цвета. Как мы различаем цвета. Лекция IFM (l`Institut Français de la Mode)

Физика цвета

Главный цветоприниматель человеческого организма – сетчатка глаза. Чтобы глаз увидел какой-либо предмет и его цвет, свет сначала должен упасть на этот предмет, отразиться от него, а затем попасть на сетчатку. Люди видят предметы, потому что они отражают свет, и различают цвета этих предметов в зависимости от характеристик их поверхности: какие лучи она поглощает, а какие отражает, отдавая сетчатке на анализ. Свет, поглощенный предметом, глаз увидеть не может.

Черная кожа, например, поглощает почти все излучение и кажется нам черной, потому что не отражает никакие волны. Снег, наоборот, равномерно отражает почти весь свет и поэтому выглядит для нас белым. Человек видит предмет в том цвете, лучи которого отражаются от поверхности и попадают на сетчатку. В случае с красной помадой на сетчатку попадут только лучи красного спектра, а остальные поглотятся, создав в сознании человека представление о красном цвете.

Человеческий глаз воспринимает электромагнитное излучение в узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера – тонкая оболочка Солнца, меньше 300 километров в толщину. В бесцветном для нашего глаза солнечном свете заключен весь видимый спектр волн, который при разложении дает цвета радуги: от красного до фиолетового. На уроках физики разложение света на спектр демонстрируют с помощью призмы, в жизни это можно увидеть на примере радуги, где функцию преломителя играют капли воды в воздухе.


Как мы различаем цвета

Запомнить назначение колбочек и палочек легко с помощью ассоциации: колбочки – как химические емкости, в которых происходят реакции и получаются яркие вещества, а палочки – буквально палки-трости, которые мы использовали бы, окажись мы в полной темноте.

Физика и биология цвета. Цветовой круг. Лекция IFM (l`Institut Français de la Mode)

Цветовой круг

Цветовой круг – это способ представить весь видимый спектр света в условной форме круга. Секторы круга представляют цвета, размещенные в том порядке, который условно передает расположение их волн в спектре видимого света. Для связывания круга в его палитру добавлен пурпурный цвет (маджента), который соединяет крайние спектральные цвета (красный и синий) и получается из их условного смешения.

Свойствами цветового круга пользуются художники, физики, дизайнеры, инженеры, стилисты. Мы с помощью цветового круга можем разграничивать холодные и теплые цвета, дополняющие цвета, оттенки и аналогичные цвета. Эти понятие станут инструментом для дальнейшей работы с образом. Вкус, который многие считают врожденным, можно развивать, и правила сочетаемости цветов – отличное для этого начало.

Физика и биология цвета. Цветовой круг. Лекция IFM (l`Institut Français de la Mode)

→ Хроматический круг: теплые и холодные тона

Теплые и холодные тона расположены в разных частях цветового круга. К теплым относятся желтый, оранжевый и красный, к холодным – зеленые, синие и фиолетовые. Вопрос о каждом пограничном цвете (например, между желтым и зеленым) стоит рассматривать в каждом случае отдельно. Смешанный желто-зеленый цвет может относиться как к теплой, так и к холодной части круга. У стилистов также есть представление о том, что теплыми и холодными версиями обладают все цвета, кроме оранжевого (он всегда теплый). Даже голубой и зеленый могут быть теплыми, но это представление основано на психологическом восприятии цвета и ассоциациях, а не на объективных характеристиках цветового круга.

→ Хроматический круг: дополняющие цвета

Дополняющие цвета – это пара тонов, расположенных в круге напротив друг друга. Получить пару цветов можно, проведя прямую линию через центр круга. Получаем желтый + фиолетовый, синий + оранжевый, зеленый + красный.

Физика и биология цвета. Цветовой круг. Лекция IFM (l`Institut Français de la Mode)

→ Хроматический круг: аналогичные цвета

Аналогичные цвета расположены по соседству в одном цветовом семействе: желтый-оранжевый-красный, синий-голубой, зеленый-салатовый и так далее. Часто мы называем такие цвета оттенками, но это не совсем верное определение.

Физика и биология цвета. Цветовой круг. Лекция IFM (l`Institut Français de la Mode)

→ Хроматический круг: оттенки

Оттенки (фр. camaieu) – это варианты одного цвета, которые получаются путем добавления в него белой или черной краски. Увидеть визуальное представление оттенков можно на усовершенствованном круге с градацией цветов к белом в центре и черному – по краям. Таким представлением цвета пользуются дизайнеры, работая в Photoshop и аналогичных программах. Оттенки одного цвета – это градиентная шкала от бело-желтого до черного с желтым подтоном, от бело-голубого до иссиня-черного, где началом и концом шкалы являются белый и черный цвета.

Этих четырех свойств хроматического круга достаточно, чтобы создавать двух, трех и четырехцветные образы, не ошибаясь в оттенках. Благодаря правилам круга даже непривычные для вашего взгляда сочетания будут выглядеть гармонично.

Цветовосприятие и механизмы его возникновения всегда очень интересовали ученых. Известно, что глаз человека способен различать примерно 10 млн. цветов, включая 7 основных и все оттенки. Этот навык сформировался в процессе эволюции, и существует благодаря сетчатке и колбочкам. Данные структуры имеют особый пигмент (йодопсин), который подразделяется на виды и может улавливать желто-красный и желто-зеленый спектр.

Краткая теория цвета и света

Восприятие цвета глазом

Справка! Согласно теории эволюционной биологии считается, что человеческий глаз более восприимчив к зеленому цвету потому, что скорее всего нашим далеким предкам приходилось долгое время обязательно хорош различать именно этот цвет.

Физиология рецепторов сетчатки

Сетчатка — внутренняя оболочка глаза, которая представляет собой высокодифферцированную нервную ткань, она играет важнейшую роль в обеспечении зрения человека.

Сетчатка состоит из 10 слоев, которые содержат нейроны, сосуды крови и прочие структуры. Основными функциями сетчатки является центральное и периферическое зрение, эти функции осуществляются рецепторами — палочками и колбочками. Рецепторы воспринимают световые лучи и трансформируют их нервные импульсы, передающиеся по зрительному тракту в центральную нервную систему.

Центральное зрение обеспечивает четкое восприятие объектов, которые расположены на разном от глаза расстоянии, с их помощью человек может смотреть вдаль, читать и выполнять работу на близком к нему расстоянии. Периферическое зрение позволяет ориентироваться в пространстве. Три вида колбочек воспринимают световые волны разной длины и обеспечивают восприятие цветов и их оттенков.

Палочки имеют высокую степень светочувствительности, но различать цвета не могут, так как сдержат только один пигмент — родопсин, он более медленно реагирует на свет, чем йодопсин.

Колбочки получили свое название благодаря форме, которая схожа с формой лабораторных колб. Длина колобки около 0,05 мм, диаметр в самом широком месте — 0,004 мм.

Сетчатка глаза

Надо сказать, что непосредственно сами механизмы обработки цвета, то есть формирование цветового ощущения, учеными до сих пор так и не описаны в деталях.

Человек является обладателем удивительных особенностей благодаря сложной структуре глаза и механизмам обработки информации в головном мозге:

  1. Окружающие объекты человек может связывать с цветами благодаря цветовой памяти. Все знают, что трава зеленая, а небо голубое, и мы может воспроизвести эти цвета в своем мозге.
  2. Независимо от освещения предметов, мы можем воспринимать когнитивное обесцвечивание. Благодаря цветовой памяти и обработке зрительной информации человек может воспринимать цвет предмета.
  3. Цветовая константность позволяет человеку воспринимать цвет предмета независимо от его оттенка и яркости освещения.

Колбочки имеют 4 сегментарные зоны:

  • наружная — мембранные диски, которые содержат йодопсин;
  • связующая;
  • внутренняя — включает митохондрии;
  • базальный сегмент или зона синоптического соединения.

В настоящее время описаны два вида пигмента йодопсина — эритроллаб (чувствителен к красному спектру и длинным L-волнам) и хлоролаб (чувствителен к зеленому спектру и средним М-волнам). Пока ученым не удалось найти пигмент, который чувствителен к синему спектру и коротким S-волнам, но у него уже есть название — цианолаб.

Теории цветового зрения

В истории науки существовало множество теорий, которые по-разному пытались объяснить механизмы цветового зрения. На данный момент ученые придерживаются трех концепций, позволяющих разобраться в этом сложном механизме.

Трихроматическая теория

Эта теория была разработана в конце XIX века, она основана на трудах Максвелла, Юнга и Гельмгольца. Эти ученые догадывались о существовании особых рецепторов глаза, которые чувствительны к красной, зеленой и синей области спектра. Согласно этой теории, предполагалось, что эти три вида рецепторов формируют три изображения мира, которые передаются в мозг, где сравниваются.

В результате этих процессов возникает цветовое ощущение. Природа цветового зрения по этой теории не вызвала сомнений, но по поводу трех изображений, которые посылаются в мозг, были возражения — нет объяснения ряду зрительных феноменов.

Восприятие зрения

Оппонентная

Геринг примерно в тоже время предложил другую теорию, которую назвал оппонентной. Она основана на большом количество субъективных наблюдений — восприятие цветового тона и одновременного контраста.

Геринг заявлял, что цветовые тона не воспринимаются все сразу, например, никогда цветовое ощущение не описывается как желто-синее или зелено-красное, а вот комбинация красного и желтого, или желтого и зеленого воспринимается глазом легко. В связи с этим у ученого возникла мысль, что должна быть фундаментальная причина, которая противопоставляет цвета друг другу.

Эти наблюдения Геринга не исключали наличия трех типов рецепторов, но он считал, что они работают по принципу биполярного ответа. Так как данное утверждение в те времена казалось абсурдным с физиологической точки зрения, эта теория не прижилась.

В середине XX века оппонентная теория вновь возрождается, так как стали появляться данные, которые ее подтверждали. Были обнаружены сигналы в сетчатке глаза золотой рыбки, оппонентные физиологические ответы в клетках макаки, получены психофизические данные.

Эксперименты позволили измерять относительную спектральную чувствительность оппонентных путей. Так появилась современная оппонентная теория цветового зрения, которую также называют стадийной теорией.

Двухэтапного цветового зрения

Если в первой половине XX века основное внимание обращалось на модификацию рецепторного звена, то во второй половине прошлого столетия акценты смещаются — больше обсуждаются структуры второй, нейрональной стадии анализа излучений.

Причиной этого стали исследования, которые выявили реальную структуру рецепторных приемников сетчатки. Это биохимические исследования Брауна и Уолда, а также эксперименты Маркса, МакНикола и Доубела.

Основоположником этой теории был Адольф фон Криз, но финальный вид теория приобрела благодаря Лео Гурвичу и Доротее Джеймсон.

По сути эта теория объединяет собой две предыдущие, она показывает, что они не противоречат друг другу, а дополняют.

В настоящее время ученые знают, что первый этап обработки подходит под трихоматичсекую теорию, а второй — под оппонентную.

С развитие генетики были установлены пики поглощения для трихоматов:

  • 426 нм — короткие волны;
  • 530 нм — средние волны;
  • 552 или 557 нм — длинные волны — возможны наследственные различия в формировании пигментов.

Таким образом, теория двухэтапного цветового зрения предусматривает следующий порядок обработки:

  • цвет разделяется на три базовых — трихроматическая теория;
  • цвета преобразуются в три оппонентные пары — оппонентная теория;
  • сигнал интерпретируется в латеральном коленчатом теле;
  • в зрительной окре происходит формирование цветового феномена.

Двухэтапное цветовое зрение

О нарушениях в восприятии цветов

Нарушения цветового зрения происходят в результате неправильного возбуждения колбочек и сбоя в передаче импульсов в мозг. При условии, что такое нарушение врожденное, человек долгое время может не подозревать о его наличии, поскольку ориентируется по насыщенности и яркости цвета. Сведения о цвете приобретаются в результате опыта и общения с людьми.

Когда у человека полностью отсутствует или очень снижена возможность различать некоторые или все цвета, говорят о дальтонизме.

Существует врожденный и приобретенный дальтонизм, и в зависимости от его клинических проявлений выделяют следующие нарушения цветового зрения:

  1. Ахроматопсия — цветовое зрение отсутствует полностью, человек видит все в черно-белом цвете. Редкое явление.
  2. Дейтеранопия — человек не воспринимает зеленую часть спектра, встречается достаточно часто.
  3. Протанопия — расстройство восприятия красной части спектра. При дейтеранопии и протанопии восприятие цветов схожее, поскольку смешивание синего и красного, синего и зеленого в головном мозге рождает схожий болотно-зеленый цвет.
  4. Тританопия — нарушение восприятия синего цвета, встречается редко.

Кроме цветовой слепоты, у человека может быть слабая цветовая чувствительность. В этом случае ему нужно больше времени или более сильная насыщенность цвета, чтобы распознать окраску объекта.

Офтальмолог высшей квалификационной категории. Имеет огромный опыт диагностики и лечения заболеваний глаз взрослых и детей. Более 20 лет опыта работы.

Самой частой причиной нарушения цветового восприятия является повреждения гена, который принимает участие в цветовосприятии. Находится он в Х-хромосоме. Так как у мужчин хромосомный набор ХУ, а женщин ХХ, то мальчик, получивший от матери дефектную хромосому, не может ее ничем компенсировать.

С этим связан факт, что у мужчин дальтонизм встречается чаще, чем у женщин. Ген дальтонизма может передаваться через поколение, и чтобы убедиться в отсутствии генетической предрасположенности к сбою восприятия цвета, необходимо пройти тест ДНК. Этот способ используется в тех случаях, когда визуальные тесты провести невозможно, скажем у новорожденных детей и у детей первых лет жизни.

Что касается приобретенных нарушений цветовосприятия, они встречаются значительно реже, и могут быть связаны со следующими причинами:

  • повреждение сетчатки ультрафиолетом;
  • сахарный диабет — при постоянном повышении концентрации глюкозы сосуды повреждаются, и сетчатка перестает выполнять свои функции;
  • воспаления зрительного нерва и сетчатки;
  • атеросклероз головного мозга;
  • прием некоторых медикаментозных препаратов — чаще всего на цветовосприятие негативно воздействует прием сердечных гликозидов;
  • ожоги сетчатки;
  • отравления химическими веществами;
  • глаукома;
  • катаракта;
  • недостаток витамина А;
  • механические повреждения сетчатки;
  • брюшной тиф;
  • неврологические расстройства — инсульт, инфаркт мозга, опухоли мозга, рассеянный склероз.

Заключение

Большинство млекопитающих видят только черный и белый цвет. Особенность их глаза заключается в повышенной чувствительности к серым оттенкам. Например, собаки могут различать большое количество серых оттенков, и именно поэтому многие ошибочно считают, что собаки могут различать цвета. На самом деле, они идентифицируют оттенок серого, а не цвет в его естественном проявлении.


Что такое цвет с точки зрения физики? Вопрос не такой уж простой, как кажется на первый взгляд. Цвет есть физическое свойство света. С точки зрения физики разные цвета предметов не существуют сами по себе.

Физика рассматривает цвет как электромагнитную волну. Любая волна имеет длину – расстояние между гребнями. Длина волны обратно пропорциональна ее частоте. Та длина волны, которую способен воспринимать человеческий глаз является видимым светом. Свет с большой длиной волны(низкочастотные волны) наш глаз воспринимает как красный, а свет с наименьшей длиной(высокочастотные волны) - как фиолетовый. Да, звучит немного заумно, но из этого следует, что цвета которые мы воспринимаем различаются в зависимости от длины волны(частоты) видимого света. Каждому цвету спектра соответствует свой диапазон частот.

Источник

Почему мы видим цвет так?

Природа подарила человеку радость цветового восприятия: мы видим всё окружающее в многообразии цветов и оттенков и даже не задумываемся о том, что может быть иначе. Основная причина того, что мы видим цвет именно таким, заключается в воздействии света с определенной длиной волн на сетчатку глаза. Свет с самой большой длиной волны называется инфракрасным, а свет с максимально короткой длиной волны – ультрафиолетовым. Но, человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, при этом мы воспринимаем большой диапазон волн других цветов.

Например, при падении на предмет белого светового луча большинство из составляющих его световых волн поглощается поверхностью, и лишь некоторая часть, находящаяся в определённом диапазоне, отражается. Световые волны этого диапазона мы и воспринимаем как цвет, присущий предмету. Фактически цвет у предметов появляется только при попадании на них света. К примеру, достаточно посмотреть на банан – этот фрукт поглощает весь свет кроме желтого, который собственно вы обычно и видите.

Анатомия человека

Особенности восприятия наших зрительных органов и преобразования зрительных импульсов мозгом позволяет человеку увидеть яркую цветную картинку. Свет воспринимается в слое клеток, который покрывает заднюю поверхность глазного яблока и называется сетчаткой. Имеются три типа воспринимающих свет клеток - колбочек, которые реагируют примерно на красный, зеленый и синий свет. Каждая колбочка отправляет в мозг сигнал — и вы видите какой-то цвет. Остальные цвета получаются путем совместной передачи сигналов от нескольких типов колбочек и их смешивания нашим мозгом. Например: красный + зеленый = желтый

Источник

Госпиталь микрохирургии глаза Исманкулова

Госпиталь микрохирургии глаза Исманкулова

Невидимые цвета

Человеческий глаз способен воспринимать как длинные, так и короткие волны, но, с обеих сторон диапазона существуют излучения, свет от которых мы попросту не можем увидеть. Более короткие чем ультрафиолетовые и более длинные чем инфракрасные волны мы попросту не замечаем. Дальтоники, из-за различного рода отклонений в восприятии света, не способны воспринимать даже видимую часть светового спектра.

Существуют так же цвета, которые человек не может увидеть из-за особенности функционирования нашего мозга. Человеку трудно увидеть красный с зеленым оттенком и желтый с синим оттенком. Почему так происходит можно узнать из статьиНевозможные цвета.

И кстати, по мнению ученых, мир выглядит либо абсолютно черным, либо полностью белым, то есть без цветового восприятия наша жизнь была бы крайне мрачной и скорее походила бы на декорации какого-то фантастического фильма.

Читайте также: