Информатика как научная дисциплина кратко

Обновлено: 05.07.2024

ИНФОРМАТИКА – техническая наука, систематизирующая приемы создания, хранения, обработки и передачи информации средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

В англоязычных странах применяют термин computer science – компьютерная наука.

Теоретической основой информатики является группа фундаментальных наук таких как: теория информации, теория алгоритмов, математическая логика, теория формальных языков и грамматик, комбинаторный анализ и т.д. Кроме них информатика включает такие разделы, как архитектура ЭВМ, операционные системы, теория баз данных, технология программирования и многие другие. Важным в определении информатики как науки является то, что с одной стороны, она занимается изучением устройств и принципов действия средств вычислительной техники, а с другой – систематизацией приемов и методов работы с программами, управляющими этой техникой.

Информационная технология – это совокупность конкретных технических и программных средств, с помощью которых выполняются разнообразные операции по обработке информации во всех сферах нашей жизни и деятельности. Иногда информационную технологию называют компьютерной технологией или прикладной информатикой.

Информация аналоговая и цифровая.

Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.

В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.

Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло – это энергетические сигналы, а вкус и запах – это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков – это информация аналоговая. Если же разным цветам дать номера, а разным звукам – ноты, то аналоговую информацию можно превратить в цифровую.

Музыка, когда ее слушают, несет аналоговую информацию, но если записать ее нотами, она становится цифровой.

Разница между аналоговой информацией и цифровой, прежде всего, в том, что аналоговая информация непрерывна, а цифровая дискретна.

К цифровым устройствам относятся персональные компьютеры – они работают с информацией, представленной в цифровой форме, цифровыми являются и музыкальные проигрыватели лазерных компакт дисков.

Кодирование информации.

Кодирование информации – это процесс формирования определенного представления информации.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Единицы измерения информации. Бит. Байт.

Бит – наименьшая единица представления информации. Байт – наименьшая единица обработки и передачи информации.

Единица измерения информации называется бит (bit) – сокращение от английских слов binary digit, что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено – не намагничено, есть отверстие – нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое – цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (2 8 ). Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 2\up1210 байт = 1024 байта;

1 Мбайт (один мегабайт) = 2\up1210 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 2\up1210 Мбайт = 1024 Мбайта.

Например, книга содержит 100 страниц; на каждой странице – 35 строк, в каждой строке – 50 символов. Объем информации, содержащийся в книге, рассчитывается следующим образом:

1750 × 100 = 175 000 байт.

175 000 / 1024 = 170,8984 Кбайт.

170,8984 / 1024 = 0,166893 Мбайт.

Файл. Форматы файлов.

Файл – наименьшая единица хранения информации, содержащая последовательность байтов и имеющая уникальное имя.

Основное назначение файлов – хранить информацию. Они предназначены также для передачи данных от программы к программе и от системы к системе. Другими словами, файл – это хранилище стабильных и мобильных данных. Но, файл – это нечто большее, чем просто хранилище данных. Обычно файл имеет имя, атрибуты, время модификации и время создания.

Файловая структура представляет собой систему хранения файлов на запоминающем устройстве, например, на диске. Файлы организованы в каталоги (иногда называемые директориями или папками). Любой каталог может содержать произвольное число подкаталогов, в каждом из которых могут храниться файлы и другие каталоги.

Способ, которым данные организованы в байты, называется форматом файла.

Для того чтобы прочесть файл, например, электронной таблицы, нужно знать, каким образом байты представляют числа (формулы, текст) в каждой ячейке; чтобы прочесть файл текстового редактора, надо знать, какие байты представляют символы, а какие шрифты или поля, а также другую информацию.

Все файлы условно можно разделить на две части – текстовые и двоичные.

Такие языки, как китайский, содержат значительно больше 256 символов, поэтому для кодирования каждого из них используют несколько байтов. Для экономии места зачастую применяется следующий прием: некоторые символы кодируются с помощью одного байта, в то время как для других используются два или более байтов. Одной из попыток обобщения такого подхода является стандарт Unicode, в котором для кодирования символов используется диапазон чисел от нуля до 65 536. Такой широкий диапазон позволяет представлять в численном виде символы языка любого уголка планеты.

Но чисто текстовые файлы встречаются все реже. Документы часто содержат рисунки и диаграммы, используются различные шрифты. В результате появляются форматы, представляющие собой различные комбинации текстовых, графических и других форм данных.

Двоичные файлы, в отличие от текстовых, не так просто просмотреть, и в них, обычно, нет знакомых слов – лишь множество непонятных символов. Эти файлы не предназначены непосредственно для чтения человеком. Примерами двоичных файлов являются исполняемые программы и файлы с графическими изображениями.

Примеры двоичного кодирования информации.

Среди всего разнообразия информации, обрабатываемой на компьютере, значительную часть составляют числовая, текстовая, графическая и аудиоинформация. Познакомимся с некоторыми способами кодирования этих типов информации в ЭВМ.

Кодирование чисел.

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера области памяти, используемой для размещения чисел. В k-разрядной ячейке может храниться 2 k различных значений целых чисел.

Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, нужно:

1) перевести число N в двоичную систему счисления;

2) полученный результат дополнить слева незначащими нулями до k разрядов.

Например, для получения внутреннего представления целого числа 1607 в 2-х байтовой ячейке число переводится в двоичную систему: 160710 = 110010001112. Внутреннее представление этого числа в ячейке имеет вид: 0000 0110 0100 0111.

Для записи внутреннего представления целого отрицательного числа (–N) нужно:

1) получить внутреннее представление положительного числа N;

2) получить обратный код этого числа, заменяя 0 на 1 и 1 на 0;

3) полученному числу прибавить 1 к полученному числу.

Внутреннее представление целого отрицательного числа –1607. С использованием результата предыдущего примера и записывается внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Обратный код получается инвертированием: 1111 1001 1011 1000. Добавляется единица: 1111 1001 1011 1001 – это и есть внутреннее двоичное представление числа –1607.

Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p, которую называют порядком: R = m * n p .

Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства:

12,345 = 0,0012345 × 10 4 = 1234,5 × 10 -2 = 0,12345 × 10 2

Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию:

0,1p Ј m 8 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.

Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является уже упоминавшаяся таблица кодировки ASCII.

Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.

Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов.

Кодирование графической информации.

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информации о его цвете.

Для черно-белого изображения (без полутонов) пиксел может принимать только два значения: белый и черный (светится – не светится), а для его кодирования достаточно одного бита памяти: 1 – белый, 0 – черный.

Пиксел на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксел недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксел, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 – черный, 10 – зеленый, 01 – красный, 11 – коричневый.

На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов – красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:

R R
G G
B B
цвет цвет
0 1
0 0
0 0
черный красный
0 1
0 0
1 1
синий розовый
0 1
1 1
0 0
зеленый коричневый
0 1
1 1
1 1
голубой белый

Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов – К и количество битов для их кодировки – N связаны между собой простой формулой: 2 N = К.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пикселы которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука.

Из физики известно, что звук – это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Компьютер – универсальная информационная машина.

Одно из основных назначений компьютера – обработка и хранение информации. С появлением ЭВМ стало возможным оперировать немыслимыми ранее объемами информации. В электронную форму переводят библиотеки, содержащие научную и художественную литературы. Старые фото- и кино-архивы обретают новую жизнь в цифровой форме.

Как звали математика, который в 19 лет решил задачу, не поддававшуюся усилиям лучших геометров со времен Евклида?

Информатика как наука — это дисциплина, которая изучает структуру и общие свойства информации, а также правила и способы её формирования, сохранения, поиска, обработки, пересылки и использования в разных областях деятельности людей на базе применения компьютерного оборудования.

Информатика и кибернетика: сходства и отличия

К[Замечание] ибернетика – это наука об общих аспектах, связанных с процессами управления в разных системах. Эти системы могут быть техническими, биологическими, социальными и другими. [/Замечание]

Информатика изучает процессы обработки и формирования новых информационных данных в более широких границах, и фактически не занимается, в отличие от кибернетики, решением задач управления разными объектами. Информатика возникла именно как следствие прогресса компьютерной сферы, основывается на ней и без неё практически не существует.

Кибернетика обладает самостоятельным развитием и также повсеместно применяет передовую компьютерную технику, но не имеет от неё никой зависимости, так как выстраивает разнообразные модели, помогающие анализировать управление объектами.

Важным аспектом информатики считается её повсеместное использование, которое охватывает практически все области деятельности людей.

Информатика как научная дисциплина

Как научная дисциплина информатика занимается изучением общих закономерностей, которые свойственны процессам, связанным с информационной обработкой. Для специалистов, занимающихся проектированием систем управления базами данных (СУБД), имеют значение общие правила организации и обеспечение эффективности нахождения требуемых информационных данных, а не конкретика, то есть какой именно набор информации будет заложен в базу различными пользователями. Данные общие законы и являются основным предметом информатики как научной дисциплины.

Готовые работы на аналогичную тему

Основные задачи информатики:

  1. Изучение информационных процессов различных типов.
  2. Проектирование информационного оборудования и формирование новых технологий информационной обработки, базирующееся на результатах изучения информационных процессов.
  3. Разрешение инженерных и научных проблем, связанных с реализацией, внедрением и обеспечением эффективного применения компьютерного оборудования и технологий во всех областях общественной жизни.

Сегодня роль информатики, методов информационной обработки значительно выросла. Чтобы целенаправленно использовать информационные данные, их нужно собрать, обработать, транслировать, копить и систематизировать. Все перечисленные процессы, сопряжённые с конкретными информационным операциями, называются информационными процессами.

В истории мирового сообщества неоднократно случались радикальные перемены в сфере информации, которые могут трактоваться как информационные революции.

Первая информационная революция случилась, когда человечество изобрело письменность. Письменность дала возможность копить знания, а также осуществлять их распространение. Цивилизация, которая освоила письменность, стала развиваться значительно быстрее, в том числе на культурном и экономическом уровне.

Вторая информационная революция случилась в середине шестнадцатого века и была вызвана книгопечатаньем. Появилась возможность не только хранить информацию, но и превратить её массовый информационный источник.

Третья информационная революция, произошедшая в конце девятнадцатого века, была связана с развитием коммуникационных средств. При помощи телеграфа, телефона, радиосвязи стала возможной оперативная передача информации практически на любые дистанции.

Четвёртая информационная революция произошла в семидесятых годах двадцатого века, и она была вызвана разработкой микропроцессорных устройств, включая персональные компьютеры. Затем появились телекоммуникационные компьютерные средства связи, которые в принципе поменяли системы сохранения и информационного поиска.

На текущий момент в мировом сообществе имеется огромнейший информационный потенциал, который сложно использовать человечеству в полном объёме, поскольку возможности в этом плане достаточно ограничены. Эти факты предполагают внедрение новейших технологий переработки и трансляции информации, что является началом перехода от индустриального сообщества к информационному. Начало этому процессу было положено ещё в середине двадцатого века и это пятая информационная революция. В информационном сообществе основным ресурсом считается информация, то есть оно является обществом, в котором основная масса работников занимается созданием, сохранением, переработкой и трансляцией информации.

Главными критериями прогресса информационного сообщества являются следующие явления:

  1. Использование компьютерного оборудования.
  2. Степень развитости компьютерных сетей, количество населения, задействованного в информационной области.
  3. Применение информационных технологий в каждодневной работе.

Наиболее близки к уровню информационного сообщества такие страны, как Соединённые Штаты, Япония, некоторые государства Западной Европы.

В информационном сообществе работа людей по многим параметрам зависит от умения эффективно распоряжаться доступными информационными данными. Применение компьютерной техники во всех областях деятельности людей обеспечивает доступ к надёжным информационным источникам, избавляет их от многих рутинных обязанностей, позволяет оперативно вырабатывать оптимальные решения.

a. теоретическая информатика,

d. искусственный интеллект,

e. информатика в природе,

f. информатика в обществе,

g. вычислительная техника,

h. информационные системы.

1. Предмет и задачи информатики

Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Предмет информатики составляют следующие понятия:

· Аппаратное обеспечение средств вычислительной техники;

· Программное обеспечение средств вычислительной техники;

· Средства взаимодействия аппаратного и программного обеспечения;

· Средства взаимодействия человека с аппаратным и программным обеспечением.

Особое внимание уделяется вопросам взаимодействия, для этого вводится понятие интерфейса. Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом. Существуют аппаратные, программные и аппаратно-программные интерфейсы.

Основной метод, используемый в информатике, это моделирование
информационных процессов с помощью компьютера.

Основной задачей информатики является систематизация приемов и методов работы с аппаратными и программными средствами ВТ. Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а так же в методическом обеспечении новых технологических исследований.

2. Истоки и предпосылки информатики.

Всю историю развития информатики принято разбивать на два больших этапа: предысторию и историю.

С разработкой первых ЭВМ принято связывать возникновение информатики как науки, т.к. сам термин информатика появился на свет благодаря развитию ВТ,

Выделению информатики в отдельную науку способствовало формирование единой формы представления обрабатываемой и хранимой информации (в двоичной форме).

Поколения ЭВМ. В настоящее время можно выделить 5 поколений компьютеров.

Первое поколение . После 1946 года. Применение вакууно-ламповой технологии, использование систем памяти на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках (трубках Вильямса).
Для ввода-вывода данных использовались перфоленты и перфокарты, магнитные ленты и печатающие устройства. Была реализована концепция хранимой программы.

Быстродействие 10-20 тыс операций в сек.

Появились высокопроизводительные устройства для работы с магнитными лентами, устройства памяти на магнитных дисках.

Быстродействие 100-500 тыс операций в сек.

Третье поколение . В конце 60-х появились мини-компьютеры. Быстродействие порядка 1 млн операций в сек.

В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью.

Четвертое поколение . Появились после 1975 года. Использование при создании компьютеров больших интегральных схем (БИС - 1000 - 100000 компонентов на кристалл) и сверхбольших интегральных схем (СБИС - 100000 - 10000000 компонентов на кристалл). В середине 70-х появились первые персональные компьютеры устройства для работы с магнитными лентами, устройства памяти на Компьютеры проектировались на основе интегральных схем малой степени интеграции (МИС - 10 - 100 компонентов на кристалл) и средней степени интеграции (СИС - 10 -1000 компонентов на кристалл). магнитных дисках. Быстродействие десятки и сотни миллионов операций в сек.

Пятое поколение . После 1982 года. Главный упор при создании компьютеров сделан на их "интеллектуальность", внимание акцентируется не столько на элементной базе, сколько на переходе от архитектуры, ориентированной на обработку данных, к архитектуре, ориентированной на обработку знаний.
Обработка знаний - использование и обработка компьютером знаний, которыми владеет человек для решения проблем и принятия решений.

Быстродействие более сотни млн операций в сек.

3 . Проблемы информатизации общества и управления .

В информационном обществе главным ресурсом является информация. На основе владения информацией о различных процессах и явлениях можно эффективно и оптимально строить любую деятельность. В информационном обществе основная часть населения занята в сфере обработки информации или использует информационные и коммуникационные технологии в своей повседневной производственной деятельности. Информационные и коммуникационные технологии – это совокупность методов, устройств и производственных процессов, используемых обществом для сбора, хранения, обработки и распространения информации.

Для жизни и деятельности в информационном обществе необходимо обладать информационной культурой, т.е. знаниями и умениями в области информационных технологий, а также юридическими и этическими нормами в этой сфере.

Информационный подход к исследованию мира реализуется в рамках информатики, комплексной науки об информации и информационных процессах, аппаратных и программных средствах информатизации, информационных и коммуникационных технологиях, а также социальных аспектах программы информатизации.

В настоящее время создана информационная индустрия – производство технических средств, методов, технологий для производства информации (новых знаний) и сферы управления.

Информационное общество – общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы – знаний.

· решена проблема информационного кризиса (противоречие между информационной лавиной и информационным голодом);

· обеспечен приоритет информации по сравнению с другими ресурсами;

· главное – информационная экономика;

· информационная технология приобретает глобальный характер;

· формируется информационное единство всей цивилизации;

· с помощью средств информатики реализован свободный доступ каждого человека к информационным ресурсам всей цивилизации

· наиболее часто понятие ИК употребляется для характеристики широты знаний специалиста, определяются сами эти знания, которыми он должен владеть;

· ИК осмысливается как качественная интегральная характеристика личности специалиста, которому предстоит осуществлять профессиональную деятельность в XXI веке.

4. Основные направления применения и развития информатики .

ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ ИНФОРМАТИКИ

Информация как семантическое свойство материи.

Информация и эволюция в живой и неживой природе.

Начала общей теории информации. Методы измерения информации.

Макро- и микроинформация.

Метематические и информационные модели.

Теория алгоритмов. Стохастические методы в информатике.

Вычислительный эксперимент как методология научного исследования.

Информация и знания. Семантические аспекты интеллектуальных процессов и информационных систем. Информационные системы искусственного интеллекта. Методы представления знаний.

Познание и творчество как информационные процессы.

Теория и методы разработки и проектирования информационных систем и технологий.

Обработки, отображения и передачи данных

Персональные компьютеры. Рабочие станции. Устройства ввода\вывода и отображения информации. Аудио- и видеосистемы, системы мультимедиа. Сети ЭВМ. Средства связи и компьютерные телекоммуникационные системы.

Операционные системы и среды. Системы и языки программирования. Сервисные оболочки, системы пользовательского интерфейса. Программные средства межкомпьютерной связи (системы теледоступа), вычислительные и информационные среды.

Текстовые и графические редакторы. Системы управления базами данных. Процессоры электронных таблиц. Средства моделирования объектов, процессов, систем. Информационные языки и форматы представления данных и знаний; словари; классификаторы; тезаурусы. Средства защиты информации от разрушения и несанкционированного доступа.
Издательские системы.

Системы реализации технологий автоматизации расчетов, проектирования, обработки данных (учета, планирования, управления, анализа, статистики и т. д.)

Системы искусственного интеллекта (базы знаний, экспертные системы, диагностические, обучающие и др.)

Ввода\вывода, сбора, хранения, передачи и обработки данных.

Подготовки текстовых и графических документов, технической документации.

Интеграции и коллективного использования разнородных информационных ресурсов.

Программирования, проектирования, моделирования, обучения, диагностики, управления (объектами, процессами, системами).

Информационные ресурсы как фактор социально-экономического и культурного развития общества.

Информационное общество – закономерности и проблемы становления и развития. Информационная инфраструктура общества. Проблемы информационной безопасности.

Новые возможности развития личности в информационном обществе. Проблемы демократизации в информационном обществе и пути их решения.

Информационная культура и информационная безопасность.

a. теоретическая информатика ,

Теоретическая информатика — математическая дисциплина. Она использует методы математики для построения и изучения моделей обработки, передачи и использования информации, создает тот теоретический фундамент, на котором строится все здание информатики.

Научная информатика - информатика, изучающая структуру
и общие свойства научной информации, а так же закономерности всех процессов научной коммуникации.

Прикладная информатика объединяет информатику, вычислительную технику и автоматизацию.

b . кибернетика ,

Кибернетика ( от греч. kybernetike - искусство управления, от kybernáo - правлю рулём, управляю), наука об управлении, связи и переработке информации.

Основным объектом исследования в кибернетике являются так называемые кибернетические системы. Используя высокий уровень абстракции можно рассматривать системы качественно различной природы, например технические, биологические и даже социальные. Задача кибернетики - создать управление в системе.

c . программирование,

Управлять компьютером нужно по определенному алгоритму. Точное определенное описание способа решения задачи в виде конечной последовательности действий, представленной в виде, понятном компьютеру, называют программированием. Т.о., программирование – процесс составления логически упорядоченной последовательности команд, необходимых для управления компьютером, с целью решения определенной задачи.

d . искусственный интеллект (ИИ),

ИИ - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка. Предметом ИИ является изучение интеллектуальной деятельности человека, подчиняющейся заранее неизвестным законам. ИИ это все то, что не может быть обработано с помощью алгоритмических методов, например, доказательство теорем , управление роботами , распознавание изображений , машинный перевод и понимание текстов на естественном языке , игровые программы , машинное творчество ( синтез музыки , стихотворений , текстов).

e . информатика в природе,

Основная задача этого направления — изучение информационных процессов, протекающих в биологических системах, и использование накопленных знаний для принятия оптимальных решений. А так же изучение влияния процессов информатизации на человека и его взаимоотношения с природой.

f . информатика в обществе,

Человек живет в мире информации. Человеческое мышление можно рассматривать как процессы обработки информации в мозгу человека. В процессе общения с другими людьми человек передает и получает информацию. Процессы, связанные с хранением, получением, обработкой и передачей информации, называются информационными процессами. История человеческого общества – это, в определенном смысле, история накопления и преобразования информации.

g . вычислительная техника,

Для решения задач поиска средств и методов автоматизации обработки данных используют особые виды устройств, большинство их которых являются электронными приборами. Совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных, называют вычислительной техникой. Набор взаимодействующих между собой устройств и программ, предназначенных для обслуживания одного рабочего участка, называют вычислительной системой. Центральным устройством большинства вычислительных систем является компьютер. Компьютер – это электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортировки данных.

h . информационные системы.

Информационная система (ИС) — это система, реализующая информационную модель предметной области, чаще всего — какой-либо области человеческой деятельности. ИС должна обеспечивать: получение (ввод или сбор), хранение, поиск, передачу и обработку (преобразование) информации. Информационной системой (или информационно-вычислительной системой) называют совокупность взаимосвязанных аппаратно-программных средств для автоматизации обработки информации. В информационную систему данные поступают от источника информации. Эти данные отправляются на хранение либо претерпевают в системе некоторую обработку и затем передаются потребителю.

Формирование информатики как науки происходило в XX веке, что было связано с развитием вычислительной техники.

Отсюда следует, что появление информатики неразрывно связано с существованием компьютерной техники. Хотя вычислительные машины существовали и до 70-80-х годов, их относительно массовое распространение пришлось именно на эти годы. Именно в это время заговорили и об информатике как о научной дисциплине.

Изначально компьютер был инструментом для автоматизации трудоемких вычислений. Однако постепенно эволюционировал в инструмент для работы фактически с любой информацией, а не только числовой. Получая исходную информацию в виде чисел, таблиц, изображений, текстов программное обеспечение вычислительных машин способно преобразовывать ее в другую информацию, а также сохранять и передавать в той или иной форме.

Наука информатика стала заниматься разработкой информационных моделей объектов реального мира, для которых вообще можно создать информационную модель. Т.к. материальный мир весьма разнообразен, то и объекты изучения информатики также очень разнообразны. В связи с этим информатика – очень разнородная наука, что затрудняет ее однозначное определение.

В свое время Е.П. Ершов определил информатику так:

Информатика - это находящаяся в процессе становления наука, изучающая законы и методы накопления, передачи и обработки информации с помощью ЭВМ, а также область человеческой деятельности, связанная с применением ЭВМ.

Можно предположить, что теоретическая информатика – это наука, возможно до сих пор, находящаяся в становлении и развитии.

Информатика тесно связана с математикой, т.к. опирается на ее достижения. Это объясняется тем, что объекты естественных и технических наук, а также социальные явления можно описать с помощью понятий математики – функций, систем уравнений, неравенств и др. При этом предмет изучения информатики – информация – общенаучное и социальное понятие.

В настоящее время активно протекают процессы, связанные с переводом информации, накопленной цивилизацией, в электронный вид. Можно ожидать, что многие вещи, к которым мы привыкли в реальном мире, в скором времени обретут электронную форму существования.

История развития информатики.

Информатика как наука стала развиваться с середины прошлого столетия, что связано с появлением ЭВМ и начавшейся компьютерной революцией. Появление вычислительных машин в 1950-е гг. создало для информатики необходимую аппаратную поддержку, т.е. благоприятную среду для ее развития как науки. Всю историю информатики принято подразделять на два больших этапа: предысторию и историю.

Предыстория информатики такая же древняя, как и история развития человеческого общества. В предыстории также выделяют (весьма приближенно) ряд этапов. Каждый из них характеризуется резким возрастанием, по сравнению с предыдущим этапом, возможностей хранения, передачи и обработки информации.

Начальный этап предыстории информатики – освоение человеком развитой устной речи. Членораздельная речь, язык стали специфическим социальным средством хранения и передачи информации.

Третий этап – книгопечатание. Его можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим на этом этапе не столько увеличивалась возможность хранения информации (хотя и здесь был выигрыш: письменный источник – это часто один-единственный экземпляр, печатная книга – это целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении), сколько повысилась доступность информации и точность ее воспроизведения.

Четвертый (последний) этап предыстории информатики связан с успехами точных наук (прежде всего математики и физики) и начинающейся научно-технической революцией. Этот этап характеризуется возникновением таких мощных средств связи, как радио, телефон и телеграф, а позднее и телевидение. Появились новые возможности получения и хранения информации – фотография и кино. К ним очень важно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски).

На сегодняшний день информатика представляет собой комплексную научно-техническую дисциплину. Под этим названием объединен довольно обширный комплекс наук, таких, как кибернетика, системотехника, программирование, моделирование и др. Каждая из них занимается изучением одного из аспектов понятия информатики. Учеными прилагаются интенсивные усилия по сближению наук, составляющих информатику. Однако процесс их сближения идет довольно медленно, и создание единой и всеохватывающей науки об информации представляется делом будущего.

Кибернетика и управление.

Основы кибернетики были заложены трудами по математической логике американского математика Норберта Винера, опубликованными в 1948 г.

Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др. Управление является центральным понятием кибернетики, и оно пронизывает все сферы деятельности человека и общества.

Часто возникает путаница в понятиях "информатика" и "кибернетика". Существует спорное мнение, что информатика является одним из направлений кибернетики.

Информатика появилась благодаря развитию компьютерной техники, базируется на ней и без нее немыслима. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники.

Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.

Информатика занимается изучением процессов преобразования и создания новой информации более широко. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники.

Можно сказать, что кибернетика и информатика различаются в расстановке акцентов. Если в информатике важны свойства информации и аппаратно-программные средствах ее обработки, то в кибернетике – это разработка концепций и построение моделей управления. Информатика и кибернетика – разные науки, сферы деятельности которых, однако, сильно пересекаются.

Управление – это целенаправленная организация того или иного процесса, протекающего в системе.

Процесс управления – это информационный процесс, который включает в себя сбор информации, ее переработку и анализ, принятие решений, выработку управляющих воздействий и их доведение до объектов управления.

Каждая фаза процесса управления протекает во взаимодействии с окружающей средой при воздействии разного рода помех.

Через объект управления проходят в основном материальные потоки и в значительно меньшей степени – информационные; в то же самое время через управляющий орган проходят только информационные потоки. Именно поэтому процесс управления является информационным процессом, а все люди, занятые в сфере управления, имеют дело только с информацией.

Из чего состоит информатика.

Информатика – это очень обширная наука. Она включает в себя различные научные направления, разработку технологий, изучение техники и производства. Единственное, что привязывает все эти различные области окружающего мира к информатике – это обработка любой информации с помощью вычислительной техники.

С другой стороны, у информатики, помимо теоретического, есть и практическое значение. Информатика – это не только наука, но и сфера деятельности людей, прикладная дисциплина, имеющая широкое практическое применение. Например, существуют организации, занимающиеся производством компьютерной техники и программного обеспечения.

Особую роль информатике придает ее влияние на все отрасли производства. Развитие информатики и внедрение ее достижений позволяет увеличивать производительность труда.

Если смотреть на информатику как теоретическую науку, то можно увидеть, что она занимается

Теоретическая информатика выявляет и исследует общее во всех информационных системах.

Прикладная информатика, в частности, занимается тем, что разрабатывает конкретные информационные системы для различных областей деятельности.

Так или иначе, информатика разрабатывает методы и средства по обработке различной информации. Отсюда вытекают ее задачи:

  • изучение всех известных информационных процессов;
  • создание техники и технологий для обработки информации;
  • эффективное внедрение вычислительных машин в подавляющее большинство сфер человеческого общества.

Итак, информатика – это комплексная научно-техническая наука, которая создает новые оборудование и технологии для решения информационных и управленческих задач в других областях. От информатики зависит прогресс во всех сферах общества.

Понятие об информационном обществе.

Информация настолько важна, что в историческом развитии общества выделяют так называемые информационные революции, при наступлении которых человечество поднималось на новый уровень, обретало новые свойства. Так, например, первая информационная революция ознаменовалась появлением письменности, вторая – книгопечатания, третья дала человечеству электричество, а четвертая – компьютер. После каждого такого нововведения информационные обмены в обществе, так или иначе, менялись.

Появление вычислительной техники позволило обрабатывать информацию намного эффективнее и быстрее. Появление глобальной сети Интернет невероятно ускорило информационный обмен.

Начали появляться специальные технические средства по обработке информации, разрабатываться методы и технологии по организации знаний и даже их появлению.

Особую роль стали играть телекоммуникации и средства связи. Компьютерные сети стали обычным способом распространения информации.

Все вышеперечисленное не может не сказаться на человеческом обществе. Знания стали ценностью, потребность в которых все время растет. Поэтому появляются новые способы их получения.

Сегодняшнее общество – это информационное общество, в котором можно выделить ряд особенностей, самая главная из которых – это использование информации почти во всех сферах жизни. Так же следует отметить постоянное увеличение автоматизации производства.

Считается, что информационное общество – это изменение не только в производстве, но и в мировоззрении людей. Увеличивается роль умственного труда, люди начинают больше потреблять информации, чем материальных ресурсов. Важным свойством человека становится способность к творчеству. Развитие информационного общества приведет к тому, что большинство населения будет занято получением, хранением и обработкой информации. Материальное производство будет возложено на машины.

В информационном обществе существует ряд опасностей. Например, информационный стресс, обусловленной информационной лавиной. Не каждый человек способен грамотно ориентироваться в обилии информации, отсекать информационный мусор и выявлять знания как высшую форму информации. Как результат на сознание человека возрастет влияние средств массовой информации. С развитием различного рода электронных устройств появляется угроза неприкосновенности частной жизни.

Информационное общество предрасполагает к появлению единой цивилизации, поэтому каждый человек должен иметь возможность доступа к информационным ресурсам.

Информационное общество характеризуется следующими основными признаками:

  • Большинство работающих в информационном обществе заняты в информационной сфере, т.е. в сфере производства информации и информационных услуг.
  • Обеспечены техническая, технологическая и правовая возможности доступа любому члену общества практически в любой точке территории к нужной ему информации.
  • Информация становится важнейшим стратегическим ресурсом общества и занимает ключевое место в экономике, образовании и культуре.

Если предшествующие этапы развития человечества длились каждый около трех веков, то ученые прогнозируют, что информационный этап продлится значительно меньше. Срок его существования ограничится, вероятно, сотней лет. Это означает, что большинство регионов мира войдут в развитое информационное общество в XXI в. и тогда же начнется переход к постинформационному обществу.

Таким образом, информационное общество – это общество, структуры, техническая база и человеческий потенциал которого приспособлены для оптимального превращения знаний в информационный ресурс и переработки последнего с целью перевода его пассивных форм (книги, статьи и т.п.) в активные (модели, алгоритмы, программы, проекты). Но особое значение для активизации информационного потенциала общества имеет создание современных баз знаний. Это достигается за счет качественного преобразования традиционных баз данных (БД), рожденных ранними поколениями ЭВМ в базы знаний (БЗ).

Понятие информатизации. Роль информатизации в развитии общества.

Чем человек или группа людей легче и эффективней оперируют информацией, тем успешней развивается их деятельность. Это современная тенденция. Поэтому большинство видов деятельности должны начинаться со сбора и анализа информации, нахождению оптимальных решений планируемых задач, формированию творческого подхода.

Ситуация осложняется тем, что где-то во второй половине XX века цивилизация начала испытывать информационный бум, количество информации резко возросло, ориентироваться в ней человеку стало достаточно трудно.

Возрос документооборот, количество печатных изданий, стали доступны данные из разных сфер человеческой деятельности. В результате умственная нагрузка на человека возросла. Кроме того, появились большие объемы информационного мусора, увеличивающие эту нагрузку. Начали вырисовываться такие проблемы как сокрытие информации, с одной стороны, и ее беспрепятственное распространение, с другой.

Возникла проблема, когда люди не могут в полной мере воспользоваться накопленным огромным количеством данных из-за своих ограниченных возможностей. Такая ситуация приводит к информационному кризису, и перед человечеством появляется задача выхода из него.
Несмотря на то, что компьютеры и вычислительные сети сами в большой степени поспособствовали информационному кризису, они легли в основу так называемой информатизации общества. Информатизация общества – это процесс, затрагивающий все сферы общества (социальную, экономическую, техническую и научную) и направленный на создание лучших условий для удовлетворения информационных потребностей всех видов организации и людей.

Информатизация была отмечена в первую очередь в странах Запада и США, а также в Японии (60-80-е годы XX века). Производству требовалось информационно обслуживание, направленное на обработку большого количества информации.

Информатизация стала возможной благодаря появлению компьютеров, которые представляют собой универсальное средство для работы с информацией и обеспечивают широкие возможности для коммуникации. Социальный прогресс на сегодняшний день не возможен без информатизации, а, следовательно, и без компьютеров. Поэтому часто говорят о компьютеризации общества, где особое место уделяют развитию и внедрению вычислительных машин. Однако информатизация общества – это не то же самое, что компьютеризация общества. При информатизации на первый план выходит комплекс мероприятий, целью которых является использование знания и данных во всех сферах цивилизации. Поэтому информатизация – это более широкое понятие, чем компьютеризация. Информатизация – это как бы надстроечный процесс, происходящий на базе компьютеризации, процесс формирования новой, автоматизированной среды зарождения знаний, их переработки, распространения и превращения в силу, в материальный фактор.

Появление компьютеров и сетей оказало влияние на производительность труда. Поэтому во многих странах мира уделяется особое внимание процессу информатизации, т.к. ее игнорирование может привести к потере рынков труда и сбыта, резкому снижению конкурентоспособности страны.

На государственном уровне могут приниматься такие решения как увеличение инвестиций в исследования, улучшение образования, повышение качества труда и т.п.
Особое внимание информационным технологиям уделяют еще и потому, что они лежат в основе развития всех других отраслей.

Развитие информатизации может потребовать от государства отказа от стремления во чтобы то ни стало обеспечить экономический рост страны, активное внедрение наукоемких технологий, развитие новых форм инфраструктуры, использование научных достижений, затрат значительных средств на информатизацию.

Говоря о сегодняшнем дне, отмечают переход общества от индустриального к информационному типу, где главными ценностями становятся знания, а не материальные ресурсы.

При этом следует помнить, что бездумная и слишком активная информатизация общества может привести к социальному регрессу, подорвав устоявшиеся веками коммуникационные связи. Поэтому следует уделять внимание и информационной культуре, т.е. умению работать с информацией и техникой, осуществляющей ее обработку.

Альтернативы информатизации нет. Это объективный этап социального прогресса во всех областях, прежде всего в экономике, управлении, науке и технологии.

К первоочередным проблемам информатизации следует отнести психологическую проблему готовности населения к переходу в информационное общество. Этот переход в настоящее время затрудняется низким уровнем информационной культуры населения, недостаточной компьютерной грамотностью, а отсюда и низкими информационными потребностями и отсутствием желания их развивать. Наблюдается невосприимчивость экономики к достижениям в инфосфере.

Читайте также: