Функция что это кратко

Обновлено: 02.07.2024

ФУНКЦИЯ (от лат. functio — исполнение, осуществление) — понятие широкого междисциплинарного употребления.

антье, ареакотангенс, ареасинус, ареатангенс, арккосеканс, арккосинус, арккотангенс, арксеканс, арксинус, арктангенс, аркфункция, гамма-функция, гипофункция, дело, дельта-функция, деятельность, жизнедеятельность, значение, ипостась, косеканс, косинус, котангенс, круг обязанностей, мажоранта, миноранта, миссия, назначение, обязанности, отправления, предиктор, предназначение, работа, роль, секанс, сигма-функция, синус, сплайн, сюръекция, тангенс, тета-функция, тотиент, формфактор, функционирование, цель, эйконал

Смотреть что такое ФУНКЦИЯ в других словарях:

ФУНКЦИЯ

(мат.). — В ст. Дифференциальное исчисление уже объяснено, что такое Ф. и какие Ф. называются явными и неявными, однозначными и многозначными. В ст. Тр. смотреть

ФУНКЦИЯ

ФУНКЦИЯ, -и, ас. 1. В философии: явление, зависящее от другого иизменяющееся по мере изменения этого другого явления. 2. В математике:закон, по к-рому каждому значению переменной величины (аргумента) ставится всоответствие нек-рая определенная величина, а также сама эта величина.Линейная ф. (меняющаяся прямо пропорционально изменению своего аргумента).3. Работа производимая органом, организмом (книжн.). Ф. желез. 4. Роль,значение чего-н. (книжн.). Функции кредита. 5. Обязанность, кругдеятельности (книжн.). Служебные функции. Функции профкома. II прил.функциональный, -ая, -ое (к 1, 2, 3 и 4 знач.). смотреть

ФУНКЦИЯ

функция 1. ж. Зависимая переменная величина (в математике). 2. ж. Проявление жизнедеятельности организма, тканей, клеток и т.п. (в физиологии). 3. ж. 1) Явление, зависящее от другого, основного явления и служащее формой его проявления или осуществления. 2) а) перен. Обязанность, круг деятельности, подлежащая исполнению работа. б) Значение, назначение, роль.

ФУНКЦИЯ

функция ж. (в разн. знач.)function явная функция мат. — explicit function неявная функция мат. — implicit function обратная функция мат. — inverse func. смотреть

ФУНКЦИЯ

функция См. занятие. Словарь русских синонимов и сходных по смыслу выражений.- под. ред. Н. Абрамова, М.: Русские словари,1999. функция назначение; выражение, связка; занятие; отправления, цель, функционирование, ипостась, круг обязанностей, деятельность, дело, жизнедеятельность, формфактор, мажоранта, роль, предназначение, работа, тотиент, обязанности, миссия Словарь русских синонимов. функция 1. см. работа 1. 2. см. назначение. 3. см. обязанности Словарь синонимов русского языка. Практический справочник. — М.: Русский язык.З. Е. Александрова.2011. функция сущ., кол-во синонимов: 49 • антье (1) • ареа-котангенс (1) • ареа-синус (1) • ареа-тангенс (1) • арккосеканс (1) • арккосинус (1) • арккотангенс (1) • арксеканс (1) • арксинус (1) • арктангенс (1) • аркфункция (1) • версинус (2) • гамма-функция (1) • гиперфункция (1) • гипофункция (1) • дело (97) • дельта-функция (1) • деятельность (26) • допфункция (1) • жизнедеятельность (14) • значение (27) • ипостась (8) • косеканс (1) • косинус (1) • котангенс (1) • круг обязанностей (4) • мажоранта (1) • миноранта (1) • миссия (16) • назначение (29) • обязанности (5) • отправления (5) • предиктор (4) • предназначение (15) • работа (118) • роль (21) • секанс (1) • сигма-функция (1) • синус (4) • синус-верзус (2) • сплайн (1) • сюръекция (3) • тангенс (1) • тета-функция (1) • тотиент (1) • формфактор (1) • функционирование (7) • цель (28) • эйконал (1) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: антье, ареакотангенс, ареасинус, ареатангенс, арккосеканс, арккосинус, арккотангенс, арксеканс, арксинус, арктангенс, аркфункция, гамма-функция, гипофункция, дело, дельта-функция, деятельность, жизнедеятельность, значение, ипостась, косеканс, косинус, котангенс, круг обязанностей, мажоранта, миноранта, миссия, назначение, обязанности, отправления, предиктор, предназначение, работа, роль, секанс, сигма-функция, синус, сплайн, сюръекция, тангенс, тета-функция, тотиент, формфактор, функционирование, цель, эйконал. смотреть

ФУНКЦИЯ

ФУНКЦИЯ, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины х п у связаны так, что каждому. смотреть

ФУНКЦИЯ

ФУНКЦИЯ (от лат. functio - совершение, исполнение) (филос.), отношение двух (группы) объектов, в к-ром изменение одного из них ведёт к изменению друг. смотреть

ФУНКЦИЯ

ФУНКЦИЯ в языкознании, способность языковой формы к выполнению того или иного назначения (нередко синоним терминам "значение" и "назначение" языковой. смотреть

ФУНКЦИЯ

Функция (мат.). — В ст. Дифференциальное исчисление уже объяснено, что такое Ф. и какие Ф. называются явными и неявными, однозначными и многозначными. смотреть

ФУНКЦИЯ

ФУНКЦИЯ

function, functionality* * *фу́нкция ж.functionфу́нкция A перехо́дит в фу́нкцию B — (the) function A goes into (the) function B воспроизводи́ть фу́нк. смотреть

ФУНКЦИЯ

от лат. functio – осуществление, выполнение) – способ поведения, присущий к.-л. объекту и способствующий сохранению существования этого объекта или той системы, в к-рую он входит в качестве элемента. Среди следствий, вызываемых тем или иным объектом в соответствии с нек-рым причинным законом, одни – функцион. следствия, или просто Ф., – способствуют сохранению существования объекта-причины или системы, в к-рую он входит (кровообращение как следствие работы сердца поддерживает существование организма ив т.ч. сердца), а другие – дисфункции – способствуют, напротив, уничтожению объекта-причины или содержащей его системы (напр., следствия, производимые язвой желудка); третью группу составляют т.н. нефункцион. следствия, не влияющие на продолжение существования объекта-причины. Такое истолкование Ф. является каузальным, в отличие от телеологического, почти безраздельно господствовавшего в истории философии начиная с аристотелевской causa finalis. Поскольку далеко не каждый объект способен производить функцион. следствия, Ф. характеризует не все объекты, а лишь такие, к-рые являются достаточно сложными системами, более того, системами, способными к самосохранению, т.е. направленно организованными системами. Высшую их разновидность составляют целенаправленно организованные системы. Ф. – одна из наиболее существ. характеристик соответствующих объектов, что определило широкое распространение в науке функцион. исследования как одного из осн. типов науч. познания наряду со структурным, каузальным, субстанциональным и др. Правда, функцион. подход более узок по сфере применимости, т.к. он имеет дело лишь с направленно организованными системами. Но при исследовании таких систем он оказывается необходимым способом познания. В совр. науке разработаны конкретные методы и методики функцион. исследования. Классическим конкретно-науч. методом чисто функцион. познания является метод "черного ящика". Однако обычно функцион. подход реализуется не в "чистом виде", а в сложном синтезе с др. типами познания, прежде всего – со структурным подходом, поскольку между структурой и Ф. существует теснейшая связь: тип структуры объекта обычно определяет тип его Ф. и наоборот. Правда, отношение между классом структур и классом Ф. не является изоморфным: нельзя сказать, что данной структуре соответствует только данная Ф. и что данная Ф. может выполняться только данной структурой. Вместе с тем нек-рая конкретная ?. может быть выполнена лишь определ. классом структур и наоборот. Лит.: Лурия А. Р., Высшие корковые Ф. человека, их нарушения при локальных поражениях мозга, М., 1962, с. 21–28; Карпинская Р. С., О структуре и Ф. живого на молекулярном уровне, "ВФ", 1963, No 8; Mеrtоn R. К., Social theory and social structure, Glencoe, 1957; Nagel E., Logic without metaphysics and other essays in the philosophy of science, Glencoe, 1957; Hempel C. G., The logic of functional analysis, в кн.: Symposium on sociological theory, N. Y., 1959. E. Никитин. Москва. Ф у н к ц и я в с о ц и о л о г и и. Понятие Ф. в социологии имеет два главных значения. 1) Ф. указывает на ту роль, к-рую определ. социальный институт или частный социальный процесс выполняют по отношению к целому, напр. функции гос-ва, семьи, искусства, системы образования и т.д. относительно общества. В данном случае под Ф. имеется в виду определ. совокупность последствий социальной деятельности. При этом различаются Ф. явные, т.е. совпадающие с намерениями и открыто провозглашаемыми целями и задачами института, и Ф. скрытые, латентные, обнаруживающие себя лишь с течением времени и отличающиеся от намерений участников этой деятельности. Методологически важно вычленение того целого, по отношению к к-рому выполняется данная Ф., т.к. ее характер определяется природой целого. Целое определяет вместе с тем и специфику действия ?. Так, Ф. гос-ва по отношению к обществу, семье, индивидууму в определ. степени отличаются друг от друга. 2) Ф. обозначает зависимость, к-рая наблюдается между различными компонентами единого социального процесса. В данном случае речь идет о том, что изменения одной части системы оказываются производными от изменений в другой его части. Напр., изменения в соотношении гор. и сел. населения как Ф. развития пром-сти или изменения в структуре досуга как функция распространения средств массовой коммуникации. Важными понятиями социологического анализа являются также понятия функционирования, дисфункции, функциональных требований, функциональной взаимозависимости. См. Функционализм и Структурно-функциональный анализ. ?. Здравомыслов. Ленинград. Функция в математике, матем. логике и матем. естествознании трактуется как понятие, отражающее идею детерминированной зависимости между объектами различных классов (числами, геометрич. образами, множествами, предложениями и др.). Понятие Ф. было в явной форме введено в математику в 17 в. Оно отражало характерный для точного естествознания частный вид причинной связи, а именно, связи, проявляющейся в форме количеств. закономерностей, описывающих разл. физич. процессы. Поэтому понятие Ф. первоначально трактовалось как связь "переменных величин", "значения" к-рых суть физич. характеристики разл. сторон к.-л. процесса в конкретные моменты (реального или абстрактного) времени. При этом (числовая) Ф. отождествлялась с нек-рым законом изменения "переменной величины", к-рый мыслился всегда заданным в виде нек-рого аналитического выражения (формулы). Так, Л. Эйлер определял Ф. след. образом: "Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств. Функция переменного количества сама будет переменным количеством" ("Введение в анализ бесконечно малых", т. 1, М.–Л., 1936, с. 30). (Сам термин "Ф." исходит от Г. В. Лейбница и был введен во всеобщее употребление швейц. матем. И. Бернулли.) В ходе развития матем. анализа и возникшей на его базе теории Ф. (действительного и комплексного переменных) в рассмотрение вовлекались все более широкие, разнообразные и специальные классы конкретных Ф., в связи с чем возникла надобность в более общем понятии Ф., не охватываемом прежними дефинициями. Такое понятие, введенное Г. Леженом Дирихле и Н. И. Лобачевским (а до них, хотя и в неявной форме, еще Эйлером, идеи к-рого были затем развиты Ж. Б. Фурье), совпадало уже, по существу, с понятием (однозначного) отображения (или соответствия) числовых множеств. С возникновением теории множеств понятие Ф. было точно определено в теоретико-множеств. терминах: под (однозначной) одноместной Ф. стали понимать бинарное, отношение F такое, что для любых х, у и z таких, что xFy и xFz имеет место y=z. Иными словами, одноместная Ф. – это множество упорядоченных пар , удовлетворяющих условию однозначности, или функциональности: для любых пар и , принадлежащих Ф., из х1=х2 следует y1=у2. Множество первых элементов таких пар наз. областью определения (или областью отправления) Ф., а элементы этого множества – аргументами Ф., множество вторых элементов Ф. наз. областью значений (областью прибытия) данной Ф., а элементы этого множества – значениями этой Ф. [В более привычных и употребительных эйлеровских обозначениях пишут y = F(x).] Если функциональное отношение F=<> обладает свойством взаимной однозначности (см. Взаимно-однозначное соответствие), то обратное ему отношение <> также функционально; его наз. Ф. обратной (или конверсией) к f и обозначают обычно через f-1. Суперпозицией (или композицией, или функциональным произведением) двух Ф. f=<> и g=<> таких, что область определения g есть подмножество области значений f, наз. такую Ф. h=g·h=<>, что xhz эквивалентно xfy&ygz для всех х, у и z. Очевидно, что f·f-1=f-1f есть тождественная Ф. <> (в традиционных обозначениях: f (f-1 (x)) = f-1 (f(x) = x)). Непосредственным обобщением понятия одноместной Ф. является понятие многоместной Ф. (см. Отношение). В матем. анализе и особенно в теории Ф. комплексного переменного часто приходится иметь дело и с т.н. "многозначными" Ф., т.е. с такими отображениями множеств, при к-рых одному и тому же элементу области определения может соответствовать и более чем один (иногда даже бесконечное множество) "образов"– "значений Ф." (простейший пример – "двузначная Ф." у = ? х, обратная к Ф. у = х2). Во избежание логич. трудностей, неизбежных при отказе от требования однозначности, в таких случаях либо сводят дело к рассмотрению соответствующего (нефункционального) отношения, либо предпочитают рассматривать отображение множества аргументов на множество классов, являющихся значениями нек-рой (однозначной!) Ф., либо же, наконец, вводят в рассмотрение класс однозначных Ф. с совпадающими областями определения (в математич. анализе в последнем случае часто говорят об однозначных "ветвях многозначной Ф."). По мере развития математики и в связи с запросами обслуживаемого ею естествознания круг изучаемых классов Ф. все время расширялся; напр., Ф., определенные и принимающие значения на абстрактных (в т.ч. "функциональных", т.е. таких, элементы к-рых сами являются Ф.) "пространствах", наз. операторами, а операторы, отображающие числовые Ф. в числа, – ф у н к ц и о н а л а м и. Проблематика, связанная с этими и др. спец. видами Ф., составила предмет новых быстро развивающихся и богатых приложениями разделов математики (функциональный анализ, теория обобщенных Ф., а также топология). В связи с задачей конструктивизации математич. теорий и задачами обоснования математики исключительно важное значение приобрел спец. раздел математич. логики – т.н. теория рекурсивных Ф. В то же время конструктивное направление в математике и логике предложило ряд уточнений понятия Ф., базирующихся на понятии эффективной вычислительной процедуры (алгоритма), являющихся в известном смысле возвращением к "аналитической" трактовке этого понятия, характерной для математики 17–18 вв. В ходе развития математической логики и в связи с общей тенденцией различения содержательного и формального аспектов математич. теорий и входящих в них понятий возникла необходимость уточнения и понятия Ф. – традиционное понятие "Ф. переменной величины" чревато логич. затруднениями и двусмысленностями, и даже охарактеризованная кратко выше теоретико-множественная трактовка понятия Ф. не позволяет достаточно последовательно различать принадлежащие различным лингвистич. (синтаксич. и семантич.) уровням понятия Ф. и ее значений. Прежде всего было пересмотрено само понятие п е р е м е н н о й (см. Переменная). Затем, в развитие и уточнение уже установившейся в математике традиции, согласно к-рой аргументами и значениями Ф. могут быть предметы произвольной природы (не обязательно числа), пришлось последовательно различать ф о р м ы ("аналитические выражения"), содержащие к.-л. свободные переменные, и Ф., получающиеся в результате применения к таким формам "оператора функциональной абстракции" ?x (А. Черч): получающаяся в результате Ф. (в случае, если x была единств. свободной переменной данной формы) есть формальный объект, не содержащий свободных переменных (х теперь связана оператором ?x) и относящийся к обозначаемой им "сущности" (к-рую собственно в содержательной математике и привыкли называть "Ф."), как имя к денотату (см. Семантика). Напр., sin x / y есть форма, содержащая две свободные переменные x и у, ?x sin x / y и ?y sin x / y – формы, содержащие соответственно по одной свободной переменной, a ?x ?y sin x / y – вполне определенная Ф., не зависящая уже ни от каких свободных переменных. (При обычной, неформальной трактовке в первом случае говорят "sin x / y как функция х", во втором – ". как функция у", в третьем – ". как функция двух переменных x и у".) При такой трактовке термины "Ф.", "переменная" (а также "константа") относятся к формальным объектам (знакам, именам), а не к обозначаемым этими объектами предметам, напр. числам. (В частности, константной Ф. наз. Ф., область значений к-рой состоит из одного элемента, а константой – имя этого элемента; напр., ?. ?x (x=17) ставит в соответствие любому x из области своего определения число 17, и "константой" является не само это число, а обозначающая его цифра "17", воспринимаемая как единый символ.) Важнейшим видом Ф. являются т.н. пропозициональные Ф., область значения к-рых состоит из двух истинностных значений: "истина" и "ложь" (см. Алгебра логики); часто этот термин прилагают лишь к тем пропозициональным Ф., область определения к-рых состоит из предложений, называя пропозициональные Ф., определенные на области истинностных значений, истинностными, или булевыми, а пропозициональные Ф., определенные на произвольной предметной области, – предикатами над этой областью (чем и объясняется др. распространенное наименование исчисления предикатов – "функциональное исчисление"). См. также Отношение, Операция, Математика, Логика высказываний, Рекурсивные функции и предикаты. Лит.: Натансон И. П., Функция, БСЭ, 2 изд., т. 45, М., 1956 (имеется библ.); Черч . Введение в математич. логику, пер. с англ., т. 1, М., 1960, § 02–04; Бурбаки Н., Теория множеств, пер. с франц., М., 1965, гл. 2, § 3; Шиханович Ю. . Введение в совр. математику. Начальные понятия, [предисл. В. А. Успенского], М., 1965, гл. 5. Ю. Гастев. Москва. . смотреть

ФУНКЦИЯ

ж.functionфункция аналитична в окрестности точки Z — the function is analytical in the neighborhood of point Zв функции x — as a function of xразложить. смотреть

Понятие функции – одно из основных в математике.

На уроках математики вы часто слышите это слово. Вы строите графики функций, занимаетесь исследованием функции, находите наибольшее или наименьшее значение функции. Но для понимания всех этих действий давайте определим, что такое функция.

Определение функции можно дать несколькими способами. Все они будут дополнять друг друга.

1. Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Любой физический закон, любая формула отражает такую взаимосвязь величин. Например, формула – это зависимость давления жидкости от глубины .

Чем больше глубина, тем больше давление жидкости. Можно сказать, что давление жидкости является функцией от глубины, на которой его измеряют.

Знакомое вам обозначение как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины по определенному закону, или правилу, обозначаемому .

Другими словами: меняем (независимую переменную, или аргумент) – и по определенному правилу меняется .

Совсем необязательно обозначать переменные и . Например, – зависимость длины от температуры , то есть закон теплового расширения. Сама запись означает, что величина зависит от .

2. Можно дать и другое определение.

Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

В технической литературе встречается определение функции как устройства, на вход которого подается – а на выходе получается .


3. Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Повторим еще раз: каждому элементу множества по определенному правилу мы ставим в соответствие элемент множества . Множество называется областью определения функции. Множество – областью значений.

Рассмотрим в качестве примера соответствие между двумя множествами – гражданами России, у которых есть паспорта, и номерами их паспортов. Ясно, что это соответствие взаимно-однозначное – у каждого гражданина только один российский паспорт. И наоборот – по номеру паспорта можно найти человека.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция . Каждому значению соответствует одно и только одно значение . И наоборот – зная , можно однозначно найти .

Могут быть и другие типы соответствий между множествами. Возьмем для примера компанию друзей и месяцы, в которые они родились:


Каждый человек родился в какой-то определенный месяц. Но данное соответствие не является взаимно-однозначным. Например, в июне родились Сергей и Олег.

Пример такого соответствия в математике – функция . Один и тот же элемент второго множества соответствует двум разным элементам первого множества: и .


А каким должно быть соответствие между двумя множествами, чтобы оно не являлось функцией? Очень просто! Возьмем ту же компанию друзей и их хобби:


Мы видим, что в первом множестве есть элементы, которым соответствует два или три элемента из второго множества.

Очень сложно было бы описать такое соответствие математически, не правда ли?

Вот другой пример. На рисунках изображены кривые. Как вы думаете, какая из них является графиком функции, а какая – нет?


Ответ очевиден. Первая кривая – это график некоторой функции, а вторая – нет. Ведь на ней есть точки, где каждому значению соответствует не одно, а целых три значения .

Ты нашел то, что искал? Поделись с друзьями!

Перечислим способы задания функции.

1 . С помощью формулы. Это удобный и привычный для нас способ. Например:

Это примеры функций, заданных формулами.

2 . Графический способ. Он является самым наглядным. На графике сразу видно все – возрастание и убывание функции, наибольшие и наименьшие значения, точки максимума и минимума. В следующей статье будет рассказано об исследовании функции с помощью графика.

К тому же не всегда легко вывести точную формулу функции. Например, курс доллара (то есть зависимость стоимости доллара от времени) можно показать только на графике.

4 . С помощью описания. Бывает, что на разных участках функция задается разными формулами. Известная вам функция задается описанием:

Первое определение функции.

Иначе сказать: зависимость у называется функцией переменной величины х, если каждому значению, которое может принимать х соответствует одно или несколько определяемых значений у. Переменная х – это аргумент функции.

Величина у всегда зависит от величины х, следовательно, аргумент х является независимой переменной, а функция у – зависимой переменной.

Поясним на примере:

Пусть Т – это температура кипения воды, а Р – атмосферное давление. При наблюдении установлено, что каждому значению, которое может принимать Р, соответствует всегда одно и то же значение Т. Таким образом, Т – это функция аргумента Р.

Функциональная зависимость Т от Р позволяет при наблюдении температуры кипения воды без барометра определять давление по специальным таблицам, например таким:

Понятие функции в математике появилось не просто так. Давайте разберемся, зачем придумали функцию и как с ней можно работать.

Разберём пример из жизни. Рассмотрим движение автомобиля. Предположим, что он двигается с постоянной скоростью 60 км/ч .

движение автомобиля

То, что автомобиль двигается с постоянной скоростью 60 км/ч означает, что автомобиль проезжает 60 км за 1 час .

Очевидно, чтобы найти, сколько километров пройдет автомобиль за 2 часа , нужно 60 умножить на 2 . Мы получим, что за 2 часа автомобиль проедет 120 км .

Составим таблицу, в которой укажем какое расстояние проедет автомобиль за разное время при постоянной скорости 60 км/ч .

Сколько времени двигается автомобиль Сколько км проедет автомобиль
1 час 60 км
2 часа 120 км
3 часа 180 км

Если внимательно изучить таблицу станет очевидно, что между временем автомобиля в пути и пройденным расстоянием есть четкая зависимость.

Давайте убедимся, что мы правильно записали зависимость пройденного расстояния от времени в пути.

y = 60 · 1 = 60(км) — пройдёт автомобиль за 1 час . Это совпадает с нашими расчетами ранее.

Теперь рассчитаем для x = 2 .
y = 60 · 2 = 120(км) — пройдёт автомобиль за 2 часа .

Окончательная запись нашей функции, которая показывает зависимость пройденного автомобилем расстояния от времени в пути, выглядит следующим образом:

Запомните!

Примеры других функций:

  • y(x) = 2x
  • y(x) = −5x + 2
  • y(x) = 12x 2 −1

Способы задания функции

Существуют три основных способа задания функции. Все способы задания функции в математике тесно связаны друг с другом .

Задание функции формулой

Например, рассмотрим функцию, заданную формульным способом.

Запишем расчет следующим образом.

Табличный способ задания функции

Галка

Важно!

Неправильно

как неправильно подставить отрицательное число в функцию

Правильно

как правильно подставить отрицательное число в функцию

x y
−1 5
0 4
1 3

Графический способ задания функции

Теперь давайте разберемся, что называют графиком функции и как его построить.

Прежде чем перейти к изучению графического способа задания функции обязательно вспомните, что называют прямоугольной системой координат.

Результаты запишем в таблицу.

x Расчет
−1 y(−1) = −2 · (−1) + 1 = 2 + 1 = 3
0 y(0) = −2 · 0 + 1 = 0 + 1 = 1
1 y(1) = −2 · 1 + 1 = −2 + 1 = −1

Назовем каждую полученную точку и запишем их координаты в новую таблицу.

Имя точки x y
(·) A −1 3
(·) B 0 1
(·) C 1 −1

Отметим точки А(−1;3) , B(0;1) и С(1;−1) на прямоугольной системе координат.

отмечаем точки функции на системе координат

отмечаем точки функции на системе координат

Запомните!

При многократном увеличении графика функции мы увидим, что в самом деле вся прямая состоит из рядом стоящих точек.

что такое график функции

Точки располагаются максимально близко к друг другу, поэтому по расчетам получается, что графиком функции будет являться прямая.

Читайте также: