Для каких видов соударений выполняется закон сохранения импульса кратко

Обновлено: 08.07.2024

Основной закон динамики поступательного движения для замкнутой системы тел: , следовательно: .

Таким образом, импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Этот закон справедлив не только в классической механике, но и в квантовой механи­ке для замкнутых систем микрочастиц. Закон сохранения импульса - фундаментальный закон природы.

Закон справедлив и для незамкнутых систем, если геометрическая сумма всех внешних сил равна нулю. Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. В неинерциальных системах отсчета закон сохранения импульса несправедлив.

При соударении двух тел существуют 2 предельных вида удара: абсолютно упругий и абсолютно неупругий.

Абсолютно упругимназывается такой удар, при котором механическая энергия тел не переходит в другие, немеханические виды энергии. При таком ударе кинетическая энергия полностью или частично переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоро­стями, модуль и направления которых определяются двумя условиями: сохранением полной механической энергии и сохранением полного импульса системы тел.

При абсолютно упругом центральном ударе (удар происходит по прямой, соединяющей центры масс шаров) возможны два случая:

  1. Шары двигаются навстречу друг другу.
  2. Один шар догоняет другой (рисунок 22).

Положим, что система замкнутая и вращение шаров отсутствует. Пусть массы шаров m1 и m2, скорости их до удара и , а после удара и соответственно. Скорости шаров после удара определяются при решении системы уравнений, составленной согласно закону сохранения механической энергии и закону сохранения импульса:

- закон сохранения энергии.

- закон сохранения импульса.

Для численных расчетов нужно спроектировать векторы скоростей на ось, вдоль которой движутся шары, т.е. учесть направление скоростей соответствующими знаками.

Из полученных формул можно определить скорость шара после удара о движущуюся или неподвижную стенку:

Абсолютно неупругийудар характеризуется тем, что потенциальной энергии деформа­ции при таком ударе не возникает. Кинетическая энергия тел полностью или частично превращается во внут­реннюю энергию. После удара столкнувшиеся тела либо двигаются с одинаковой скоростью, либо покоятся (рисунок 23).

При абсолютно неупругом ударе выполняется лишь закон сохранения импульса системы. Закон сохранения механической энергии не выполняется.

Рассмотрим абсолютно неупругий удар 2-х материальных точек, образующих замкнутую систему. Пусть массы материальных точек m1 и m2, а скорости до удара - и , а после удара - . Суммар­ный импульс системы после удара должен быть таким же, как и до удара

Скорость системы тел после удара .

В численных расчетах используютсяпроекции векторов скоростей на направление оси, вдоль которой двигаются тела.

Контрольные вопросы:

1. Изложите закон сохранения импульса.

2. Расскажите об абсолютно упругом ударе.

3. Какие законы сохранения действуют при абсолютно упругом ударе?

4. Как определить скорости двух тел после абсолютно упругого удара?

5. Что такое абсолютно неупругий удар? Какой закон сохранения действует при абсолютно неупругом ударе?

6. Как вычислить скорость тел после абсолютно неупругого удара?

Выберите правильные ответы на поставленные вопросы:

1. При абсолютно упругом ударе двух шаров с начальными импульсами и и кинетическими энергиями Е1 и Е2 соответственно, суммарный импульс Р шаров и кинетическая энергия Е сразу после соударения… ○ 1. …Р = р12, E > E1+E2. ○ 2. …Р = р12, E E1+E2 ○ 4. E≠E1+E2 ○ 5. E≠E1+E2 6. Одинаковые моменты внешних сил действуют на два шара, которые вращаются на неподвижных осях. Момент инерции первого шара больше, чем второго. Угловое ускорение первого шара… ○ 1. …больше, чем у второго. ○ 2. …меньше, чем у второго. ○ 3. …такое же, как у второго. ○ 4. …может быть больше или меньше, чем у второго в зависимости от соотношения масс шаров. ○ 5. …может быть больше или меньше, чем у второго в зависимости от соотношения радиусов шаров.

Закон всемирного тяготения

Изучением движения планет люди занимались, начиная с глубокой древности. Астроном Иоганн Кеплер обработал результаты многочисленных наблюдений и изложил законы движения планет:

  1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
  2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые площа­ди.
  3. Для планет солнечной системы - постоянная величина, где R - радиус орбиты планеты (половина большой оси эллипса);
    Т - период обращения планеты вокруг Солнца.

Впоследствии Ньютон на основании законов Кеплера и основных законов динамики от­крыл закон всемирного тяготения:Все тела (материальные точки) независимо от их свойств, притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропор­циональной квадрату расстояния между ними F = G , где:

G - гравитационная постоянная. G = 6,672 • 10 -11

Сила тяжести

Согласно второму закону Ньютона любое тело вблизи поверхности Земли начинает дви­гаться с ускорением свободного падения под действием силы тяжести .

Для тел, находящихся на поверхности Земли: , где М - масса Земли, m - масса тела, R3 - радиус Земли. Отсюда:

Если тело массой m находится на высоте h над поверхностью Земли, то . Таким образом, сила тяжести уменьшается с удалением от Земли.

Работа в поле тяготения

Если тело массой перемещать с расстояния от Земли до расстояния (рисунок 24), то работа по его перемещению:

Эта работа не зависит от траектории, а определяется лишь начальным и конечным положением тела. Следо­вательно, силы тяготения - консервативные, а поле тяготения – потенциальное.

Работа, совершаемая консервативными силами:

Потенциальная энергия двух тел, находящихся на расстоянии .

Если тело массой m находится на высоте h над поверхностью Земли, то его потенциальная энергия , где

R3- радиус Земли R3 = 6,4-10 6 м, М - масса Земли. М = 6 × 10 24 кг.

Невесомость

Вес тела – это сила, действующая на опору или на подвес. Состояние тела, при котором оно движется только под действием силы тяжести, называется состоянием невесомости. Если к телу приложена не только сила тяготения , но и другая сила , создающая уско­рение тела , то дополнительная сила должна удовлетворять условию: .

Если тело покоится или движется равномерно и прямолинейно, то и .

Если тело свободно движется в поле тяготения по любой траектории, то и - тело будет невесомым.

Космические скорости

Первая космическая скорость - это минимальная скорость тела, при которой оно становит­ся спутником Земли и начинает двигаться вокруг Земли по круговой орбите радиусом . Тогда сила тяготения Земли создает нормальное ускорение, равное . По второму закону Ньютона ; и .

Вторая космическая скорость - скорость, при которой тело преодолевает притяжение Земли и превращается в спутник Солнца. Для этого необходимо, чтобы кинетическая энергия тела была равна работе, совершаемой против сил тяготения.

Третья космическая скорость - позволяет телу покинуть Солнечную систему, преодолев притяжение Солнца. = 16,7 при условии запуска тела в направлении орбитального движения Земли. При запуске тела в противоположном направлении =73 .

При неупругом столкновении в замкнутой системе выполняется закон сохранения импульса.
при упругом столкновении в замкнутой системе выполняется закон сохранения импульса и закон сохранения энергии.
так, если надо, то вот:
Абсолютно упругим столкновением называется столкновение при котором механическая энергия сохраняется и форма тел не меняется. Абсолютно неупругим ударом называют удар при котором тела после столкновения двигаются как единое целое и форма тел не восстанавливается

Удар — толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии.

В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.

Предполагается, что на время удара действием внешних сил можно пренебречь. Тогда полный импульс тел при ударе сохраняется. В противном случае нужно учитывать импульс внешних сил. Часть энергии обычно уходит на нагрев тел и звук.

Результат столкновения двух тел можно полностью рассчитать, если известно их движение до удара и механическая энергия после удара.

Если не известны потери энергии, происходит одновременное столкновение нескольких тел или столкновение точечных частиц, то определить однозначно движение тел после удара невозможно.

В общем случае решение задачи о столкновении, кроме знания начальных скоростей, требует дополнительных параметров.

Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется.

В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно.

Рис. \(1\). Центральное и абсолютно упругое столкновение шара с меньшей массой и покоящегося шара с большей массой

Рис. \(2\). Центральное и абсолютно упругое столкновение шара с большей массой и покоящегося шара с меньшей массой

Рис. \(3\). Центральное и абсолютно упругое столкновение движущегося и покоящегося шаров одинаковой массы

1. есть в наличии два абсолютно твёрдых тела, которые сталкиваются.
2. В точке контакта происходят упругие деформации. Кинетическая энергия движущихся тел мгновенно и полностью переходит в энергию деформации.
3. В следующий момент деформированные тела принимают свою прежнюю форму, а энергия деформации полностью обратно переходит в кинетическую энергию.
4. Контакт тел прекращается, и они продолжают движение.

Для математического описания простейших абсолютно упругих ударов используется закон сохранения энергии:

где m 1 , m 2 — массы первого и второго тела, u 1 → , u 2 → — скорости тел до удара, v 1 → , v 2 → — скорости тел после удара соответственно.

Слайд1.PNG

Слайд2.PNG

Слайд3.PNG

Слайд4.PNG

Слайд6.PNG

Слайд7.PNG

Слайд8.PNG

Абсолютно неупругий удар — удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело.

Слайд9.PNG

Слайд10.PNG


Рис. \(13\). Тела равных масс (покоящееся и движущееся) после удара

где m 1 , m 2 — массы первого и второго тела, v 1 → , v 2 → — скорости тел до удара, v → — общая скорость тел, полученная после удара.

Как и при любом ударе, при абсолютно неупругом ударе выполняется закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Часть кинетической энергии соударяемых тел в результате неупругих деформаций переходит в тепловую.


Физика — такая клевая наука, в которой ничего не исчезает бесследно. Вот и импульс не отстает. О том, что такое импульс, каким образом он сохраняется и при чем тут медузы — читайте в этой статье.

О чем эта статья:

9 класс, 10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

p — импульс тела [кг · м/с]

m — масса тела [кг]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

pn — импульс тела [кг · м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

— это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

— это импульс мальчика после прыжка,

— это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.


наглядный пример сохранения импульса

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид

Подставим формулу импульса.
, где:
— масса мальчика [кг]
— скорость мальчика после прыжка [м/с]
— масса лодки [кг]
— скорость лодки после прыжка [м/с]

Выразим скорость лодки :

Подставим значения:
м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:


решение задачи рис2

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью:

Отсюда находим скорость тела, образовавшегося после удара:

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a. Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор – это вектор изменения импульса .

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

vр — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Читайте также: