Что такое вулканические газы кратко

Обновлено: 04.07.2024

1. Газообразные продукты во время извержения представлены парами воды, углекислоты, встречаются водород, азот, хлористый водород. Интенсивность выделения газов и паров из лавы зависит от степени вязкости последней: из кислых и вязких лав газы выходят с трудом, что ведет к их скоплению и последующим взрывам. В фумарольную стадию происходит выделение сернистых газов. Количество газов, выделяющихся во время извержения, может составлять до нескольких тысяч тонн в сутки.

2. Жидкие продукты представлены лавами разного химического состава.

Кислые лавы содержат более 65 % кремнезема, являются самыми вязкими и малоподвижными. Они застывают в виде коротких и мощных языков, куполов, сложенных липаритом (риолитом), дацитом.

Средние лавы содержат 65 – 53 % кремнезема, обладают разной степенью вязкости и подвижности, что зависит от содержания в них кремнезема и летучих компонентов. При их остывании возникают трахиты и андезиты. В составе кислых и средних вулканических пород часто встречаются пирокласты – обломки других горных пород.

Основные лавы содержат 53 – 45 % кремнезема, являются очень жидкими и подвижными (скорость их движения по земной поверхности может превышать 50 км/час). При остывании их возникают базальты и диабазы, почти никогда не содержащие пирокластов.

Ультраосновные лавы содержат менее 45 % кремнезема, встречаются крайне редко, образуют пикриты и кимберлиты.

Объем лавы, выделившейся во время извержения, может достигать десятков и сотен кубических километров.

3. Твердые продукты (пирокласты) представляют собой минеральные обломки разного диаметра, возникающие в наибольших объемах при взрывных извержениях. В зависимости от размера, выделяют следующие типы пирокластов:
а) вулканические пепел и пыль;
б) вулканический песок;
в) лапилли (диаметром до горошины);
г) вулканические бомбы;
д) вулканические глыбы (при извержении Вулькано была выброшена глыба объемом 25 куб. м и массой 68 т).

При отложении пирокластов на суше возникают вулканические туфы, а при осаждении обломков в воде – туффиты. Объемы выброса пирокластов иногда измеряются десятками кубических километров.

Лапи́лли (итал. lapilla от лат. lapillus — камешки) — многоформенные вулканические выбросы размером от 2 до 64 мм.

Фреатический взрыв – событие, при котором раскалённая магма вступает в контакт с большим количеством льда или воды. При этом происходит молниеносное испарение, приводящее к тепловому взрыву, при котором происходит выброс камней, пепла и лавовых бомб.

Извержение вулкана — это процесс выброса вулканом на земную поверхность раскалённых обломков (вулканические бомбы и лапилли), пепла, излияние лавы. В то время как бо́льшая часть вулканических извержений представляет опасность только для окружающих вулкан районов, крупнейшие извержения на Земле приводили к серьёзным региональным и даже глобальным последствиям, влияя на климат и способствуя массовым вымираниям. В целом вулканические извержения можно разделить на взрывные извержения, для которых характерен.

Вулканический пепел — один из продуктов измельчения магмы. Состоит из частей пыли и песка менее 2 мм в диаметре. Выбрасывается в воздух при извержениях вулканов, а затем оседает на земле. Может довольно долго находиться во взвешенном состоянии в атмосфере, вызывая изменение вида закатов и другие атмосферные оптические явления. После извержения пепел разносится в атмосфере на большие расстояния; так, во время извержения вулкана Кракатау в Индонезии в 1883 году облако неосевшего вулканического пепла.

Упоминания в литературе

ВУЛКАНИ́ЗМ, термин, имеющий два значения. В узком смысле обозначает процессы формирования вулканов и весь комплекс явлений вулканической деятельности. В широком смысле под вулканизмом понимаются все явления, связанные с деятельностью магмы как на глубине, так и на поверхности земли. Наиболее представительным следствием вулканизма на поверхности земли являются вулканы, на глубине – формирование интрузий и изменение вмещающих пород под воздействием высоких тем-р и давлений. Наиболее общее определение вулканизма – совокупность явлений, связанных с образованием и перемещением магмы в глубинах Земли и её извержением на поверхность суши, дна морей и океанов в виде лав, пирокластического материала и вулканических газов . В процессе вулканической деятельности в земных глубинах образуются магматические очаги и каналы, горные породы вокруг которых могут изменяться как под влиянием высокой тем-ры, так и в результате химических воздействий лав. На земной поверхности возникают вулканические конусы, купола, плато, кальдеры, лавовые потоки, пемзовые покровы, гейзеры, горячие источники и др. Горные породы, излившиеся на поверхность в результате вулканической деятельности, называются вулканическими. Породы из магмы на глубине – магматическими. За счёт всех форм проявления вулканизма объём пород земной коры увеличивается более чем на 5 км? в год. Вулканизм выделяет в атмосферу огромное количество газов, формирующих в значительной степени газовую оболочку Земли и участвующих в формировании гидросферы. Наиболее интенсивно вулканизм проявляется в срединно-океанических хребтах, островных дугах, рифтовых долинах, молодых орогенах. С вулканизмом связаны целые группы полезных ископаемых: золото, серебро, медь, сурьма, мышьяк, сера, алунит, бораты, драгоценные камни, строительные материалы. Вулканизм – могучий планетарный процесс. Вулканы, кальдеры, лавовые потоки и поля характерны для Луны, Марса, Меркурия и Ио – его спутника.

Вулкан имеет очень сложное строение. На древнем щите расположен молодой конус, появившийся уже в послеледниковую эпоху. В вершинном кратере Невадо-Охос-дель-Саладо находятся фумаролы – трещинки и отверстия, по которым из земных недр поднимаются горячие вулканические газы и фумарольные термы, водяные пары, принявшие жидкое состояние.

Вулкáны – геологические образования на поверхности коры Земли или другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы , камни (вулканические бомбы и пирокластические потоки). Образуется гора, извергающая расплавленную лаву и раскалённые газы.

Если карбонатные осадки попадают в горячие недра планеты, например, при поддвигании (субдукции) океанского дна под материк, карбонаты разрушаются и СO2 выделяется вновь в составе вулканических газов . Так даже на безжизненной планете происходит круговорот углерода.

Исследования, проделанные Козыревым, стали научной сенсацией. Многие астрономы и теперь поддерживают его гипотезу. В принципе Луна давно остыла, и никаких действующих вулканов там не должно быть. Однако в ее недрах могут существовать отдельные магматические очаги. Время от времени оттуда на поверхность планеты вырываются вулканические газы . Они сметают слой реголита – лунной пыли. Эта пыль несколько светлее твердой породы. Она выделяется на ее фоне, а потому окраска поверхности моментально меняется.

Со дна океана иногда поднимают удивительные камни – их называют прыгающими. Такой камень, лежащий, например, на палубе исследовательского судна, может сам по себе вдруг подпрыгнуть, но чаще просто трескается, издавая громкие щелчки. Эти камни находят на срединно-океанических хребтах, состоящих из потухших или еще действующих вулканов и тянущихся, как ясно из названия, по серединам океанов, между расходящимися континентами. Главное отличие прыгающих камней – высокая насыщенность пузырьками газа. Пузырьки вулканических газов , преимущественно углекислого, занимают в составе этих пород до 18 процентов объема, что примерно в 20 раз больше, чем в обычной застывшей базальтовой лаве.

Очень необычным явлением, оставившим свой след в архейских отложениях, было независимое от массы фракционирование стабильных изотопов серы (?33S ? δ34S – 0,515δ34S) (рис. 4.1б). Это явление было обусловлено воздействием ультрафиолетового облучения среднего и длинноволнового спектра (400–280 нм) на двуокись серы (SО2), поступавшую в атмосферу вместе с другими вулканическими газами . При этом молекулы, содержавшие 33S, подвергались выборочному фотолизу и фотовозбуждению (в современной атмосфере фотонный удар принимают на себя молекулы озона и кислорода). В результате значения ?33S сильно варьируют (от –2 до +12?), что и наблюдается в архейских сульфидах (например, пирите) в виде размашистой изотопной подписи.

Связанные понятия (продолжение)

Лавовый поток — сильно вытянутое тело, возникшее в результате движения лавы по наклонной поверхности рельефа; длина потока намного больше его ширины. Образуются они чаще при центральных извержениях, чем при трещинных. Потоки кислых лав обычно более короткие (1—10 км) и мощные (до 25—30 км), а потоки основных лав достигают десятков километров. Скорость лавового потока обычно составляет несколько метров в час, но на крутых склонах скорость потока лавы может достигать нескольких десятков километров.

Тефра (от греч. τεφρα — пепел) — собирательный термин для отложений материала, выброшенного в воздух вулканом и затем осевшего на землю. При диагенезе тефровых отложений образуются вулкано-пирокластические горные породы — туфы. Тефровые отложения легко размываются поверхностными водами и, смешиваясь с обломками обычных горных пород, образуют промежуточные между пирокластическими и осадочными горными породами осадочно-пирокластические породы — туфопесчаники, туфоалевролиты и т. п.

Вулкани́ческая бо́мба — комок или обрывок лавы, выброшенный во время извержения вулкана в жидком или пластическом состоянии из жерла и получивший при выжимании, во время полёта и застывания на воздухе, специфическую форму .

Вулканическое стекло — нераскристаллизовавшийся продукт быстро остывшей лавы, образующийся при закалке (очень быстром остывании) магматического расплава, достигшего земной поверхности.

Экстру́зия (ку́пол вулкани́ческий) — тип извержения, свойственный вулканам с вязкой лавой. Выступающая вязкая лава нагромождается над устьем вулкана в виде куполов, из которых или около которых время от времени при сильных взрывах выделяются газы, дающие начало палящим тучам.

Вулканизм — собирательное название широкого круга эндогенных природных явлений, связанных с расплавленными магматическими массами и их побочными газообразными продуктами как в глубинных недрах, так и на поверхности Земли и других планет. Как правило, вулканизм считается частным проявлением магматизма, однако в расширенном значении к нему также причисляют газовые выбросы в нефтегазоносных районах, активность грязевых вулканов, образование протуберанцев на поверхности Солнца и др. Изучение вулканической.

Пирокласти́ческий пото́к — смесь высокотемпературных вулканических газов, пепла и обломков пород, образующаяся при извержении вулкана. Скорость потока достигает иногда 700 км/ч, а температура газа — 100—800 °C. Характерен для пелейского (по названию вулкана Мон-Пеле) и плинианского типов извержений.

Лимнологи́ческая катастро́фа — редкое стихийное бедствие, представляющее собой внезапный выброс большого объёма растворённого углекислого газа из открытого водоёма. Будучи тяжелее воздуха, углекислый газ собирается в низменных местах, в том числе в окрестностях водоёма, вызывая удушье у оказавшихся там людей и животных, пока через некоторое время (часы, иногда дни) не будет развеян ветром. Выброс газа может быть вызван землетрясением, подводным извержением вулкана, масштабными подводными или околоводными.

Пирокласты (англ. Pyroclastic rocks, пер. с греч. "Разломанные огнём") — обломочные горные породы, образованные в результате вулканической активности.

Ма́нтия — слой в недрах планет земной группы, расположен между корой и ядром. Она образуется в результате отделения от первичного планетного вещества металлической части, которая уходит в ядро, и плавления, продукты которого формируют кору планеты. Согласно современным моделям мантия планет сложена в основном перидотитами. Кора планет состоит в основном из базальтов (на Земле значительную часть коры слагают граниты, и это одно из основных отличий нашей планеты), она содержит больше легкоплавких элементов.

Лавовые трубки (или лавовые туннели) — полости в лавовых потоках, вытянутые в виде корридоров.

Ма́нтия — часть Земли (геосфера), расположенная непосредственно под корой и выше ядра. В ней находится большая часть вещества Земли. Мантия есть и на других планетах земной группы. Земная мантия находится в диапазоне от 30 до 2900 км от земной поверхности. Мантия занимает около 80% объема Земли.

Супервулкан — вулкан, извержение которого может спровоцировать изменение климата на планете (8 баллов по VEI). На Земле существует около 20 известных науке супервулканов. В среднем извержения происходят раз в 100 000 лет.

Побочный конус, или паразитический (паразитный) конус (англ. parasitic cone) — вулканическое образование, не привязанное к центральному жерлу и возникающее на склонах вулкана при извержении через боковые трещины. Часто имеют форму настоящего вулканического конуса. Паразитные конусы слагаются шлаками, реже лавой. Количество паразитных конусов у некоторых вулканов может быть значительным (например, на склонах Этны их около 900).

Диагенез — совокупность процессов преобразования рыхлых осадков в осадочные горные породы. Происходит в верхних слоях земной коры и заключается в рекристаллизации осадков, образовании минералов, конкреций, гидратации или дегидратации (обезвоживании), цементации осадков и тому подобном.

Шкала вулканической активности (также VEI, от англ. Volcanic Explosivity Index) — показатель силы извержения вулкана, основанный на оценке объёма извергнутых продуктов (тефра) и высоте столба пепла. Предложен К. Ньюхоллом (C. A. Newhall) и С. Селфом (S. Self) в 1982 году для оценки воздействия извержений на земную атмосферу.

Сиде́рий (от др.-греч. σίδηρος — железо) — геологический период, часть палеопротерозоя. Продолжался от 2,5 до 2,3 миллиарда лет назад. Длительность его составляет примерно 200 млн.л. Датировка чисто хронологическая, не основана на стратиграфии.

Лахар (индон. lahar, грязевой вулканический поток, грязевая лава) — грязевой поток на склонах вулкана, состоящий из смеси воды и вулканического пепла, пемзы и горных пород.

Фумаро́ла (итал. fumarola , от лат. fumare — дымить(ся)) — трещина или отверстие, располагающееся в кратерах, на склонах и у подножия вулканов и являющееся источником горячих газов. Различают первичные фумаролы, по которым поднимаются выделяющиеся из магмы газы, и вторичные фумаролы, в которых источником газов служат ещё не остывшие лавовые потоки и пирокластические отложения, не имеющие прямой связи с жерлом вулкана.

Глинистые минералы — группа водных силикатов, слагающих основную массу глинистых отложений и большей части почв и определяющих их физико-химические, механические и др. свойства.

Ксенолит (др.-греч. ξένος — чужой и λίθος — камень), обломок горной породы, захваченный магмой. Если включающая ксенолит магматическая горная порода застыла на глубине (интрузивная), то ксенолиты обычно представляют собой сильно изменённые обломки вмещающих интрузию пород. Ксенолиты, встречающиеся в лаве, обычно являются обломками стенок вулканического канала (пород, через которые проходила лава). Размеры ксенолитов сильно колеблются: от отдельных кристаллов и их обломков, различаемых только под.

Сиби́рские тра́ппы — одна из самых крупных трапповых провинций мира. Она расположена на Восточно-Сибирской платформе. Сибирские траппы изливались на границе палеозоя и мезозоя, а именно пермского и триасового периодов, около 252 млн лет назад.

До́нные оса́дки (донные отложения) — минеральные вещества, отложившиеся на дне океанов, морей, озёр, рек в результате физических, химических и биологических процессов.

Внешнее ядро Земли — жидкий слой толщиной около 2266 километров. Он состоит из железа и никеля. Ядро расположено выше твёрдого внутреннего ядра Земли и ниже её мантии. Его внешняя граница — 2890 км (1800 миль) под поверхностью Земли. Переход от внутреннего ядра ко внешнему находится на глубине около 5150 км под поверхностью Земли.

Ледяные керны — керны, взятые из ледяного щита, чаще всего изо льда полярных ледяных шапок в Антарктике, Гренландии или высокогорных ледников. Так как лед образуется из нарастающих спрессованных слоев снега, нижележащие слои старше по отношению к вышележащим, ледяные керны содержат лед, сформировавшийся за многие годы. Свойства льда и кристаллических включений во льду могут быть использованы для воссоздания изменения климата в интервале формирования керна, обычно при помощи изотопного анализа. Они.

Магматизм — процесс возникновения в мантии и земной коре магматических расплавов, последующего их подъёма и затвердевания на разных глубинах или извержения на поверхности Земли. Магматизм является одним из главных факторов формирования земной коры. Выделяются следующие основные его этапы: зарождение, подъём и затвердевание.

Выве́тривание — совокупность процессов физического и химического разрушения горных пород и слагающих их минералов на месте их залегания под воздействием колебаний температуры, циклов замерзания и химического воздействия воды, атмосферных газов и организмов.

Хемогенные горные породы (англ. Chemistry — химия; англ. Genes — рождение) — осадочные горные породы, возникающие в результате химического осаждения из водных растворов или при испарении воды. В их образовании значительную роль играет процесс испарения, поэтому хемогенные породы также называют эвапоритами. Основные места возникновения хемогенных пород лежат в пределах умеренного и субтропического поясов.

Криовулканизм — вид вулканизма на некоторых планетах и других небесных телах в условиях низких температур. Вместо расплавленных скальных пород криовулканы извергают воду, аммиак, метан — как в жидком состоянии (криолаву), так и в газообразном.

Извержение Хатепе (названо в честь месторождений плинианской пемзы, иногда именуется просто извержением Таупо) произошло около 180 года н.э. и является последним значительным извержением вулкана Таупо, а также крупнейшим извержением в Новой Зеландии в течение последних 20 000 лет. Было выброшено около 120 км³ материала (7 баллов по шкале VEI), из которых 30 км³ извергнуто в течение нескольких минут. Считается, что высота эруптивной колонны достигла 50 км в высоту, что вдвое выше, чем колонна от извержения.

Седимента́ция (осаждение) — оседание частиц дисперсной фазы в жидкости или газе под действием гравитационного поля или центробежных сил.

Континента́льная кора́ или материко́вая кора́ — земная кора континентов, которая состоит из осадочного, гранитного и гранулит-базитового пластов. Средняя толщина 35—45 км, максимальная — до 75 км (под горными массивами). Противопоставляется океанической коре, которая отлична по строению и составу. Континентальная кора покрывает около 40 % поверхности земного шара, по объёму составляет около 70 % от всей земной коры.

Тексту́ра (от textura — ткань, сплетение, сложение) — совокупность признаков строения горной породы, обусловленных ориентировкой и относительным расположением и распределением составных частей породы.

Земна́я кора́ — внешняя твёрдая оболочка (кора) Земли, верхняя часть литосферы. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Лейцит (др.-греч. λευκός — светлый) — породообразующий минерал магматического происхождения, подкласса каркасных алюмосиликатов, фельдшпатоид. Название получил в 1701 году за цвет кристаллов, хотя был известен и ранее.

Кисло́тный дождь — все виды метеорологических осадков — снег, дождь, град, туман, дождь со снегом, — при которых наблюдается понижение водородного показателя (pH) дождевых осадков из-за загрязнений воздуха кислотными оксидами, обычно оксидами серы и оксидами азота.

Обломочные горные породы (также кластические горные породы, кластолиты) — осадочные породы экзогенного происхождения, которые в основном содержат обломки других горных пород или минералов.

Закисление океана (англ. ocean acidification) — это снижение показателя pH, вызванное попаданием в океан углекислого газа из атмосферы Земли. Наряду с глобальным потеплением, этот процесс является следствием деятельности человека. В то время, как в атмосфере парниковые газы приводят к повышению температуры, в воде они вступают в химические реакции. На закисление влияет, главным образом, оксид углерода, в то время как на парниковый эффект влияют также метан и оксид азота.

С вулканическими газами в атмосферу попадают окислы серы, азота, углерода, а также хлор. Углекислый газ входит в атмосферный запас углерода, окислы азота и серы быстро вымываются дождями и попадают на почву в виде слабых растворов азотной, азотистой, серной и сернистой кислот. Вблизи действующего вулкана кислотность дождевой воды может стать опасно высокой и подавить рост и развитие растений, водных и почвенных животных. Но вдали от вулкана, а после прекращения извержения и вблизи него, эти кислоты постепенно нейтрализуются, соли азотной и азотистой кислот поглощаются растениями и их азот входит в состав белков и других азотсодержащих органических веществ. Растворимые соединения серы постепенно вымываются, а в небольших количествах сера также включается в состав белков растений, а потом и других компонентов экосистем.[ . ]

В природных земных газах мы имеем четыре различные по происхождению группы: 1) вулканические газы, 2) биогенные газы, 3) газы подземных газовых и водяных струй, 4) газы из космических пространств.[ . ]

НСО , pH) может быть связано с выходами вулканических газов (п Эльбрус).[ . ]

А. Можно полагать, что водяной пар (например, пар вулканических газов) начал разлагаться под действием ультрафиолетовой радиации с К = 134 . . . 237 нм по реакции Н20 + к V -> ОН + Н. При этом атомы водорода Н могли ускользать из верхней горячей атмосферы — такой процесс изучен сейчас хорошо — со скоростью 107 . . . 108 атомов с 1 см2 в секунду. В дальнейшем при реакции ОН + ОН Н 20 + О образовывался свободный кислород.[ . ]

В природе в свободном состоянии сероводород встречается в вулканических газах, нефтяном газе, в минеральных источниках. Он тяжелее воздуха и имеет тенденцию скапливаться на дне ям, колодцев и в нижних зонах производственных помещений. Вес 1 л газообразного сероводорода при нормальных условиях 1,539 г. Сероводород растворим в воде и в некоторых органических растворителях. Водный раствор сероводорода на свету мутнеет вследствие выделения серы.[ . ]

Атмосфера Земли содержала также хлор, сероводород и другие газы, ядовитые для многих из живущих сейчас на Земле организмов. Состав атмосферы в то время в значительной степени определялся вулканическими газами; вулканическая деятельность была гораздо более активна, чем сейчас. Из-за отсутствия кислорода не существовало и слоя озона, экранирующего губительное ультрафиолетовое излучение Солнца, которое, таким образом, достигало поверхности суши и воды. Это излучение убило бы любые живые организмы, но, как это ни странно, считается, что именно оно породило химическую эволюцию, приведшую к возникновению сложных органических молекул, таких, как аминокислоты, которые послужили блоками для построения примитивных живых систем.[ . ]

Вулканы иной раз выбрасывают в атмосферу колоссальные количества дыма и вулканического пепла. Достаточно сказать, что при сильном извержении выбрасывается до 75 мли. кубометров мелких частиц. Эти частицы вместе с вулканическими газами могут подыматься в стратосферу на высоту свыше 20 км. Самые мелкие частицы могут не выпадать на землю на протяжении нескольких лет.[ . ]

Большие количества молекулярного водорода поступают в атмосферу в составе вулканических газов и поствулканических эксгаляций. Тем не менее в атмосфере присутствует только лишь 0,2 Гт Н2, поскольку этот легкий газ постепенно рассеивается в околоземном пространстве. Значительные количества водорода, вероятно, образуются при микробиологическом разрушении мертвого органического вещества. Однако этот водород не поступает в атмосферу: он практически полностью перехватывается другими микроорганизмами, в частности, использующими его при восстановлении С02 и метанола с образованием метана.[ . ]

На химический состав почв оказывают влияние метеоритная и космическая пыль, вулканические газы, а также минерализованные брызги, выдуваемые с поверхности морей и океанов.[ . ]

В атмосфере содержится — 0,03% С02, или 2,3 -1012 т. Источником поступления углекислого газа в атмосферу являются вулканические газы, горячие ключи, дыхание человека, животных, растений и, наконец, сжигание человеком горючих ископаемых. Сжигание топлива вносит ежегодно в атмосферу не менее 1 -1010 т углекислоты. Примерно Ы011 т С02 непрерывно находится в обменном состоянии между атмосферой и океаном. Обмен углекислоты в поверхностных слоях океана происходит в течение 5—25 лет, в глубоких — в течение 200—1000 лег. Полный обмен С02 в атмосфере происходит за 300—500 лет.[ . ]

Многие элементы поступают в биосферу с космической и метеоритной пылью, с вулканическими газами, горячими источниками, газовыми струями.[ . ]

Своеобразие состава нижних слоев современной атмосферы состоит в малом содержании инертных газов (кроме аргона) и молекулярного водорода. Он сильно отличается от состава вулканических газов, за счет которых атмосфера возникла в прошлом. Причина столь сильного изменения заключается в мощной преобразующей деятельности живых организмов биосферы.[ . ]

Своеобразие состава современной атмосферы Земли выражается в ничтожном содержании инертных газов (кроме аргона) и молекулярного водорода. Состав атмосферы сильно отличается от вулканических газов, за счет которых она возникла в далеком прошлом. Эго свидетельствует о том, что в течение геологической истории Земли происходили мощные процессы, изменившие состав ее газовой оболочки. Эти процессы связывают с активностью живого населения биосферы. И в самом деле, расчеты показывают, что в добиологический период атмосфера Земли мало отличалась от близкой к ней по размерам и расстоянию от Солнца Венеры (табл. 1.4).[ . ]

При извержении вулканов в атмосфере вместе с газообразными продуктами выбрасывается большое количество пепла. В состав вулканических газов входят HCl, HF, NH3, Cl2, S02, H2S, С02, Н20, твердые частицы состоят, в основном из Si02.[ . ]

Естественные колебания содержания озона вызваны, как уже говорилось, циклическими изменениями активности Солнца и выбросами вулканических газов при извержениях. Произошедшее за последнее десятилетие снижение содержания озона на 5% связано почти целиком с загрязнением атмосферного воздуха выбросами промышленности и транспорта. Небольшой вклад в это внесло извержение вулкана Эль-Чичон в 1981 году, но снижение содержания озона с тех пор продолжается. За это время содержание хлора в атмосфере увеличилось в 6 раз, достигнув к 1985 г. 6 тысяч тонн, причем почти весь этот хлор имеет антропогенное происхождение. Дополнительный вклад в разрушение озона вносят и окислы азота, количество которых в атмосфере, также за счет преимущественно антропогенных выбросов, все еще возрастает.[ . ]

Основными поражающими факторами при извержении вулканов являются УВВ, летящие осколки (камни, деревья, части конструкций), пепел, вулканические газы (углекислый, сернистый, водород, азот, метан, сероводород, иногда фтор, отравляющий источники воды), тепловое излучение, лава, движущаяся по склону со скоростью до 80 км/ч при температуре до 1000°С и сжигающая все на своем пути. Вторичные поражающие факторы — цунами, пожары, взрывы, завалы, наводнения, оползни. Наиболее частыми причинами гибели людей и животных в районах извержения вулканов являются травмы, ожоги (часто верхних дыхательных путей), асфиксия (кислородное голодание), поражение глаз. В течение значительного промежутка времени после извержения вулкана среди населения наблюдается повышение заболеваемости бронхиальной астмой, бронхитами, обострение ряда хронических заболеваний. В районах извержения вулканов устанавливается эпидемиологический надзор.[ . ]

По мере возрастающей потери Н2 в космическое пространство создавалась третичная атмосфера, содержащая большие количества Ы2 (из N113), С02 (из вулканических газов и из СН4) и паров воды (рис. 2.11).[ . ]

На поверхности океана глубоководное извержение вулкана обычно никак не проявляется. Выделяющиеся из волнистых, подушечных, глыбовых расплавов вулканические газы полностью поглощаются водной толщей.[ . ]

В природных водах содержится в различных концентрациях в результате разложения органических веществ, в минеральных водах, куда поступает из вулканических газов.[ . ]

По мере все возраставшей утечки водорода в космическое пространство создавалась третичная атмосфера. В результате распада аммиака в больших количествах образовывался азот, составляющий основу современной атмосферы, а из метана и вулканических газов образовался диоксид углерода. Увеличивалось содержание паров воды.[ . ]

Хлор, попадающий в воздух даже в небольших количествах, может оказать заметное влияние на концентрацию озона в верхних слоях атмосферы. Отметим, что озон создает экран, защищающий поверхность Земли от жесткого ультрафиолетового излучения Солнца, опасного для всего живого на суше. В небольших количествах с вулканическими газами и пылью в атмосферу попадает множество других веществ, роль которых в биосферных процессах незначительна.[ . ]

Хлор и другие галогены (фтор, бром) поступают в страто-сферу в основном в виде галогенорганических соединений. Хлористый водород и другие неорганические соединения хлора, присутствующие в заметном количестве в тропосфере, почти полностью вымываются облаками и осадками и в стратосферу попадают в незначимом количестве. Лишь во время крупных вулканических извержений в стратосферу может поступать значительное количество хлористого водорода, содержащегося в вулканических газах. Так, во время извержения вулкана Агунг в марте 1963 г. в стратосферу, согласно оценкам, попало около 1,2 Мт хлористого водорода. Основным природным источником хлора в стратосфере является хлористый метил (СНзС1), образующийся при разложении или сгорании биологических продуктов, преимущественно морского происхождения.[ . ]

Земля в своем движении в межпланетном пространстве аа год пересекает объем космического пространства около 3-1016 м3. Исходя из плотностй вещества космического пространства можно оценить его количество, захватываемое атмосферой Земли. По Петерсону [17], это составляет 107т за год (данная оценка, возможно, завышена на порядок). Огромные массы аэрозоля и газов выносятся в атмосферу в процессе вулканической деятельности. Особенно важны с точки зрения оптики атмосферы крупные извержения, когда мощные ,массы пепла и газов выбрасываются не только в тропосферу, но и в стратосферу, чему -способствуют мощные конвективные потоки во время извержений. После извержения вулкана Кракатоа в 1883 г. в течение нескольких лет наблюдались необыкновенно красочные зори, создаваемые -аэрозольным слоем в стратосфере. По данным [12], на высокогорной обсерватории в Мауна-Лоа после извержения вулкана Агунг на острове Бали уменьшение солнечной радиации -достигло 1,5%, а на южном полюсе — даже 5,3%. Для восстановления средних величин инсоляции после извержения потребовалось 7 лет. Длительность восстановления нормального светового и цветового режима в атмосфере дает дополнительное подтверждение важности фотохимического процесса образования субмикронной фракции аэрозоля из вулканических газов, так как крупные твердые частицы выводятся из атмосферы значительно быстрее.[ . ]

Хотя воздаст Земли оценен сейчас довольно точно — около 4,5-109 лет, о первичной атмосфере Земли нам известно очень мало. Если Земля возникла из космического протопланетного облака, в составе которого вначале содержался в большой пропорции водород, то несомненно этот водород был очень рано потерян Землей. Геологи полагают, что известная нам атмосфера Земли вторичная, образовавшаяся из вулканических газов или выделенная из геологических пород. В этих газах не было свободного кислорода (как почти нет его в атмосферах других планет). Такая вулканическая атмосфера Земли содержала около 109 лет назад, вероятно, лишь Н2, Н20, N

Затем SO быстро окисляется до S02 различными соединениями (Р122) — (Р124). Наряду с серооксидом углерода в небольшом количестве сера может попадать в стратосферу в виде сероводорода (H2S) и органических соединений серы — меркаптанов, имеющих структуру H—S—R или Ri—S—R2. Как сероводород, так и меркаптаны образуются при разложении органических соединений т. е. являются биогенными продуктами. Кроме того, сероводород наряду с диоксидом серы может содержаться в вулканических газах.[ . ]

Распределение частиц фонового стратосферного аэрозоля по размерам и концентрация частиц могут изменяться в широких пределах. Наиболее характерно одномодовое распределение с модальным радиусом, близким к 0,1 мкм. В отдельных случаях наблюдаются и бимодальные распределения, образующиеся, по-видимому, при перемешивании частиц с различной историей роста. Концентрация частиц фонового стратосферного аэрозоля проявляет широтный ход — концентрация частиц наибольшая в экваториальной области и уменьшается к полюсам. При низкой вулканической активности концентрация частиц радиусом более 0,15 мкм составляет 1—2 см-3, а частиц радиусом более 0,03 мкм (ядер Айткена)—около 10—12 см-3. Вулканические извержения через некоторое время резко увеличивают весовую и счетную концентрации частиц фонового стратосферного аэрозоля. Так, примерно через шесть месяцев после извержения вулкана Сан-Фуэго концентрация частиц увеличилась почти на порядок и достигла 8—10 см-3. Задержка между моментом вулканического извержения и временем достижения максимальной концентрации аэрозольных частиц обусловлена медленным процессом окисления диоксида серы, содержащегося в вулканических газах, до серной кислоты (см. п. 3.8). После достижения максимума концентрация частиц фонового стратосферного аэрозоля постепенно уменьшается и через 2—3 года снижается до уровня, существовавшего до извержения вулкана.[ . ]

В составе излучений Солнца жесткие УФ-лучи составляют значительную по мощности часть. До появления в атмосфере озона поверхность Земли находилась под постоянным воздействием жесткого УФ-излучения. Оно не проникает в толщу воды, но на сушу жизнь могла выйти только тогда, когда озоновый экран планеты стал достаточно мощным. Это произошло в силурийском периоде палеозойской эры, более 400 миллионов лет назад. С тех пор как содержание кислорода в атмосфере, так, следовательно, и мощность озонового экрана не были постоянными. Эволюция земной коры шла неравномерно, в периоды повышенной вулканической активности массы выбрасываемых с магмой восстановленных пород, окисляясь на воздухе, частично связывали кислород. Даже незначительное количество хлора, содержащегося в вулканических газах, активно разрушая озон, способствовало снижению его содержания в атмосфере. В этих условиях Земля подвергалась, по-видимому, усиленному УФ-облучению, что, с одной стороны, способствовало гибели части видов наземных растенйй и животных, с другой — повышало частоту мутаций, способствуя интенсификации процессов эволюции.[ . ]

Круговые движения воды не ограничиваются поверхностью Земли. Значительное количество воды присутствует в горных породах в виде пленочных и поровых вод, еще больше входит ее в состав минералов, образующихся в зоне гипергенеза. Все глинистые минералы, оксиды железа и другие распространенные в этой зоне соединения содержат в своем составе воду. Подсчитано, что в 16-километровом слое земной коры содержится примерно 200 млн км воды. Поступая в глубинные зоны земной коры, связанные формы воды постепенно освобождаются и включаются в метаморфические, магматические и гидротермические процессы. С вулканическими газами и горячими источниками глубинные воды поступают на поверхность.[ . ]

Количественно мы учесть ее пока не можем; она совсем мало изучена. Взятая в целом, однако, она не может быть оставляема без внимания и является биогенной. В ней же резко проявляется биогенная угольная кислота второго рода, которая создается в метаморфических оболочках разложением биогенных минералов, благодаря высокой температуре этих оболочек: с одной стороны, каменных углей и битумов, нефтей, а с другой .биогенных известняков, которые выявляются нам как огромный и непрерывно идущий ток метаморфического происхождения биогенной по существу угольной кислоты в подземных водах и в газовых струях. Того же типа угольная кислота выделяется во всех вулканических процессах благодаря разложению биогенных горных пород, разлагаемых лавой и горячими вулканическими газами — битумов, известняков, каменных углей, нефтей и т. н.[ . ]

Образовавшееся за время существования нашей планеты из воды (по описанной схеме) количество кислорода оценивается в 1015т, что соответствует его количеству в современной атмосфере. Но для приведения химического состава Земли к современному состоянию потребовалось значительно большее количество кислорода, потраченного на окисление метана и аммиака первичной атмосферы, а также на окисление всех пород земной коры. Без участия растений это было бы невозможно. Кислорода они производят порядка 3 • 106 кг/с или 1011 т/г. Однако последние миллионы лет его содержание больше не увеличивается — весь кислород, создаваемый растениями, расходуется на дыхание животных, окисление вулканических газов, горение и гниение мертвых растений. В настоящее время значительное количество кислорода потребляется промышленностью и транспортом.[ . ]

С вулканическими газами в атмосферу попадают окислы серы, азота, углерода, а также хлор. Углекислый газ входит в атмосферный запас углерода, окислы азота и серы быстро вымываются дождями и попадают на почву в виде слабых растворов азотной, азотистой, серной и сернистой кислот. Вблизи действующего вулкана кислотность дождевой воды может стать опасно высокой и подавить рост и развитие растений, водных и почвенных животных. Но вдали от вулкана, а после прекращения извержения и вблизи него, эти кислоты постепенно нейтрализуются, соли азотной и азотистой кислот поглощаются растениями и их азот входит в состав белков и других азотсодержащих органических веществ. Растворимые соединения серы постепенно вымываются, а в небольших количествах сера также включается в состав белков растений, а потом и других компонентов экосистем.[ . ]

В природных земных газах мы имеем четыре различные по происхождению группы: 1) вулканические газы, 2) биогенные газы, 3) газы подземных газовых и водяных струй, 4) газы из космических пространств.[ . ]

НСО , pH) может быть связано с выходами вулканических газов (п Эльбрус).[ . ]

А. Можно полагать, что водяной пар (например, пар вулканических газов) начал разлагаться под действием ультрафиолетовой радиации с К = 134 . . . 237 нм по реакции Н20 + к V -> ОН + Н. При этом атомы водорода Н могли ускользать из верхней горячей атмосферы — такой процесс изучен сейчас хорошо — со скоростью 107 . . . 108 атомов с 1 см2 в секунду. В дальнейшем при реакции ОН + ОН Н 20 + О образовывался свободный кислород.[ . ]

В природе в свободном состоянии сероводород встречается в вулканических газах, нефтяном газе, в минеральных источниках. Он тяжелее воздуха и имеет тенденцию скапливаться на дне ям, колодцев и в нижних зонах производственных помещений. Вес 1 л газообразного сероводорода при нормальных условиях 1,539 г. Сероводород растворим в воде и в некоторых органических растворителях. Водный раствор сероводорода на свету мутнеет вследствие выделения серы.[ . ]

Атмосфера Земли содержала также хлор, сероводород и другие газы, ядовитые для многих из живущих сейчас на Земле организмов. Состав атмосферы в то время в значительной степени определялся вулканическими газами; вулканическая деятельность была гораздо более активна, чем сейчас. Из-за отсутствия кислорода не существовало и слоя озона, экранирующего губительное ультрафиолетовое излучение Солнца, которое, таким образом, достигало поверхности суши и воды. Это излучение убило бы любые живые организмы, но, как это ни странно, считается, что именно оно породило химическую эволюцию, приведшую к возникновению сложных органических молекул, таких, как аминокислоты, которые послужили блоками для построения примитивных живых систем.[ . ]

Вулканы иной раз выбрасывают в атмосферу колоссальные количества дыма и вулканического пепла. Достаточно сказать, что при сильном извержении выбрасывается до 75 мли. кубометров мелких частиц. Эти частицы вместе с вулканическими газами могут подыматься в стратосферу на высоту свыше 20 км. Самые мелкие частицы могут не выпадать на землю на протяжении нескольких лет.[ . ]

Большие количества молекулярного водорода поступают в атмосферу в составе вулканических газов и поствулканических эксгаляций. Тем не менее в атмосфере присутствует только лишь 0,2 Гт Н2, поскольку этот легкий газ постепенно рассеивается в околоземном пространстве. Значительные количества водорода, вероятно, образуются при микробиологическом разрушении мертвого органического вещества. Однако этот водород не поступает в атмосферу: он практически полностью перехватывается другими микроорганизмами, в частности, использующими его при восстановлении С02 и метанола с образованием метана.[ . ]

На химический состав почв оказывают влияние метеоритная и космическая пыль, вулканические газы, а также минерализованные брызги, выдуваемые с поверхности морей и океанов.[ . ]

В атмосфере содержится — 0,03% С02, или 2,3 -1012 т. Источником поступления углекислого газа в атмосферу являются вулканические газы, горячие ключи, дыхание человека, животных, растений и, наконец, сжигание человеком горючих ископаемых. Сжигание топлива вносит ежегодно в атмосферу не менее 1 -1010 т углекислоты. Примерно Ы011 т С02 непрерывно находится в обменном состоянии между атмосферой и океаном. Обмен углекислоты в поверхностных слоях океана происходит в течение 5—25 лет, в глубоких — в течение 200—1000 лег. Полный обмен С02 в атмосфере происходит за 300—500 лет.[ . ]

Многие элементы поступают в биосферу с космической и метеоритной пылью, с вулканическими газами, горячими источниками, газовыми струями.[ . ]

Своеобразие состава нижних слоев современной атмосферы состоит в малом содержании инертных газов (кроме аргона) и молекулярного водорода. Он сильно отличается от состава вулканических газов, за счет которых атмосфера возникла в прошлом. Причина столь сильного изменения заключается в мощной преобразующей деятельности живых организмов биосферы.[ . ]

Своеобразие состава современной атмосферы Земли выражается в ничтожном содержании инертных газов (кроме аргона) и молекулярного водорода. Состав атмосферы сильно отличается от вулканических газов, за счет которых она возникла в далеком прошлом. Эго свидетельствует о том, что в течение геологической истории Земли происходили мощные процессы, изменившие состав ее газовой оболочки. Эти процессы связывают с активностью живого населения биосферы. И в самом деле, расчеты показывают, что в добиологический период атмосфера Земли мало отличалась от близкой к ней по размерам и расстоянию от Солнца Венеры (табл. 1.4).[ . ]

При извержении вулканов в атмосфере вместе с газообразными продуктами выбрасывается большое количество пепла. В состав вулканических газов входят HCl, HF, NH3, Cl2, S02, H2S, С02, Н20, твердые частицы состоят, в основном из Si02.[ . ]

Естественные колебания содержания озона вызваны, как уже говорилось, циклическими изменениями активности Солнца и выбросами вулканических газов при извержениях. Произошедшее за последнее десятилетие снижение содержания озона на 5% связано почти целиком с загрязнением атмосферного воздуха выбросами промышленности и транспорта. Небольшой вклад в это внесло извержение вулкана Эль-Чичон в 1981 году, но снижение содержания озона с тех пор продолжается. За это время содержание хлора в атмосфере увеличилось в 6 раз, достигнув к 1985 г. 6 тысяч тонн, причем почти весь этот хлор имеет антропогенное происхождение. Дополнительный вклад в разрушение озона вносят и окислы азота, количество которых в атмосфере, также за счет преимущественно антропогенных выбросов, все еще возрастает.[ . ]

Основными поражающими факторами при извержении вулканов являются УВВ, летящие осколки (камни, деревья, части конструкций), пепел, вулканические газы (углекислый, сернистый, водород, азот, метан, сероводород, иногда фтор, отравляющий источники воды), тепловое излучение, лава, движущаяся по склону со скоростью до 80 км/ч при температуре до 1000°С и сжигающая все на своем пути. Вторичные поражающие факторы — цунами, пожары, взрывы, завалы, наводнения, оползни. Наиболее частыми причинами гибели людей и животных в районах извержения вулканов являются травмы, ожоги (часто верхних дыхательных путей), асфиксия (кислородное голодание), поражение глаз. В течение значительного промежутка времени после извержения вулкана среди населения наблюдается повышение заболеваемости бронхиальной астмой, бронхитами, обострение ряда хронических заболеваний. В районах извержения вулканов устанавливается эпидемиологический надзор.[ . ]

По мере возрастающей потери Н2 в космическое пространство создавалась третичная атмосфера, содержащая большие количества Ы2 (из N113), С02 (из вулканических газов и из СН4) и паров воды (рис. 2.11).[ . ]

На поверхности океана глубоководное извержение вулкана обычно никак не проявляется. Выделяющиеся из волнистых, подушечных, глыбовых расплавов вулканические газы полностью поглощаются водной толщей.[ . ]

В природных водах содержится в различных концентрациях в результате разложения органических веществ, в минеральных водах, куда поступает из вулканических газов.[ . ]

По мере все возраставшей утечки водорода в космическое пространство создавалась третичная атмосфера. В результате распада аммиака в больших количествах образовывался азот, составляющий основу современной атмосферы, а из метана и вулканических газов образовался диоксид углерода. Увеличивалось содержание паров воды.[ . ]

Хлор, попадающий в воздух даже в небольших количествах, может оказать заметное влияние на концентрацию озона в верхних слоях атмосферы. Отметим, что озон создает экран, защищающий поверхность Земли от жесткого ультрафиолетового излучения Солнца, опасного для всего живого на суше. В небольших количествах с вулканическими газами и пылью в атмосферу попадает множество других веществ, роль которых в биосферных процессах незначительна.[ . ]

Хлор и другие галогены (фтор, бром) поступают в страто-сферу в основном в виде галогенорганических соединений. Хлористый водород и другие неорганические соединения хлора, присутствующие в заметном количестве в тропосфере, почти полностью вымываются облаками и осадками и в стратосферу попадают в незначимом количестве. Лишь во время крупных вулканических извержений в стратосферу может поступать значительное количество хлористого водорода, содержащегося в вулканических газах. Так, во время извержения вулкана Агунг в марте 1963 г. в стратосферу, согласно оценкам, попало около 1,2 Мт хлористого водорода. Основным природным источником хлора в стратосфере является хлористый метил (СНзС1), образующийся при разложении или сгорании биологических продуктов, преимущественно морского происхождения.[ . ]

Земля в своем движении в межпланетном пространстве аа год пересекает объем космического пространства около 3-1016 м3. Исходя из плотностй вещества космического пространства можно оценить его количество, захватываемое атмосферой Земли. По Петерсону [17], это составляет 107т за год (данная оценка, возможно, завышена на порядок). Огромные массы аэрозоля и газов выносятся в атмосферу в процессе вулканической деятельности. Особенно важны с точки зрения оптики атмосферы крупные извержения, когда мощные ,массы пепла и газов выбрасываются не только в тропосферу, но и в стратосферу, чему -способствуют мощные конвективные потоки во время извержений. После извержения вулкана Кракатоа в 1883 г. в течение нескольких лет наблюдались необыкновенно красочные зори, создаваемые -аэрозольным слоем в стратосфере. По данным [12], на высокогорной обсерватории в Мауна-Лоа после извержения вулкана Агунг на острове Бали уменьшение солнечной радиации -достигло 1,5%, а на южном полюсе — даже 5,3%. Для восстановления средних величин инсоляции после извержения потребовалось 7 лет. Длительность восстановления нормального светового и цветового режима в атмосфере дает дополнительное подтверждение важности фотохимического процесса образования субмикронной фракции аэрозоля из вулканических газов, так как крупные твердые частицы выводятся из атмосферы значительно быстрее.[ . ]

Хотя воздаст Земли оценен сейчас довольно точно — около 4,5-109 лет, о первичной атмосфере Земли нам известно очень мало. Если Земля возникла из космического протопланетного облака, в составе которого вначале содержался в большой пропорции водород, то несомненно этот водород был очень рано потерян Землей. Геологи полагают, что известная нам атмосфера Земли вторичная, образовавшаяся из вулканических газов или выделенная из геологических пород. В этих газах не было свободного кислорода (как почти нет его в атмосферах других планет). Такая вулканическая атмосфера Земли содержала около 109 лет назад, вероятно, лишь Н2, Н20, N

Затем SO быстро окисляется до S02 различными соединениями (Р122) — (Р124). Наряду с серооксидом углерода в небольшом количестве сера может попадать в стратосферу в виде сероводорода (H2S) и органических соединений серы — меркаптанов, имеющих структуру H—S—R или Ri—S—R2. Как сероводород, так и меркаптаны образуются при разложении органических соединений т. е. являются биогенными продуктами. Кроме того, сероводород наряду с диоксидом серы может содержаться в вулканических газах.[ . ]

Распределение частиц фонового стратосферного аэрозоля по размерам и концентрация частиц могут изменяться в широких пределах. Наиболее характерно одномодовое распределение с модальным радиусом, близким к 0,1 мкм. В отдельных случаях наблюдаются и бимодальные распределения, образующиеся, по-видимому, при перемешивании частиц с различной историей роста. Концентрация частиц фонового стратосферного аэрозоля проявляет широтный ход — концентрация частиц наибольшая в экваториальной области и уменьшается к полюсам. При низкой вулканической активности концентрация частиц радиусом более 0,15 мкм составляет 1—2 см-3, а частиц радиусом более 0,03 мкм (ядер Айткена)—около 10—12 см-3. Вулканические извержения через некоторое время резко увеличивают весовую и счетную концентрации частиц фонового стратосферного аэрозоля. Так, примерно через шесть месяцев после извержения вулкана Сан-Фуэго концентрация частиц увеличилась почти на порядок и достигла 8—10 см-3. Задержка между моментом вулканического извержения и временем достижения максимальной концентрации аэрозольных частиц обусловлена медленным процессом окисления диоксида серы, содержащегося в вулканических газах, до серной кислоты (см. п. 3.8). После достижения максимума концентрация частиц фонового стратосферного аэрозоля постепенно уменьшается и через 2—3 года снижается до уровня, существовавшего до извержения вулкана.[ . ]

В составе излучений Солнца жесткие УФ-лучи составляют значительную по мощности часть. До появления в атмосфере озона поверхность Земли находилась под постоянным воздействием жесткого УФ-излучения. Оно не проникает в толщу воды, но на сушу жизнь могла выйти только тогда, когда озоновый экран планеты стал достаточно мощным. Это произошло в силурийском периоде палеозойской эры, более 400 миллионов лет назад. С тех пор как содержание кислорода в атмосфере, так, следовательно, и мощность озонового экрана не были постоянными. Эволюция земной коры шла неравномерно, в периоды повышенной вулканической активности массы выбрасываемых с магмой восстановленных пород, окисляясь на воздухе, частично связывали кислород. Даже незначительное количество хлора, содержащегося в вулканических газах, активно разрушая озон, способствовало снижению его содержания в атмосфере. В этих условиях Земля подвергалась, по-видимому, усиленному УФ-облучению, что, с одной стороны, способствовало гибели части видов наземных растенйй и животных, с другой — повышало частоту мутаций, способствуя интенсификации процессов эволюции.[ . ]

Круговые движения воды не ограничиваются поверхностью Земли. Значительное количество воды присутствует в горных породах в виде пленочных и поровых вод, еще больше входит ее в состав минералов, образующихся в зоне гипергенеза. Все глинистые минералы, оксиды железа и другие распространенные в этой зоне соединения содержат в своем составе воду. Подсчитано, что в 16-километровом слое земной коры содержится примерно 200 млн км воды. Поступая в глубинные зоны земной коры, связанные формы воды постепенно освобождаются и включаются в метаморфические, магматические и гидротермические процессы. С вулканическими газами и горячими источниками глубинные воды поступают на поверхность.[ . ]

Количественно мы учесть ее пока не можем; она совсем мало изучена. Взятая в целом, однако, она не может быть оставляема без внимания и является биогенной. В ней же резко проявляется биогенная угольная кислота второго рода, которая создается в метаморфических оболочках разложением биогенных минералов, благодаря высокой температуре этих оболочек: с одной стороны, каменных углей и битумов, нефтей, а с другой .биогенных известняков, которые выявляются нам как огромный и непрерывно идущий ток метаморфического происхождения биогенной по существу угольной кислоты в подземных водах и в газовых струях. Того же типа угольная кислота выделяется во всех вулканических процессах благодаря разложению биогенных горных пород, разлагаемых лавой и горячими вулканическими газами — битумов, известняков, каменных углей, нефтей и т. н.[ . ]

Образовавшееся за время существования нашей планеты из воды (по описанной схеме) количество кислорода оценивается в 1015т, что соответствует его количеству в современной атмосфере. Но для приведения химического состава Земли к современному состоянию потребовалось значительно большее количество кислорода, потраченного на окисление метана и аммиака первичной атмосферы, а также на окисление всех пород земной коры. Без участия растений это было бы невозможно. Кислорода они производят порядка 3 • 106 кг/с или 1011 т/г. Однако последние миллионы лет его содержание больше не увеличивается — весь кислород, создаваемый растениями, расходуется на дыхание животных, окисление вулканических газов, горение и гниение мертвых растений. В настоящее время значительное количество кислорода потребляется промышленностью и транспортом.[ . ]

Читайте также: