Что такое вирусология кратко

Обновлено: 04.07.2024

Главная задача биологии — это развитие представлений у человека о живых организмах, о многообразии видов, обо всех закономерностях развития живых существ, а также об их взаимодействии с окружающей природой. Предмет основы безопасности жизнедеятельности (ОБЖ) позволяет получить знания и умения, которые помогут сохранить жизнь и здоровье в опасных ситуациях. Эти ситуации всегда возникают неожиданно, но, тем не менее, большинство из них предсказуемы и к ним можно подготовиться заранее. ОБЖ учит нас предвидеть возможные опасности и минимизировать потери от той или иной ситуации. Сегодня мы сталкиваемся с новым видом вирусной опасности COVID-19,о котором поговорим с точки зрения биологии и ОБЖ.

Что такое вирус?

Вирус — это неклеточный инфекционный агент. Сегодня нам известно около 6 тысяч различных вирусов, но их существует несколько миллионов. Вирусы не похожи друг на друга и могут иметь как форму сферы, спирали, так и форму сложного асимметричного сплетения. Размеры вирусов варьируются от 20 нм до 300 нм.

Как устроен вирус?

В центре агента находится генетический материал РНК или ДНК, вокруг которого располагается белковая структура — капсид.
Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой, т.е. жировой структурой, которая защищает их от изменений окружающей среды.

Вирусолог Дэвид Балтимор объединил все вирусы в 8 групп, из которых некоторые группы вирусов содержат 1-2 цепочки ДНК. Другие же содержат 1 цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов производит себя в различных органеллах зараженной клетки.

Вирусы имеют определенный диапазон хозяев, т.е. он может быть опасен для одних видов и абсолютно безвреден для других. Например, оспой болеет только человек, а чумкой только некоторые виды плотоядных. Вирус не способен выжить сам по себе, поэтому активируется только в хозяйской клетке, используя ее ресурсы и питательные вещества. Цель вируса — создание множества копий себя, чтобы инфицировать другие клетки!

Вирусы

Как вирус попадает в организм?

  • через физические повреждения (например, порезы на коже)
  • путём направленного впрыскивания (к примеру, укус комара)
  • направленного поражения отдельной поверхности (например, при вдыхании вируса через трахею)
  • к эпителию слизистых оболочек (это например вирус гриппа)
  • к нервной ткани (вирус простого герпеса)
  • к иммунным клеткам (вирус иммунодефицита человека)

Биология. Рабочая тетрадь. 9 класс

Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сбором белка вируса. Этот процесс называется репликацией. И его основная цель — это захват территории. Во время репликации генетический материал вируса смешивается с генами клетки хозяина — это приводит к активной мутации самого вируса, а также повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает уже новые клетки, в то время как инфицированная ранее клетка продолжает производство.

Выход вируса

Вирус создал множество собственных копий, клетка оказывается изнуренной из-за использования ее ресурсов. Больше вирусу клетка не нужна, поэтому клетка часто погибает и новорожденным вирусам приходится искать нового хозяина. Это и есть заключительная стадию жизненного цикла вируса.

Скорость распространения вирусной инфекции

Размножение вирусов протекает с исключительно высокой скоростью: при попадании в верхние дыхательные пути одной вирусной частицы уже через 8 часов количество инфекционного потомства достигает 10³, а концу первых суток − 10²³.

Вирусная латентность

Как вирус распространяется?

  • воздушно-капельный (кашель, чихание)
  • с кожи на кожу (при прикосновениях и рукопожатиях)
  • с кожи на продукты (при прикосновениях к пище грязными руками вирусы могут попасть в пищеварительную и дыхательную системы)
  • через жидкие среды организма (кровь, слюну и другие)

Почему с вирусами так тяжело бороться?

Сегодня людям уже удалось победить некоторые вирусы, а некоторые взять под жесткий контроль. Например, Оспа (она же черная оспа). Болезнь вызывается вирусом натуральной оспы, передается от человека к человеку воздушно-капельным путем. Больные покрываются сыпью, переходящей в язвы, как на коже, так и на слизистых внутренних органов. Смертность, в зависимости от штамма вируса, составляет от 10 до 40 (иногда даже 70%), На сегодняшний день вирус полностью истреблен человечеством.

Кроме того, взяты под контроль такие заболевания, как бешенство, корь и полиомиелит. Но помимо этих вирусов существует масса других, которые требуют разработок или открытия новых вакцин.

Коронавирус

Виновником эпидемии, распространяющейся сегодня по миру, стал коронавирус, вирусная частица в 0,1 микрона. Свое название он получил благодаря наростам на своей структуре, своеобразным шипам. Внутри вируса спрятан яд, с помощью которого он подчиняет себе зараженный организм. Этот вирус воздействует не только на человека, но и на птиц, свиней, собак и летучих мышей. В настоящий момент выделяют от 30 до 39 разновидностей коронавирусной инфекции. Но для человека патогенно всего 6. И как любой другой вирус COVID-19 мутирует.

симптомы и признаки.jpg

К наиболее распространенным симптомам COVID-19 относятся повышение температуры тела, сухой кашель и утомляемость. К более редким симптомам относятся боли в суставах и мышцах, заложенность носа, головная боль, конъюнктивит, боль в горле, диарея, потеря вкусовых ощущений или обоняния, сыпь и изменение цвета кожи на пальцах рук и ног. Как правило, эти симптомы развиваются постепенно и носят слабо выраженный характер. У некоторых инфицированных лиц болезнь сопровождается очень легкими симптомами.

Сколько же может жить этот вирус вне организма? Все зависит от типа вируса и от той поверхности, на которую вирусы попали. В качестве примера было рассмотрено 3 вируса, по которым велись исследования. Изучали время, на которое может задерживаться вирус на различных поверхностях. Данные приведены в таблице.

Таблица

Поскольку пока не изобретено вакцины от COVID-19, в целях защиты от инфекции самым важным для нас является соблюдение гигиены.

Гигиена — раздел медицины, изучающий влияние жизни и труда на здоровье человека и разрабатывающая меры (санитарные нормы и правила), направленные на предупреждение заболеваний, обеспечение оптимальных условий существования, укрепление здоровья и продление жизни.

Сегодня следует соблюдать определенные правила гигиены:

  • Соблюдение режима труда и отдыха, не допускающего развития утомления и переутомления.
  • Выполнение условий, обеспечивающих здоровый и полноценный сон (свежий воздух, отсутствие шума, удобная постель, оптимальная продолжительность).
  • Правильное здоровое питание в соответствии с потребностями организма.
  • Комфортный микроклимат в жилище (температура, влажность и подвижность воздуха, естественная и искусственная освещенность помещений).
  • Содержание в чистоте тела и тщательный уход за зубами.
  • Спокойное и корректное поведение в конфликтных ситуациях.

профилактика.jpg

Вирусология — раздел микробиологии, изучающий вирусы, их морфологию, физиологию, генетику, а также эволюцию вирусов и вопросы экологии. Медицинская и ветеринарная вирусология прежде всего рассматривают вирусы, поражающие человека и животных, изучает их роль в развитии инфекционных и онкологических заболеваний, определяет способы диагностики, терапии и профилактики вирусных заболеваний.

Вследствие развития вирусологии были достигнуты определённые успехи в борьбе с некоторыми вирусными инфекциями. Например, в XX веке на земном шаре благодаря массовой вакцинации населения была ликвидирована оспа. Существует, однако, ряд вирусных заболеваний, неизлечимых на современном этапе развития науки, самое известное из них — ВИЧ-инфекция.

  • Вирусология — раздел микробиологии, изучающий вирусы, их морфологию, физиологию, генетику, а также эволюцию вирусов и вопросы экологии. Медицинская и ветеринарная вирусология прежде всего рассматривают вирусы, поражающие человека и животных, изучает их роль в развитии инфекционных и онкологических заболеваний, определяет способы диагностики, терапии и профилактики вирусных заболеваний.

Связанные понятия

Иммуноло́гия (от лат. immunis — свободный, освобождённый, избавленный от чего-либо + греч. λόγος — знание) — медико-биологическая наука, изучающая реакции организма на чужеродные структуры (антигены): механизмы этих реакций, их проявления, течение и исход в норме и патологии, а также разрабатывающая методы исследования и лечения.

Микробиология (греч. μικρος — малый, лат. bios — жизнь) — наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами (микробами) (включающими в себя: Одноклеточные организмы, Многоклеточные организмы и Бесклеточные), их биологические признаки и взаимоотношения с другими организмами, населяющими нашу планету. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического.

Молекуля́рная биоло́гия — комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции сложных высокомолекулярных соединений, составляющих клетку: нерегулярных биополимеров (белков и нуклеиновых кислот).

Эпидемиология (др.-греч. ἐπιδημία — имеющая всенародное распространение; λόγος — учение) — общемедицинская наука, изучающая закономерности возникновения и распространения заболеваний различной этиологии с целью разработки профилактических мероприятий (преморбидная, первичная, вторичная и третичная профилактика). Предметом изучения эпидемиологии является заболеваемость — совокупность случаев болезни на определённой территории в определённое время среди определённой группы населения.

Упоминания в литературе

Вирусология за последние 10 – 15 лет превратилась из описательной науки в область знания, которая в построении, описании явлений и по строгости близка к точным наукам. Связано это в первую очередь с тем, что раскрыты структуры геномов практически всех наиболее важных вирусов человека, животных и растений, выяснены механизмы действия многих вирусных ферментов, все более проясняются молекулярные механизмы репликации ряда вирусов, а также многие аспекты патогенеза заболеваний, вызываемых вирусами.

В зависимости от объектов изучения в биологии можно выделить ряд направлений: вирусологию , микробиологию, ботанику, зоологию, антропологию и др. Эти науки исследуют особенности происхождения, строения, развития, жизнедеятельности, свойства, разнообразие и распространение на земном шаре каждого отдельного вида вирусов, бактерий, животных, растений и человека.

Благодаря научным успехам в области микробиологии, вирусологии , фармакологии у врачей появилась возможность предотвращать и снижать заболеваемость детей наиболее часто встречающимися и порой очень тяжелыми инфекциями при помощи вакцинации (прививок).

Ветеринарная стоматология тесно связана с другими науками, на базе которых она развивается. Анатомия и физиология – первоначальные слагаемые большого комплекса, без учета которого невозможно изучение патологии органов зубочелюстной системы. Патологическая анатомия и патологическая физиология дают возможность изучать особенности течения воспалительных и других процессов в ротовой полости. Нельзя познать инфекционный процесс в зубной системе и ее защитных приспособлениях без данных по микробиологии, вирусологии и микологии.

Медицинская микробиология занимается изучением патогенных для человека микроорганизмов и в зависимости от их природы делится на бактериологию, вирусологию , микологию и протозоологию. При этом каждая дисциплина проводит микроскопические и другие виды исследований, а также изучает физиологические и генетические особенности патогенных микроорганизмов; роль микроорганизмов в этиологии и патогенезе инфекционных болезней; основные клинические проявления и распространенность вызываемых ими заболеваний; специфическую диагностику, профилактику и лечение заболеваний, вызванных патогенными микроорганизмами; экологию патогенных микроорганизмов.

Это отражает двойственную тенденцию прогресса: дальнейшую дифференциацию медицинских наук, с одной стороны, и их усиливающиеся взаимообусловленность и интеграцию – с другой. В XX в. значительно увеличилось число узкоспециализированных субтерминосистем, выражающих понятия, связанные с диагностикой, лечением и профилактикой болезней, поражающих преимущественно отдельные органы и системы (пульмонология, урология, нефрология, нейрохирургия и др.). За последние десятилетия достигли внушительных размеров узкоспециальные словари кардиологии, онкологии, рентгенологии, иммунологии, медицинской вирусологии , наук гигиенического профиля.

Связанные понятия (продолжение)

Бактериоло́гия — наука о бактериях; раздел микробиологии, изучающий бактерии. Подразделяется на ряд подразделов.

Паразитология — комплексная биологическая наука, изучающая явление паразитизма, биологию и экологию паразитов, а также вызываемые ими заболевания и меры борьбы с паразитами.

Гене́тика (от греч. γενητως — порождающий, происходящий от кого-то) — наука о законах наследственности и изменчивости организмов.

Медицинская генетика — область медицины, наука, которая изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных и патологических признаков, зависимость заболеваний от генетической предрасположенности и условий окружающей среды.

Иммунохимия — раздел иммунологии; изучает химические основы иммунитета. Основные проблемы — изучение строения и свойств иммунных белков — антител, природных и синтетических антигенов, а также выявление закономерностей взаимодействия между этими главными компонентами иммунологических реакций у разных организмов.

Биология развития — раздел современной биологии, изучающий процессы индивидуального развития (онтогенеза) организма.

Гематоло́гия (от др.-греч. αἷμα, αἷματος — кровь + λόγος) — раздел медицины, изучающий кровь, органы кроветворения и заболевания крови. Гематология изучает этиологию, диагностику, лечение, прогнозирование и предотвращение заболеваний системы крови, которые влияют на производство крови и её компонентов, а именно клетки крови, гемоглобин, белки крови, и механизм коагуляции (свертывание крови). Научные исследования в этой области зачастую ведутся специалистами биомедицины. Гематологи также занимаются.

Эпизоотология (от гр. Epi - на, zoon - животное, logos - наука, понятие), или ветеринарная эпидемиология — самостоятельное звено ветеринарной медицины — наука, изучающая эпизоотии, проявление эпизоотического процесса во время которого инфекция поражает большое количество животных, изучает объективные закономерности возникновения, проявления, распространения и угасания эпизоотий (инфекционных болезней) и на этой основе разрабатывает методы профилактики и меры борьбы с ними.

Патологическая физиология — раздел медицины и биологии, изучающий закономерности возникновения, развития и исхода патологических процессов; особенности и характер динамического изменения физиологических функций при различных патологических состояниях организма.

Радиобиология, или радиационная биология — наука, изучающая действие ионизирующих и неионизирующих излучений на биологические объекты (биомолекулы, клетки, ткани, организмы, популяции). Особенностью этой науки является строгая измеряемость воздействующего фактора, что обусловило развитость математических методов исследования. Другой особенностью радиобиологии является востребованность её прикладных приложений — в медицине и в радиационной защите.

Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Протозоология — раздел зоологии, изучающий одноклеточных животных простейших (амёба, инфузории и другие).

Аллерголо́гия (от греч. ἄλλος — другой, иной, чужой, ἔργον — воздействие и Λόγος — знание, слово, наука) — раздел медицины, изучающий аллергические реакции и заболевания, причины их возникновения, механизмы развития и проявления, методы их диагностики, профилактики и лечения.

Биоорганическая химия — наука, которая изучает связь между строением органических веществ и их биологическими функциями. Объектами изучения являются биологически важные природные и синтетические соединения, такие как биополимеры, витамины, гормоны, антибиотики, феромоны, сигнальные вещества, биологически активные вещества растительного происхождения, а также синтетические регуляторы биологических процессов (лекарственные препараты, пестициды и др.). Как самостоятельная наука сформировалась во второй.

Токсиколо́гия (от греч. τοξικος — яд и λογος — наука, то есть τοξικολογία — наука о ядах) — область медицины, изучающая ядовитые (токсичные) вещества, потенциальную опасность их воздействия на организмы и экосистемы, механизмы токсического действия, а также методы диагностики, профилактики и лечения развивающихся вследствие такого воздействия заболеваний.

Нобелевская премия по физиологии или медицине (швед. Nobelpriset i fysiologi eller medicin) — высшая награда за научные достижения в области физиологии или медицины, ежегодно присуждается Шведской королевской академией наук в Стокгольме.

О́бщая биоло́гия (англ. General Biology, нем. Allgemeine Biologie) — наука (научная дисциплина, биологическая область знания, а также соответствующая учебная дисциплина), изучающая основные и общие для всех организмов закономерности жизненных явлений. Задача общей биологии — выявление и объяснение общего, одинаково верного для всего многообразия организмов, общие закономерности развития природы, сущность жизни, её формы и развитие. Так как общая биология включает в себя ряд других самостоятельных.

Молекуля́рная гене́тика — область биологии на стыке молекулярной биологии и генетики. По сути является одним из разделов молекулярной биологии.

Онколо́гия (от греч. όγκος — тяжесть, груз) — раздел медицины, изучающий доброкачественные и злокачественные опухоли, механизмы и закономерности их возникновения и развития, методы их профилактики, диагностики и лечения.

Вакци́на (от лат. vaccina — коровья) — медицинский или ветеринарный иммунобиологический препарат, предназначенный для создания иммунитета к инфекционным болезням. Вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём.

Эндокриноло́гия (от греч. ἔνδον — внутрь, κρίνω — выделяю и λόγος — слово, наука) — наука о строении и функции желёз внутренней секреции (эндокринных желёз), вырабатываемых ими продуктах (гормонах), о путях их образования и действия на организм животных и человека; а также о заболеваниях, вызванных нарушением функции этих желёз или действиями этих гормонов. Эндокринология — одна из наиболее молодых и бурно развивающихся отраслей медицины, занимающаяся лечением заболеваний, связанных с нарушениями.

Клини́ческая фармаколо́гия изучает воздействие лекарственных средств на организм больного человека. Развитие клинической фармакологии началось с 60-х годов, когда во многих странах резко повысились требования к испытанию новых фармакологических средств. Появилась необходимость разработки принципов и методов всестороннего изучения действия фармакологических препаратов в клинических условиях.

Биоинженерия или биологическая инженерия — направление науки и техники, развивающее применение инженерных принципов в биологии и медицине.

Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология.

Антибио́тикорезисте́нтность (от антибиотик и резистентность) — фено́мен устойчивости штамма возбудителей инфекции к действию одного или нескольких антибактериальных препаратов, снижение чувствительности (устойчивость, невосприимчивость) культуры микроорганизмов к действию антибактериального вещества.

Радиационная генетика изучает появление наследственных изменений после действия различных излучений; одно из направлений радиобиологии.

Эндокрино́лог — врач, получивший специализацию по вопросам диагностики, профилактики и лечения патологии эндокринной системы в интернатуре, ординатуре или на кафедре института последипломного образования врачей.

Реаниматоло́гия (интенсивная терапия) — это теоретическая дисциплина, научные выводы которой используются при реанимации в клинике, или, точнее наука, изучающая закономерности смерти и оживления организма с целью выработки наиболее эффективных методов профилактики и восстановления угасающих или только что угасших жизненных функций организма.

Внутренние болезни (терапия, внутренняя медицина) — область медицины, занимающаяся проблемами этиологии, патогенеза и клинических проявлений заболеваний внутренних органов, их диагностики, нехирургического лечения, профилактики и реабилитации. К сфере терапии относятся заболевания дыхательной системы (пульмонология), сердечно-сосудистой системы (кардиология), желудочно-кишечного тракта (гастроэнтерология), мочевыделительной системы (нефрология), соединительной ткани (ревматология) и др. Врачи, занимающиеся.

История биологии исследует развитие биологии — науки, изучающей фундаментальные (наиболее общие) свойства и законы эволюционного развития живых существ. Предметом истории биологии являются выявление и обобщённый анализ основных событий и тенденций в развитии биологического знания.

Гельминтология — наука о паразитических червях и заболеваниях, вызываемых ими у человека и животных, — гельминтозах. Являясь частью комплекса паразитологических наук, Гельминтология тесно связана одновременно со многими другими биологическими науками (прежде всего с зоологией), медициной, ветеринарией и фитопатологией. Гельминтология решает различные проблемы как теоретические, так и прикладного характера.

Биологическая безопасность — это сохранение живыми организмами своей биологической сущности, биологических качеств, системообразующих связей и характеристик, предотвращение широкомасштабной потери биологической целостности, которая может иметь место в результате:-

Трансплантоло́гия — раздел медицины, изучающий проблемы трансплантации органов (в частности, почек, печени, сердца), а также перспективы создания искусственных органов.

Вирусология выделилась в самостоятельную дисциплину в середине XX века. Она возникла как ветвь патологии – патологии человека и животных с одной стороны, и фитопатологии – с другой. Первоначально вирусология человека, животных и бактерий развивалась в рамках микробиологии. Последующие успехи вирусологии в значительной мере основаны на достижениях смежных естественных наук – биохимии и генетики. Объектом исследования вирусологии являются субклеточные структуры – вирусы. По своему строению и организации они относятся к макромолекулам, поэтому с того времени, когда оформилась новая дисциплина, молекулярная биология, объединившая различные подходы к изучению структуры, функций и организации макромолекул, определяющих биологическую специфичность, вирусология стала также составной частью молекулярной биологии. Молекулярная биология широко применяет вирусы как инструмент исследования, а вирусология для решения своих задач используют методы молекулярной биологии.

Содержание

↑История вирусологии

Вирусные болезни, такие как оспа, полиомиелит, желтая лихорадка, пестролистность тюльпанов известны с давних времен, однако о причинах, их вызывающих долгое время никто ничего не знал. В конце XIX столетия, когда удалось установить микробную природу ряда инфекционных заболеваний, патологи пришли к заключению, что многие из распространенных болезней человека, животных и растений нельзя объяснить заражением бактериями.

Природа этих возбудителей болезней, оставалась непонятной более 30 лет - до начала 30-х годов. Это объяснялось тем, что к вирусам нельзя было применить традиционные микробиологические методы исследования: вирусы, как правило, не видны в световой микроскоп и не растут на искусственных питательных средах.

В 1935 году У.Стэнли применил для выделения вируса табачной мозаики (ВТМ) химические методы выделения и очистки ферментов и впервые получил очищенный препарат вируса табачной мозаики в кристаллическом состоянии. Стало возможным изучать структуру и химический состав вирусов in vitro. Успехи электронной микроскопии в 30-х годах позволили показать существование инфекционных агентов, представляющих собой дискретные частицы и детально описать структуру вирионов. В 1936 г. английские биохимики Ф.Боуден и Н.Пири показали, что ВТМ представляет собой не чистый белок, а нуклеопротеид – устойчивое соединение белка (95%) и нуклеиновой кислоты (5%). Роль этих компонентов у вирусов была выяснена сначала на бактериофагах, а затем на ВТМ. В 1952 году А.Д.Херши и М.Чейз показали, что генетическая информация бактериофага Т-2 связана с его ДНК. В 1956 году в лабораториях Г.Шрама (ФРГ) и Х.Фрэнкеля-Конрата (США) частицы вируса табачной мозаики (ВТМ) удалось разделить на составляющие компоненты – белок и РНК, in vitro вновь реконструировать из этих компонентов вирионы и показать, что для проявления инфекционности ВТМ достаточно только РНК.

В 1962 году вирусная РНК была впервые была использована в качестве матрицы для синтеза белков в бесклеточной белок-синтезирующей системе (Д.Натанс и др.), в 1965году была осуществлена репликация фаговой РНК in vitro (И.Харуна и С.Спигелман), а в 1967 году – репликация фаговой ДНК in vitro (М.Гулиан и др.).

Большое значение для становления вирусологии имели начавшиеся в 40-х годах XX века работы М.Дельбрюка, А.Д.Херши, Луриа и др., которые использовали бактериофаги для генетических исследований. Они показали, что к бактериофагам применимы положения классической генетики и уточнили понятие мутации, а также выяснили механизм репликации бактериофагов.

Именно в процессе изучения вирусов была окончательно доказана роль нуклеиновых кислот в наследственности (А. Д. Херши и М. Чейз, 1952; А. Гирер и Г. Шрамм, 1956, Х.Френкель-Конрат, 1956), окончательно подтвержден полуконсервативный характер репликации ДНК (М. Мезельсон и Ф. Сталь, 1957), сделан важный вклад в расшифровку генетического кода (Ф. X. К. Крик и др., 1961), выявлена временная регуляция работы генов (Р. Б. Хесин-Лурье и др., 1963), установлена прерывистая структура эукариотических генов (Р. Дж. Роберте и Ф. Шарп, 1979). Наличие полиадениловой последовательности на 3’-конце мРНК (Кэйтс, 1970) и сплайсинг у эукариот (Зифф, 1980) впервые также выявили у вирусов. В 1970 X. М. Темин и Д.Балтимор открыли РНК-зависимый синтез ДНК, или обратную транскрипцию, у ретровирусов. Выяснение механизма рестрикции и модификации у бактериофагов привело к открытию ферментов рестриктаз, что сделало возможным создание первой гибридной (рекомбинантной) ДНК (П.Берг, 1972) и ознаменовало рождение молекулярной технологии - генетической инженерии.

К числу важнейших достижений вирусологии относится установление роли вирусов в возникновении опухолей у животных (Ф. Раус, 1911) и человека (X. цур Хаузен, 1980-е гг.). В 1961 Л. А. Зильбер предложил вирусогенетическую теорию возникновения рака. Были описаны особые вирусные, а затем и клеточные гены - онкогены, ответственные за превращение нормальных клеток в опухолевые а также гены, ответственные за подавление этого процесса (антионкогены, или супрессоры) (Г. Мартин, 1970; Д. Стелен; X.Вармус и Дж.М.Бишоп, 1976).

В процессе изучения вирусов был описан механизм интеграции вирусного генома в геном клетки-хозяина (А.Львов, А Херши, Ф.Жакоб, Ж.Л.Моно, 50-е годы, Дульбекко, 1966) и обнаружены эндогенные вирусы человека и животных (П. Бентвельцен, 1968; Р. Хюбнер и Дж. Тодаро, 1970).

Развитие вирусологии привело к открытию инфекционных агентов, по сути не являющихся вирусами. В 1971 году Т.О.Динер описал вироиды, представляющие собой инфекционную низкомолекулярную одноцепочечную кольцевую РНК, не кодирующую собственные белки. Крупным успехом вирусологии явилось открытие и выяснение природы прионов – инфекционных белков с нарушенной трехмерной структурой, возбудителей нейро-дегенеративных заболеваний человека и животных, принципиально отличающихся от вирусов (Д. К. Гайдушек, 1950-60-е гг.; С. Прузинер, 1980-90-е гг.).

↑Области исследования в вирусологии

Вирусологию можно разделить на общую вирусологию и прикладную вирусологию.

Предметом общей вирусологии являются основные принципы строения, размножения вирусов, механизм их взаимодействия с клеткой-хозяином, происхождение и распространение вирусов в природе. Общая вирусология преимущественно является молекулярной вирусологией, изучающей структуру вирусных частиц, структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, особенности строения и функции вирусных белков, особенности репликации вирусов, молекулярную природу устойчивости организмов к вирусным заболеваниям, эволюцию вирусов.

Прикладная вирусология исследует особенности определенных групп вирусов человека (медицинская вирусология), животных (ветеринарная вирусология) и растений (фитовирусология) и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями. Очень важным направлением прикладной вирусологии является также использование знаний о вирусах и их геномах для решения задач биотехнологии.

↑Природа вирусов

↑Происхождение и эволюция вирусов

Происхождение вирусов неясно. Существует несколько гипотез. Одна из них предполагает, что вирусы – это дегенеративная форма жизни, потерявшая в ходе эволюции многие функции, оставив лишь генетическую информацию, необходимую для паразитической формы существования. Согласно другой гипотезе, вирусы имеют клеточное происхождение и представляют собой субклеточный комплекс макромолекул, который смог стать в определенной степени автономным от клетки и покинул её. И, наконец, еще одна точка зрения состоит в том, что вирусы развивались параллельным курсом с клеточными организмами из самореплицирующихся молекул.

↑Методы вирусологии

До 1930 методы вирусологии основывались на фильтруемости инфекционного агента и заражении им различных чувствительных организмов – животных, растений, бактерий. В 1930-50-е гг. для культивирования вирусов животных и человека стали использовать лабораторных мышей, куриные эмбрионы и изолированные ткани.

Биологические методы исследования основаны на биологических свойствах вируса (способности к гемагглютинации, гемолизе, ферментативной активности) и особенностях взаимодействия вируса с клеткой-хозяином (характере цитопатического эффекта, образовании внутриклеточных включений и т.д.). Для количественного учёта вируса и динамики его размножения применяют различные методы титрования. Важнейшие из них основаны на том, что вирус, размножаясь в клетках, вызывает видимые простым глазом поражения. Бактериальные вирусы (бактериофаги) титруют по числу стерильных пятен, вирусы растений — по числу некрозов на зараженном вирусом листе, вирусы животных и человека — по числу поражений на однослойных культурах тканей.

Иммунологические методы исследования вирусов основаны на иммунологических процессах (взаимодействии антигена с антителами) и имеют исключительное значение, как для научных исследований, так и для диагностики вирусных заболеваний. Разнообразные иммунологические методы, как классические, так и современные (иммуноферментный анализ, иммуноблотинг, иммунофлюоресценция), являются важнейшим инструментом вирусологии.

С помощью биохимических методов определяют химический состав вирионов.

Для изучения вирусов используются также разнообразные физико-химические методы. Ультацентрифугирование позволяет сконцентрировать вирусные препараты и определить массу вирусных частиц, градиентное центрифугирование в растворах сахарозы или солей металлов дает возможность "рассортировать" вирусные частицы, так как даже при незначительном различии их веса они распределяются слоями на разных уровнях раствора. Применение радиоактивных изотопов позволяет проследить, из каких источников черпает вирус вещества для построения вириона. Для определения концентрации вирусных препаратов и изучения особенностей строения вирусных частиц применяют оптические методы. Электронная микроскопия позволяет увидеть вирусные частицы в препаратах и в тканях. Для изучения вирусных структур используется рентгеноструктурный анализ.

Современная вирусология использует все методы молекулярной биологии – бесклеточные системы синтеза белка и нуклеиновых кислот, секвенирование нуклеиновых кислот, молекулярную гибридизацию, генную инженерию, искусственную экспрессию и нокаут генов, и т.д.

Неотъемлемой частью современных методов является компьютерный анализ.

↑Современная вирусология

К началу XXI века описано более 6 тыс. вирусов, принадлежащих к более, чем 2000 видам, 287 родам, 73 семействам и 3 порядкам. Для многих вирусов изучены их структура, биология, химический состав и механизмы репликации. Продолжается открытие и исследование новых вирусов, которые не перестают поражать своим разнообразием. Так в 2003 году был открыт самый большой из известных вирусов – мимивирус .

Открытие большого числа вирусов потребовало создания их коллекций, и музеев. Наиболее крупные среди них - в России (государственная коллекция вирусов в Институте вирусологии им. Д.И.Ивановского в Москве), США (Вашингтон), Чехии (Прага), Японии (Токио), Великобритании (Лондон), Швейцарии (Лозанна) и ФРГ (Брауншвейг). Результаты научных исследований в области вирусологии публикуются в научных журналах, обсуждаются на международных конгрессах организуемых каждые 3 года (впервые состоялся в 1968). В 1966 на 9-м Международном конгрессе по микробиологии впервые избран Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses – ICTV).

В рамках общей, то есть молекулярной вирусологии продолжается изучение фундаментальных основ взаимодействия вирусов и клеток. Достижения молекулярной биологии, вирусологии, генетики, биохимии и биоинформатики показали, что значение вирусов не ограничивается только тем, что они вызывают инфекционные заболевания.

Было показано, что особенности репликации некоторых вирусов приводят к захвату вирусом клеточных генов и переносу их в геном другой клетки – горизонтальному переносу генетической информации, что может иметь последствия, как в эволюционном плане, так и в плане злокачественного перерождения клеток.

При секвенировании генома человека и других млекопитающих было выявлено большое число повторяющихся нуклеотидных последовательностей, представляющих собой дефектные вирусные последовательности – ретротранспозоны (эндогенные ретровирусы), которые могут содержать регуляторные последовательности, влияющие на экспрессию соседних генов. Их обнаружение и изучение привело к активному обсуждению и исследованию роли вирусов в эволюции всех организмов, в частности в эволюции человека.

Открытие вирусологами вирусов-сателлитов, сателлитных РНК и вироидов расширило понимание явления молекулярного паразитизма, изначально описанного для вирусов, и заставило предположить, что оно играло существенную роль в эволюции макромолекул.

Новым направлением вирусологии является экология вирусов. Обнаружение вирусов в природе, их идентификация и оценка их количества представляют собой очень сложную задачу. В настоящее время выработаны некоторые методические приемы, позволяющие оценить количество некоторых групп вирусов, в частности бактериофагов, в природных образцах и проследить их судьбу. Получены предварительные данные, свидетельствующие о том, что вирусы оказывают существенное влияние на многочисленные биогеохимические процессы и эффективно регулируют численность и видовое разнообразие бактерий и фитопланктона. Однако изучение вирусов в этом аспекте только началось, и нерешенных проблем в этой области науки еще очень много.

Достижения общей вирусологии дали мощный толчок развитию ее прикладных направлений. Вирусология превратилась в обширную область знаний, важную для биологии, медицины и сельского хозяйства.

Вирусологи осуществляют диагностику вирусных инфекций человека и животных, изучают их распространение, разрабатывают методы профилактики и лечения. Крупнейшим достижением явилось создание вакцин против полиомиелита, оспы, бешенства, гепатита В, кори, жёлтой лихорадки, энцефалитов, гриппа, паротита, краснухи. Создана вакцина против вируса папилломы, с которым связано развитие одного из видов рака. Благодаря вакцинации полностью ликвидирована натуральная оспа. Осуществляются международные программы полной ликвидации полиомиелита и кори. Разрабатываются методы профилактики и лечения гепатитов и иммунодефицита (СПИД) человека. Накапливаются данные о веществах с антивирусной активностью. На их основе создан ряд лекарственных препаратов для лечения СПИДа, вирусных гепатитов, гриппа, заболеваний, вызванных вирусом герпеса.

Изучение вирусов растений и особенностей их распространения по растению привело к созданию нового направления в сельском хозяйстве – получению безвирусного посадочного материала. Меристемные технологии, позволяющие вырастить растения, свободные от вирусов, в настоящее время применяются для картофеля, ряда плодовых и цветочных культур.

Исключительное значение на данном этапе имеют знания, накопленные о структуре вирусов и их геномов для развития генной инженерии. Ярким примером этого является использование бактериофага лямбда для получения библиотек клонированных последовательностей. Кроме того, на основе геномов разных вирусов создано и продолжает создаваться большое количество генно-инженерных векторов для доставки чужеродной генетической информации в клетки. Эти векторы используются для научных исследований, для накопления чужеродных белков, особенно в бактериях и растениях, и для генной терапии. В генной инженерии применяются некоторые вирусные ферменты, которые теперь производятся на коммерческой основе.

Читайте также: