Что такое порядок спектра дифракционной решетки кратко

Обновлено: 04.07.2024

В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого света. Такое излучение называется белым светом . Свет, испускаемый, например, газоразрядными лампами и многими другими источниками, содержит в своем составе отдельные монохроматические составляющие с некоторыми выделенными значениями длин волн. Совокупность монохроматических компонент в излучении называется спектром . Белый свет имеет непрерывный спектр , излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр . Приборы, с помощью которых исследуются спектры излучения источников, называются спектральными приборами .

Для разложения излучения в спектр в простейшем спектральном приборе используется призма (рис. 3.10.1). Действие призмы основано на явлении дисперсии , то есть зависимости показателя преломления вещества от длины волны света .

Щель , на которую падает исследуемое излучение, находится в фокальной плоскости линзы . Эта часть прибора называется коллиматором . Выходящий из линзы параллельный пучок света падает на призму . Вследствие дисперсии свет разных длин волн выходит из призмы под разными углами. В фокальной плоскости линзы располагается экран или фотопластинка, на которой фокусируется излучение. В результате в разных местах экрана возникает изображение входной щели в свете разных длин волн. У всех прозрачных твердых веществ (стекло, кварц), из которых изготовляются призмы, показатель преломления в диапазоне видимого света убывает с увеличением длины волны , поэтому призма наиболее сильно отклоняет от первоначального направления синие и фиолетовые лучи и наименее – красные. Монотонно убывающая зависимость называется нормальной дисперсией .

Первый опыт по разложению белого света в спектр был осуществлен И. Ньютоном (1672 г.).

В спектральных приборах высокого класса вместо призм применяются дифракционные решетки . Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки (рис. 3.10.2). У хороших решеток параллельные друг другу штрихи имеют длину порядка , а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска или даже осколок граммофонной пластинки.

Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку с помощью коллиматора направляется параллельный пучок исследуемого света. Наблюдение ведется в фокальной плоскости линзы, установленной за решеткой (рис. 3.10.3).

В каждой точке на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под определенным углом к направлению падающей волны. Колебание в точке является результатом интерференции вторичных волн, приходящих в эту точку от разных щелей. Для того, чтобы в точке наблюдался интерференционный максимум, разность хода между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн:

Здесь – период решетки, – целое число, которое называется порядком дифракционного максимума . В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

В фокальной плоскости линзы расстояние от максимума нулевого порядка () до максимума -го порядка при малых углах дифракции равно
где – фокусное расстояние.

При смещении из главных максимумов интенсивность колебаний быстро спадает. Чтобы волн погасили друг друга, разность фаз должна измениться на , а не на π, как при интерференции двух волн. На рис. 3.10.4 изображена векторная диаграмма колебаний, возбуждаемых волнами от всех щелей при условии, что сдвиг фаз волн от соседних щелей равен , а соответствующая разность хода равна . Вектора, изображающие колебаний, образуют в этом случае замкнутый многоугольник. Таким образом, при переходе из главного максимума в соседний минимум разность хода должна измениться на . Из этого условия можно оценить угловую полуширину главных максимумов:

Здесь для простоты полагается, что дифракционные углы достаточно малы. Следовательно,
где – полный размер решетки. Это соотношение находится в полном согласии с теорией дифракции в параллельных лучах, согласно которой дифракционная расходимость параллельного пучка лучей равна отношению длины волны к поперечному размеру препятствия.

Можно сделать важный вывод: при дифракции света на решетке главные максимумы чрезвычайно узки. Рис. 3.10.5 дает представление о том, как меняется острота главных максимумов при увеличении числа щелей решетки.

Распределение интенсивности при дифракции монохроматического света на решетках с различным числом щелей. – интенсивность колебаний при дифракции света на одной щели

Как следует из формулы дифракционной решетки, положение главных максимумов (кроме нулевого) зависит от длины волны . Поэтому решетка способна разлагать излучение в спектр, то есть она является спектральным прибором . Если на решетку падает немонохроматическое излучение, то в каждом порядке дифракции (т. е. при каждом значении ) возникает спектр исследуемого излучения, причем фиолетовая часть спектра располагается ближе к максимуму нулевого порядка. На рис. 3.10.6 изображены спектры различных порядков для белого света. Максимум нулевого порядка остается неокрашенным.

С помощью дифракционной решетки можно производить очень точные измерения длины волны. Если период решетки известен, то определение длины сводится к измерению угла , соответствующего направлению на выбранную линию в спектре -го порядка. На практике обычно используются спектры 1-го или 2-го порядков.

Если в спектре исследуемого излучения имеются две спектральные линии с длинами волн и , то решетка в каждом спектральном порядке (кроме ) может отделить одну волну от другой.

Одной из важнейших характеристик дифракционной решетки является ее разрешающая способность , характеризующая возможность разделения с помощью данной решетки двух близких спектральных линий с длинами волн и . Спектральной разрешающей способностью называется отношение длины волны к минимальному возможному значению Δλ, то есть

Разрешающая способность спектральных приборов, и, в частности, дифракционной решетки, также как и предельное разрешение оптических инструментов, создающих изображение объектов (телескоп, микроскоп) определяется волновой природой света. Принято считать, что две близкие линии в спектре -го порядка различимы, если главный максимум для длины волны отстоит от главного максимума для длины волны не менее, чем на полуширину главного максимума, т. е. на . По существу, это критерий Релея, примененный к спектральному прибору. Из формулы решетки следует:
где – угловое расстояние между двумя главными максимумами в спектре -го порядка для двух близких спектральных линий с разницей длин волн . Для простоты здесь предполагается, что углы дифракции малы (). Приравнивая и , получаем оценку разрешающей силы решетки:

Таким образом, предельное разрешение дифракционной решетки зависит только от порядка спектра и от числа периодов решетки .

Пусть решетка имеет период , ее длина . Тогда, (это хорошая решетка). В спектре 2-го порядка разрешающая способность решетки оказывается равной . Это означает, что минимально разрешимый интервал длин волн в зеленой области спектра () равен . В этих же условиях предельное разрешение решетки с и оказалось бы равным .

Широкое распространение в научном эксперименте и технике получили дифракционные решетки, которые представляют собой множество параллельных, расположенных на равных расстояниях одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционные решетки изготавливаются с помощью делительной машины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и фактически играют роль щелей.

Рассмотрим сначала дифракцию света от решетки на примере двух щелей. (При увеличении числа щелей дифракционные максимумы становятся лишь более узкими, более яркими и отчетливыми.)

Пусть а — ширина щели, a b ширина непрозрачного промежутка (рис. 5.6).


Рис. 5.6. Дифракция от двух щелей

Период дифракционной решетки — это расстояние между серединами соседних щелей:


Разность хода двух крайних лучей равна

Если разность хода равна нечетному числу полуволн

то свет, посылаемый двумя щелями, вследствие интерференции волн будет взаимно гаситься. Условие минимумов имеет вид


Эти минимумы называются дополнительными.

Если разность хода равна четному числу полуволн

то волны, посылаемые каждой щелью, будет взаимно усиливать друг друга. Условие интерференционных максимумов с учетом (5.36) имеет вид


Это формула для главных максимумов дифракционной решетки.

Кроме того, в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, то есть главные минимумы решетки будут наблюдаться в направлениях, определяемых условием (5.21) для одной щели:


Если дифракционная решетка состоит из N щелей (современные решетки, применяемые в приборах для спектрального анализа, имеют до 200 000 штрихов, и период d = 0.8 мкм, то есть порядка 12 000 штрихов на 1 см), то условием главных минимумов является, как и в случае двух щелей, соотношение (5.41), условием главных максимумов — соотношение (5.40), а условие дополнительных минимумов имеет вид


Здесь k' может принимать все целочисленные значения, кроме 0, N, 2N, . . Следовательно, в случае N щелей между двумя главными максимумами располагается (N–1) дополнительных минимумов, разделенных вторичными максимумами, создающими относительно слабый фон.

Положение главных максимумов зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разлагаются в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный — наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как спектральная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, наоборот, сильнее отклоняет красные лучи.

Важной характеристикой всякого спектрального прибора является разрешающая способность.

Разрешающая способность спектрального прибора — это безразмерная величина

В состав видимого спектра света включены монохроматические волны с различными длинами. В излучении нагретых объектов (к примеру, нити лампы накаливания) длины волн беспрерывно заполняют весь диапазон видимого света. Данное излучение называют белым светом.

Свет, излучаемый, например, газоразрядными лампами или одним из множества других подобных им приборами, включает в свой состав отдельные монохроматические составляющие с некоторыми выделенными значениями длин волн.

Комплекс монохроматических компонент в излучении называется спектром.

Белый свет имеет непрерывный спектр, излучение источников, в которых он испускается атомами вещества, и дискретный спектр.

Спектральные приборы – это устройства, с помощью которых изучаются спектры излучения источников.

Для разложения излучения в спектр в простейшем спектральном приборе используется призма избраженная на картинке 3 . 10 . 1 .

Действие призмы базируется на таком явлении, как дисперсия, то есть на привязанности показателя преломления n вещества к длине волны света λ .

Рисунок 3 . 10 . 1 . Разложение излучения в спектр с помощью призмы.

Щель S , на которую падает рассматриваемое излучение, располагается в фокальной плоскости линзы Л 1 . Этот элемент прибора называется коллиматором.

Выходя из линзы, параллельный пучок света падает на призму P . По причине дисперсии, свет различных длин волн излучается из призмы под разнящимися углами. В фокальной плоскости линзы Л 2 устанавливают экран или фотопластинку, для фокусировки места излучения. Таким образом, в разных частях экрана появляется проекция входной щели S в свете различных длин волн.

У любого прозрачного твердого вещества (стекло, кварц), из которого изготавливаются призмы, показатель преломления n в диапазоне видимого света уменьшается с возрастанием длины волны λ , из-за чего призма наиболее сильно отклоняет, от их изначального направления, синие и фиолетовые лучи, а красные – наименее. Убывающая без ускорения зависимость n ( λ ) носит название нормальной дисперсии.

Первый опыт по разложению белого света в спектр осуществил известный физик И. Ньютон в 1672 году.

Дифракционные решетки

В спектральных приборах, относящихся к высокому классу точности, место призм занимают дифракционные решетки. Они представляют из себя периодические конструкции, которые гравируют, посредством использования особой делительной машины, на поверхности стеклянной или металлической пластинки (рис. 3 . 10 . 2 ).

У качественных решеток штрихи, параллельные друг другу, имеют длину около 10 с м , где на каждый миллиметр решетки приходится до 2000 штрихов. Причем, общая длина решетки может достигать 10 – 15 с м . Создание подобных решеток требует применения технологий самого высокого класса. Практически используются и более грубые версии решетки с 50 – 100 штрихами на миллиметр, которые нанесены на поверхность прозрачной пленки. В роли дифракционной решетки может применяться небольшая часть компакт-диска или даже осколок граммофонной пластинки.

Дифракционные решетки

Рисунок 3 . 10 . 2 . Дифракционная решетка.

Самый простой тип дифракционной решетки производится из прозрачных участков, то есть щелей, которые разделены непрозрачными промежутками. С помощью коллиматора, на решетку направляется параллельный пучок исследуемого света. Наблюдение проводится в фокальной плоскости линзы, установленной за плоскостью решетки (рис. 3 . 10 . 3 ).

Дифракционные решетки

Рисунок 3 . 10 . 3 . Дифракция света на решетке.

В каждой точке P на экране в фокальной плоскости линзы сходятся лучи, который до линзы являлись параллельными между собой и расходились под некоторым углом θ к направлению падающей волны.

Интерференция волн

Колебание в точке P представляют собой следствие интерференции вторичных волн, которые сходятся в эту точку от разных щелей.

Для того, чтобы в точке P прослеживался интерференционный максимум, разность хода Δ между волнами, который испускают соседние щели, должна быть эквивалентной целому числу длин волн:

∆ = d sin θ m = m λ ( m = 0 , ± 1 , ± 2 , . . . ) .

Где d – это период дифракционной решетки, а m – целое число, носящее название порядка дифракционного максимума. В точках экрана, для которых это условие выполнено, расположены главные максимумы дифракционной картины.

В фокальной плоскости линзы, расстояние y m между максимумами нулевого порядка ( m = 0 ) и m -го порядка при сравнительно малых углах дифракции равняется:

где F – фокусное расстояние.

В условиях смещения из главных максимумов, стремительно теряется интенсивность колебаний. Для того, чтобы N волн погасили друг друга, значение разности фаз должно измениться на 2 π N , а не на π , как в случае интерференции двух волн.

На рис. 3 . 10 . 4 можно увидеть векторную диаграмму колебаний, возбуждаемых волнами от всех N щелей, если сдвиг фаз волн от соседних щелей равен 2 π N , а соответствующая разность хода равна отношению λ N .

Векторы, иллюстрирующие N колебаний, в данной ситуации формируют замкнутый многоугольник. Следовательно, при переходе из главного максимума в соседний минимум, разность хода Δ = d sin θ смениться на λ N . Исходя из данного условия, справедливым будет оценить угловую полуширину δ θ главных максимумов:

δ ∆ = δ ( d sin θ ) = d cos θ δ θ ≈ d · δ θ = λ N .

Здесь, дифракционные углы считаются достаточно малыми. Таким образом,

Где N d – это полный размер решетки. Данное выражение находится в полной симметрии с теорией дифракции в параллельных лучах. Согласно этой теории, дифракционная расходимость параллельного пучка лучей эквивалентна отношению длины волны λ к поперечному размеру препятствия.

Интерференция волн

Рисунок 3 . 10 . 4 . Сложение колебаний в максимуме и минимуме интерференционной картины: a – интерференция двух волн, b – интерференция N волн ( N = 8 ) .

Из описанного выше, можно сделать однозначный вывод: при дифракции света на решетке главные максимумы крайне узки. Рис. 3 . 10 . 5 иллюстрирует изменение остроты главных максимумов при возрастании количества щелей решетки.

Интерференция волн

Рисунок 3 . 10 . 5 . Распределение интенсивности при дифракции монохроматического света на решетках с различным числом щелей. I 0 – интенсивность колебаний при дифракции света на одной щели.

Исходя из формулы дифракционной решетки, мы можем заявить, что положение главных максимумов, кроме нулевого, зависит от длины волны λ . По этой причине решетка может разбивать излучение в спектр. Следовательно, она является спектральным прибором. В случае, если на решетку попадает не монохроматическое излучение, то в каждом порядке дифракции, а именно при каждом значении m , проявляется спектр исследуемого излучения.

Также стоит обратить внимание на то, что фиолетовая часть спектра расположена ближе к максимуму нулевого порядка. На рис. 3 . 10 . 6 для белого света проиллюстрированы спектры различных порядков. Максимум нулевого порядка остается неокрашенным.

Интерференция волн

Рисунок 3 . 10 . 6 . Разложение белого света в спектр с помощью дифракционной решетки.

Используя дифракционную решетку, мы получаем возможность производить крайне точные измерения длины волны. При условии, что период d решетки известен, нахождение искомой величины (длины) приводится к измерению угла θ m , соответствующего направлению на выбранной линии в спектре m-го порядка. На практике, чаще всего применяются спектры 1 -го или 2 -го порядков.

Решетка в любом спектральном порядке (кроме m = 0 ) имеет возможность отсоединить одну волну от другой в случае, если в спектре изучаемого излучения есть две спектральные линии, обладающие длинами волн λ 1 и λ 2 .

Разрешающая способность дифракционной решетки - это одна из основных ее характеристик. Ей характеризуется возможность разделения при использовании решетки двух близких спектральных линий с длинами волн λ и λ + Δ λ .

Спектральная разрешающая способность R является отношением длины волны λ к минимальному реальному значению Δ λ , то есть: R = λ ∆ λ

Волновая природа света

Волновая природа света определяет разрешающую способность спектральных приборов, в частности, дифракционной решетки, так же от нее зависит предельное разрешение различных оптических инструментов, которые создают изображение объектов, таких как телескоп, микроскоп и др.

Считается, что если главный максимум для длины волны λ + Δ λ отступает от главного максимума для длины волны λ не менее, чем на полуширину главного максимума, т. е. на δ θ = λ N d , то две ближайшие линии в спектре m-го порядка различимы. Вывод выше является критерием Релея, примененным к спектральному прибору.

Из формулы решетки следует:

d d · cos θ · ∆ θ = m ∆ λ или ∆ θ = m δ cos θ ∆ λ ≈ m d ∆ λ

Где Δ θ является угловым расстоянием между двумя главными максимумами в спектре m -го порядка для двух близких спектральных линий с разницей длин волн Δ λ . Для упрощения, углы дифракции предполагаются незначительно малыми ( cos θ ≈ 1 ) . Уравнивая Δ θ и δ θ , получаем оценку разрешающей силы решетки:

λ N d = m d ∆ λ или R = λ ∆ λ = m N .

Из описанного выше следует, что предельное разрешение дифракционной решетки может зависеть только от порядка спектра m и от количества периодов решетки N .

Пускай период решетки d = 10 – 3 м м , а ее длина L = 10 с м .

Решение

В таком случае, N = 10 5 .

Исходя из данных показателей, можно с уверенностью сказать, что это хорошая решетка. В спектре 2 -го порядка разрешающая способность решетки равна R = 2 · 10 5 . Это указывает на то, что минимально разрешенный диапазон длин волн в зеленой части спектра (т.е. при λ = 550 н м ) равен Δ λ = λ R ≈ 2 , 8 · 10 – 3 н м , а предельное разрешение решетки с d = 10 – 2 м и L = 2 с м было бы равным Δ λ = 1 , 4 · 10 – 1 н м .

Дифракция света

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Луч света в пещере

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Дифракция света

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

интерференция света

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Дифракционная решетка

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Дифракционная решетка

Вот так она выглядит.

Дифракционная решетка

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это металлическая либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Отражающая дифракционная решетка

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

Где θm это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Таким образом, можно рассчитать положение всех максимумов решетки.

Разрешающая способность

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θm можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.

Читайте также: