Что такое нуклеиновые кислоты почему они получили такое название кратко

Обновлено: 30.06.2024

Нуклеиновые кислоты получили свое название в связи с тем, что впервые были обна­ружены в клеточном ядре (лат. nucleus — яд­ро). Позже оказалось, что они присутствуют также в цитоплазме, пластидах и митохондри­ях. По химическому составу нуклеиновые кис­лоты — гетерополимеры, состоящие из нукле­отидов, соединенных между собой особым типом химической связи (фосфодиэфирная связь). Каждый нуклеотид, в свою очередь, со­стоит из трех частей: моносахарида-пентозы и связанных с ним азотистого основания и фос­форной кислоты.

Вопрос 2. Какие типы нуклеиновых кислот вы знаете?

Принято выделять два типа нуклеино­вых кислот — рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Оба этих типа содержатся во всех жи­вых клетках. Исключение составляют вирусы, обладающие либо только ДНК, либо только РНК.

Вопрос 3. Чем различается строение молекул ДНК и РНК?

Нуклеотиды, образующие молекулы ДНК и РНК, сходны по строению. Однако в нуклеоти­дах РНК моносахаридом является рибоза, а в нуклеотидах ДНК — дезоксирибоза. Кроме то­го, различается набор азотистых оснований. Три из них (аденин, гуанин, цитозин) пред­ставлены в обоих типах нуклеиновых кислот; четвертым в ДНК является тимин, в РНК — урацил.

Нуклеиновые кислоты отличаются по об­щей структуре: ДНК представляет собой комп­лементарную двуцепочечную молекулу (аде­нин всегда стоит напротив тимина, гуанин — напротив цитозина), РНК — одноцепочечную. Содержание ДНК в клетках относительно по­стоянно; содержание РНК может варьировать в зависимости от интенсивности синтеза бел­ка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.

Вопрос 4. Назовите функции ДНК.

Выделяют три основные функции ДНК.

Хранение наследственной информа­ции. Порядок нуклеотидов определяет первич­ную структуру белков. Первичная структура, в свою очередь, обуславливает свойства бел­ков, а следовательно, особенности строения и функционирования клеток. Таким образом, в ДНК закодирована информация обо всех свойствах клеток, тканей и органов. Участок молекулы ДНК, кодирующий первичную структуру одной белковой цепи, называют ге­ном.

Передача наследственной информа­ции следующему поколению клеток. Эта функция осуществляется благодаря способ­ности ДНК к удвоению (редупликации). После деления в каждую дочернюю клетку попада­ет одна из двух идентичных молекул ДНК, являющихся точной копией материнской ДНК.

Передача наследственной информа­ции из ядра в цитоплазму. Почти вся ДНК находится в ядре; синтез же белка происходит в цитоплазме клетки. Соответственно, необхо­дим посредник, передающий описание первич­ной структуры белка от ДНК к рибосоме. В ро­ли такого посредника выступает информаци­онная РНК, которая синтезируется на одной из цепей ДНК, копируя по принципу компле­ментарности последовательность нуклеотидов определенного гена.

Вопрос 5. Какие виды РНК существуют в клет­ке, где они синтезируются? Перечислите их функ­ции.

В зависимости от строения и выполняемой функции выделяют три вида РНК. Все они синтезируются в ядре, используя в качестве матрицы ДНК. Готовые молекулы РНК пере­ходят в цитоплазму.

Информационная, или матричная, РНК (иРНК, мРНК) переносит информацию о первичной структуре белка от ДНК к рибо­соме. Количество типов иРНК примерно соот­ветствует числу генов (у человека — около 30-40 тыс.).

Транспортная РНК (тРНК) в основном находится в цитоплазме клетки. Функция тРНК состоит в том, чтобы переносить амино­кислоты к рибосоме, где они включаются в синтезируемую белковую цепь.

Все виды РНК синтезируются на ДНК, ко­торая служит матрицей для их создания.

Нуклеи́новые кисло́ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

Содержание

История исследования

Способы выделения



Описаны многочисленные методики выделения нуклеиновых кислот из природных источников. Основными требованиями, предъявляемыми к методу выделения, являются эффективное отделения нуклеиновых кислот от белков, а также минимальная степень фрагментации полученных препаратов. Типичная методика приводится в работе [7] . Клеточные стенки исследуемого биологического материала разрушаются одним из стандартных методов, а затем обрабатываются анионным детергентом. При этом белки выпадают в осадок, а нуклеиновые кислоты остаются в водном растворе. ДНК может быть осаждена в виде геля осторожным добавлением этанола к её солевому раствору.

Нуклеиновые кислоты легко деградируют под действием особого класса ферментов — нуклеаз. В связи с этим при их выделении важно обработать лабораторное оборудование и материалы соответствующими ингибиторами. Так, например, при выделении РНК широко используется такой ингибитор рибонуклеаз как DEPC.

Химические свойства

Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.

Строение


Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

ДНК и РНК

    Сахар — дезоксирибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые — тимин (T) и цитозин (C). ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно.
    Сахар — рибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые урацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями.

Примечания

Литература

  • Бартон Д., Оллис У.Д. Общая органическая химия — Москва: Химия, 1986. — Т. 10. — С. 32—215. — 704 с.
  • Франк-Каменецкий М.Д. Самая главная молекула — Москва: Наука, 1983. — 160 с.

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Нуклеиновые кислоты" в других словарях:

НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Современная энциклопедия

НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды) высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Большой Энциклопедический словарь

Нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты – дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Иллюстрированный энциклопедический словарь

НУКЛЕИНОВЫЕ КИСЛОТЫ — НУКЛЕИНОВЫЕ КИСЛОТЫ, химические макромолекулы, присутствующие во всех живых организмах и в вирусах. Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) хранит ГЕНЕТИЧЕСКИЙ КОД, который является системой записи наследственной… … Научно-технический энциклопедический словарь

нуклеиновые кислоты — – высокомолекулярные соединения, мономерами которых служат нуклеотиды … Краткий словарь биохимических терминов

нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Энциклопедический словарь

НУКЛЕИНОВЫЕ КИСЛОТЫ — биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого… … Энциклопедия Кольера

Нуклеиновые кислоты — они же полинуклеотиды, они же биополемеры, построенные из большого числа остатков нуклеотидов; постоянная и необходимая составная часть всех живых систем, которым принадлежит ведущая роль в биосинтезе белка и передаче наследственных признаков… … Начала современного естествознания

Вопрос 1. Что такое нуклеиновые кислоты?
Нуклеиновые кислоты получили свое название в связи с тем, что впервые были обнаружены в клеточном ядре (лат. nyс1еus — ядро). Позже оказалось, что они присутствуют также в цитоплазме, пластидах и митохондриях. По химическому составу нуклеиновые кислоты — гетерополимеры, состоящие из нуклеотидов, соединенных между собой особым типом химической связи (фосфодиэфирная связь). Каждый нуклеотид, в свою очередь, состоит из трех частей: моносахарида-пентозы и связанных с ним азотистого основания и фосфорной кислоты.

Вопрос 2. Какие типы нуклеиновых кислот вы знаете?
Выделяют два типа нуклеиновых кислот — рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Оба этих типа содержатся во всех живых клетках. Исключение составляют вирусы, обладающие либо только ДНК, либо только РНК.

Вопрос 3. Чем различается строение молекул ДНК и РНК?
Существует два типа нуклеиновых кислот: ДНК и РНК. ДНК (дезоксирибонуклеиновая кислота) — биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу — дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяющиеся путем образования ковалентных связей мсжлу дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цени и одну молекулу при помощи водородных связей, возникающихих между азотистыми основаниями, входящими и состав нуклеотидов.
Рибонуклеиновая кислота (РНК), так же как ДНК, представляет собой полимер, в состав которого входят (аденин, гуанин, цитозин); нуклеотид — урацил — присутствует в молекуле РНК 'место тимина. Нуклеотиды РНК содержат вместо дезоксирибозы другую пентозу — рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.
Нуклеиновые кислоты отличаются по общей структуре: ДНК представляет собой комплементарную двуцепочечную молекулу (аденин всегда стоит напротив тимина, гуанин — напротив цитозина), РНК — одноцепочечную. Содержание ДНК в клетках относительно постоянно; содержание РНК может варьировать в зависимости От интенсивности синтеза белка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.

Вопрос 4. Назовите функции ДНК
Выделяют три основные функции ДНК.
Хранение наследственной информации. Порядок нуклеотидов определяет первичную структуру белков. Первичная структура, В свою очередь, обуславливает свойства белков, а следовательно, особенности строения и функционирования клеток. Таким образом, ДНК закодирована информация обо всех свойствах клеток, тканей и органов. Участок молекулы ДНК, кодирующий первичную структуру одной белковой цепи, называют геном.
Передача наследственной информации следующему поколению клеток. Эта функция осуществляется благодаря способности ДНК к удвоению (редупликации). После деления в каждую дочернюю клетку попадает одна из двух идентичных молекул ДНК, являющихся точной копией материнской ДНК.
Передача наследственной информации из ядра в цитоплазму. Почти вся ДНК находится в ядре; синтез же белка происходит в цитоплазме клетки. Соответственно, необходим посредник, передающий описание первичной структуры белка от ДНК к рибосоме. В роли такого посредника выступает информационная РНК, которая синтезируется на одной из цепей ДНК, копируя по принципу комплементарности последовательность нуклеотидов определенного гена.

Вопрос 5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.
Рибонуклеиновые кислоты бывают нескольких видов. Есть рибосомальная, транспортная и информационная РНК. Нуклеотид РНК состоит из одного из азотистых оснований (аденина, гуанина, цитозина и урацила), углевода - рибозы и остатка фосфорной кислоты. Молекулы РНК - одноцепочковые.
Рибосомальная РНК (р-РНК) в соединении с белком входит в состав рибосом. p-РНК составляет 80% от всей РНК в клетке. На рибосомах идет синтез белка.
Информационная РНК (и-РНК) составляет от 1 до 10% от всей РНК в клетке. По строению и-РНК комплементарна участку молекулы ДНК, несущему информацию о синтезе определенного белка. Длина и-РНК зависит от длины участка ДНК, с которого считывали информацию. и-РНК переносит информацию о синтезе белка из ядра в цитоплазму.
Транспортная РНК (т-РНК) составляет около 10% всей РНК Она имеет короткую цепь нуклеотидов и находится в цитоплазме. Т-РНК присоединяет определенные аминокислоты и подвозит их к месту синтеза белка к рибосомам. Т—РНК имеет форму трилистника. На одном конце находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце имеется триплет нуклеотидов, к которому присоединяется аминокислота (рис. 1).

Нуклеиновые кислоты представляют собой биополимерные соединения, которые играют жизненно важную роль при поддержании жизни в клетках живого организма. Впервые они были выявлены в ядре клеток в конце XIX столетия. Основные функции нуклеиновых кислот — это сохранение, копирование и реализация наследственной (генетической) информации.

Нуклеиновые кислоты

Виды нуклеотидов

В природе существует два вида нуклеиновых кислот — рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Основанием каждой из них является азотистое основание, остаток фосфорной кислоты и пятиуглеродный сахар.

Состав ДНК

В состав ДНК входит четыре разновидности нуклеотидов, отличие которых заключается в азотистом соединении:

  • А — аденин;
  • Т — тимин;
  • Ц — цитозин;
  • Г — гуанин.

Что касается РНК, то они тоже имеют несколько видов в зависимости от азотистого основания:

  • У — урацилом;
  • Ц — цитозин;
  • Г — гуанин;
  • А — аденин.

Поговорим и о физических свойствах нуклеотидов. Они легко растворяются в воде, но при этом практически нерастворимы в растворителях, имеющих органическое происхождение. Очень восприимчивы к температурным перепадам, а также критическим показателям значения уровня рН.

Молекулы ДНК обладают весомой молекулярной массой, благодаря чему могут фрагментироваться в результате механического воздействия.

Нуклеиновые кислоты и их строение

Нуклеиновые кислоты и их строение

Прежде всего необходимо узнать, что нуклеотидами являются мономеры нуклеиновых кислот. Они соединены между собой линейно, формируя длинные молекулярные соединения нуклеиновых кислот. Самыми длинными полимерами являются цепочки молекул ДНК. Как правило, длина молекул РНК значительно меньше, но при этом может отличаться (зависит от типа).

При формировании полинуклеотидного соединения остатки фосфорной кислоты взаимодействуют с трехатомным углеродом пентозы. Аналогичная связь формируется между фосфорной кислотой и пятиатомным углеродом сахара непосредственно в нуклеиновой кислоте.

Исходя из этого, индивидуальная характеристика нуклеиновой кислоты — это последовательность пентозы с мостиками фосфорных кислот. Азотистые основания отделяются по сторонам.

Стоит добавить, что молекулы ДНК не только длиннее в сравнении с РНК, но и состоят из нескольких цепей, которые соединены между собой химически водородными связями. Такие структурные связи формируются по принципу комплементарности: гуанин комплементарен цитозину, а аденин — тимину.

Нуклеотиды содержат в себе такие вещества:

Образоваться такие связи могут и в структурах РНК, но водородные связи формируются между нукленовыми кислотами одной цепи.

Функции нуклеотидов

Местонахождение в клетках аминокислот, белка и нуклеотидов поддерживает их жизнедеятельность, а также сохранение, передачу и верную реализацию генетической наследственности. Стоит в отдельности рассмотреть функции ДНК, РНК и их разновидностей в жизни живых организмов.

Значение ДНК

В клетках ДНК вся информация в основном сосредоточена в ядре клетки. Бактериальная среда, как правило, в формуле занимает одну кольцевую молекулу, находится в неправильной формы образовании в цитоплазме, именуемым нуклеотидом. Гены, входящие в состав наследственной информации генома, являются единицей передачи генетической наследственности. Признак частицы — открытая рама считывания.

Клетка ДНК

  1. Самая важная биологическая функция вида — генетическая, клетка является носителем генетической информации (благодаря этой особенности, каждый вид на планете обладает своими индивидуальными особенностями).
  2. Наследственную информацию ДНК способно передавать в ряду целых поколений не без дополнительного участия и РНК.
  3. Осуществляет процессы регуляции биосинтеза белка.

Хранение и передача информации (генетической предрасположенности) осуществляется за счет биосинтеза белка посредством и-РНК, т-РНК.

Свойства РНК

В природе различают три разновидности РНК, каждая из которых предназначена для выполнения особой роли в осуществлении синтеза белка.

Транспортная РНК

Рибосомная РНК

  1. Транспортная предназначена для транспортировки активированных аминокислот по организму к рибосомам. Это необходимо для осуществления синтеза полипептидных молекул. Исследования показали, что одна транспортная молекула способна связаться лишь с одной из 20 аминокислот. Они служат в качестве транспортировщиков специфических аминокислот и углеводов. Длина транспортной цепи значительно короче матричной, в состав входит приблизительно 80 нуклеотидов, визуально имеет вид клеверного листа.
  2. Матричная занимается копированием наследственного кода из ядра в цитоплазму. За счет этого процесса осуществляется синтез разнообразных белков. Схема строения представляет собой одноцепочную молекулу, она является неотъемлемой составляющей цитоплазмы. В составе молекулы содержится до нескольких тысяч нуклеотидов, они занимаются транспортировкой наследственной информации через мембрану ядра к очагу синтеза на рибосоме. Копирование информации осуществляется посредством транскрипции.
  3. Рибосомная задействует около 73 белков для формирования рибосом. Они собой представляют клеточные органеллы, на которых осуществляется сбор полипептидных молекул. Основные задачи рибосомной молекулы — это формирование центра рибосомы (активного); неотъемлемый структурный элемент рибосом, обеспечивающий их правильное функционирование; первоначальное взаимодействие рибосомы с кодоном-инициатором для выявления рамки считывания; обеспечение взаимодействия рибосомных молекул с транспортными.

История исследований

На протяжении десятилетий ведущие ученые мира занимались исследованием нуклеотидов. Рассмотрим более подробно историю изучения нуклеотидов.

Правила Чаргаффа.

Нуклеотиды — это неотъемлемая составляющая каждой клетки живого организма, обеспечивающая ее жизнедеятельность, а также хранение, транспортировку и реализацию наследственной (генетической) наследственности. Ученые посвятили годы изучению видов и строения молекул, что открывает перед человеком большие возможности.

Читайте также: