Что такое классификация в химии 8 класс кратко

Обновлено: 02.07.2024

разделение твердых тел на фракции по крупности (размеру) частиц (зерен, кусков). К. — распространенный процесс: самостоятельный для получения готового продукта с заданным содержанием частиц определенного размера (сортировка); вспомогательный для предварительной подготовки материалов к послед. переработке (см., напр., измельчение). К. широко используют также для определения гранулометрич. состава материалов (см. ситовой анализ). Применяются след. виды К.: мех. просеивание материалов на ситах для разделения частиц с размером от сотен до долей мм (см. грохочение); разделение в спец. аппаратах (отстойниках, классификаторах, сепараторах и др.) смеси частиц с преимуществ, размером менее 2–3 мм (реже до 13 мм) по скорости осаждения их в жидкости (обычно в воде, см. классификация гидравлическая) или в воздухе (см. сепарация воздушная).

Изображение 1. Что такое классификация?Классификация химических веществ – разделение их по определенным группам (классам) на основании каких-либо общих свойств и признаков.

Классификация химических веществ – разделение их по определенным группам (классам) на основании каких-либо общих свойств и признаков.

Так, например, классификация неорганических веществ (химических соединений) – разделение их на классы, такие как

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

Популярные решебники 8 класс Все решебники

Изображение учебника

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

silver-576793_640 (1).jpg

Неметаллы не обладают характерным блеском, ковкостью. Многие неметаллы при обычных условиях газообразны.

1280px-Sulfur-sample.jpg

Органические вещества — соединения углерода. В их состав могут также входить атомы водорода, кислорода, азота, фосфора, серы.

Почти все органические вещества горючи и легко разлагаются при нагревании. Практически все они имеют молекулярное строение.

Органических веществ миллионы. Они содержатся во всех живых организмах, входят в состав продуктов питания, топлива, лекарств, красителей, пластмасс.

sand-pit-780855_640.jpg

Неорганические вещества — соединения всех остальных элементов. К ним относятся также некоторые вещества, содержащие углерод: сода, мел, угарный и углекислый газы и др. Простые вещества тоже являются неорганическими.

Неорганических веществ около \(700\) тысяч. Они образуют неживую природу: минералы, горные породы и т. д. Почти все неорганические вещества имеют немолекулярное строение. Большинство из них при обычных условиях представляют собой твёрдые вещества.

Неорганическая химия - раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:

Классификация неорганических веществ

Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.

Оксиды

Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:

  • CuO - соответствует основанию Cu(OH)2
  • Li2O - соответствует основанию LiOH
  • FeO - соответствует основанию Fe(OH)2 (сохраняем ту же СО = +2)
  • Fe2O3 - соответствует основанию Fe(OH)3 (сохраняем ту же СО = +3)
  • P2O5 - соответствует кислоты H3PO4

Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.

Основные, амфотерные и кислотные оксиды

Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.

Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.

Li2O + H2O → LiOH (основный оксид + вода → основание)

Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.

Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.

С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.

ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)

ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)

Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)

Амфотерные оксиды

Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.

  • SO2 - H2SO3
  • SO3 - H2SO4
  • P2O5 - H3PO4
  • N2O5 - HNO3
  • NO2 - HNO2, HNO3

Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.

SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)

SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)

P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)

При реакции с водой кислотный оксид превращается в соответствующую ему кислоту. Исключение SiO2 - не реагирует с водой, так как продукт реакции - H2SiO3 является нерастворимой кислотой.

Основные и кислотные оксиды

  • CO
  • N2O
  • NO
  • SiO
  • S2O

Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:

FeO + CO → Fe + CO2 (восстановление железа из его оксида)

Оксид железа II

Основания

Основания - химические соединения, обычно характеризуются диссоциацией в водном растворе с образованием гидроксид-анионов. Растворимые основания называются щелочами: NaOH, LiOH, Ca(OH)2, Ba(OH)2.

Гидроксиды щелочных металлов (Ia группа) называются едкими: едкий натр - NaOH, едкое кали - KOH.

Основания растворимые и нерастворимые

Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.

Однокислотные, двухкислотные и трехкислотные основания

Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.

NaOH + HCl → NaCl + H2O (основание + кислота = соль + вода - реакция нейтрализации)

Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)

Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.

Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)

KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)

В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.

Лакмус в щелочной среде

Амфотерные оксиды соответствуют амфотерным гидроксидам. Их свойства такие же двойственные: они реагирую как с кислотами - с образованием соли и воды, так и с основаниями - с образованием комплексных солей.

Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)

Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)

При нагревании до высоких температур комплексные соли не образуются.

Al(OH)3 + KOH → (t) KAlO2 + H2O (амф. гидроксид + основание = (прокаливание) соль + вода - при высоких температурах вода испаряется, и комплексная соль образоваться не может)

Гидроксид алюминия

Кислоты

Кислота - химическое соединение обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. По классификации кислоты подразделяются на одно-, двух- и трехосновные.

Основность кислоты определяется числом атомов водорода, которое способна отдать молекула кислоты, реагируя с основанием. Определять основность кислоты по числу атомов водорода в ней - часто верный способ, но не всегда: например, борная кислота H3BO3 является слабой одноосновной кислотой, фосфористая кислота H3PO3 - двухосновной кислотой.

Одно-, двух- и трехосновные кислоты

Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).

H3PO4 + LiOH → Li3PO4 + H2O (кислота + основание = соль + вода - реакция нейтрализации)

Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)

Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)

Записать эти кислоты в растворе в виде "H2CO3 или H2SO3" - будет считаться ошибкой. Пишите угольную и сернистую кислоты в разложившемся виде - виде газа и воды.

Выделение углекислого газа из раствора

Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.

Однако невозможно (и противоречит законам логики) получить из более слабой кислоты сильную, например из уксусной - серную кислоту. Природу не обманешь :)

K2S + HCl → H2S + KCl (из сильной - соляной кислоты - получили более слабую - сероводородную)

K2SO4 + CH3COOH ↛ (реакция не идет, так как из слабой кислоты нельзя получить сильную: из уксусной - серную)

Подчеркну важную деталь: гидроксиды это не только привычные нам NaOH, Ca(OH)2 и т.д., некоторые кислоты также считаются кислотными гидроксидами, например серная кислота - H2SO4. С полным правом ее можно записать как кислотный гидроксид: SO2(OH)2

В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.

Названия кислот и их кислотных остатков

Соль - ионное соединение, образующееся вместе с водой при нейтрализации кислоты основанием (не единственный способ). Водород кислоты замещается металлом или ионом аммония (NH4). Наиболее известной солью является поваренная соль - NaCl.

  • Средние - продукт полного замещения атомов водорода в кислоте на металл: KNO3, NaCl, BaSO4, Li3PO4
  • Кислые - продукт неполного замещения атомов водорода: LiHSO4, NaH2PO4 и Na2HPO4 (гидросульфат лития, дигидрофосфат и гидрофосфат натрия)
  • Основные - продукт неполного замещения гидроксогрупп на кислотный остаток: CrOHCl (хлорид гидроксохрома II)
  • Двойные - содержат два разных металла и один кислотный остаток (NaCr(SO4)2

Читайте также: