Что такое глутаминовая кислота кратко

Обновлено: 07.07.2024

Приведенная научная информация является обобщающей и не может быть использована для принятия решения о возможности применения конкретного лекарственного препарата.

Владелец регистрационного удостоверения:

Лекарственная форма

Форма выпуска, упаковка и состав препарата Глютаминовая кислота

Таблетки, покрытые кишечнорастворимой оболочкой 1 таб.
глутаминовая кислота250 мг

10 шт. - упаковки ячейковые контурные.
10 шт. - упаковки ячейковые контурные (2) - пачки картонные.
10 шт. - упаковки ячейковые контурные (4) - пачки картонные.
10 шт. - упаковки ячейковые контурные (100) - пачки картонные.

Фармакологическое действие

Средство, улучшающее мозговой метаболизм. Заменимая аминокислота, играет роль медиатора с высокой метаболической активностью в головном мозге, стимулирует окислительно-восстановительные процессы в головном мозге, обмен белков. Нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем. Стимулирует передачу возбуждения в синапсах ЦНС, способствует нейтрализации и выведению из организма аммиака, повышает устойчивость организма к гипоксии.

Является одним из компонентов миофибрилл, участвует в синтезе других аминокислот, ацетилхолина, АТФ, мочевины, способствует переносу и поддержанию необходимой концентрации ионов калия в мозге, служит связующим звеном между обменом углеводов и нуклеиновых кислот, нормализует содержание показателей гликолиза в крови и тканях. Оказывает гепатопротекторное действие, угнетает секреторную функцию желудка.

Фармакокинетика

Абсорбция высокая. Хорошо проникает через гистогематические барьеры (в т.ч. через ГЭБ), клеточные оболочки и мембраны субклеточных образований. Накапливается в мышечной и нервной тканях, печени и почках. Выводится почками - 4-7% в неизмененном виде.

Фармакологическая группа вещества Глутаминовая кислота

Нозологическая классификация

Код CAS

Характеристика

Белый кристаллический порошок кислого вкуса. Мало растворим в холодной воде, растворим в горячей воде (рН водного раствора 3,4–3,6), практически нерастворим в спирте.

Фармакологическое действие

Фармакология

Заменимая аминокислота, поступает в организм с пищей, а также синтезируется в организме при переаминировании в процессе катаболизма белков. Участвует в белковом и углеводном обмене, стимулирует окислительные процессы, препятствует снижению окислительно-восстановительного потенциала, повышает устойчивость организма к гипоксии. Нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем.

Является нейромедиаторной аминокислотой, стимулирует передачу возбуждения в синапсах ЦНС . Участвует в синтезе других аминокислот, ацетилхолина, АТФ , способствует переносу ионов калия, улучшает деятельность скелетной мускулатуры (является одним из компонентов миофибрилл). Оказывает дезинтоксикационное действие, способствует обезвреживанию и выведению из организма аммиака. Нормализует процессы гликолиза в тканях, оказывает гепатопротекторное действие, угнетает секреторную функцию желудка.

При приеме внутрь хорошо всасывается, проникает через ГЭБ и клеточные мембраны. Утилизируется в процессе метаболизма, 4–7% выводится почками в неизмененном виде.

Показана эффективность сочетанного применения с пахикарпином или глицином при прогрессирующей миопатии.

Применение вещества Глутаминовая кислота

Эпилепсия (преимущественно малые припадки с эквивалентами), шизофрения, психозы (соматогенные, интоксикационные, инволюционные), реактивные состояния, протекающие с явлениями истощения, депрессия, последствия менингита и энцефалита, токсическая нейропатия на фоне применения гидразидов изоникотиновой кислоты (в сочетании с тиамином и пиридоксином), печеночная кома. В педиатрии — задержка психического развития, церебральный паралич, последствия внутричерепной родовой травмы, болезнь Дауна, полиомиелит (острый и восстановительный периоды).

Противопоказания

Гиперчувствительность, лихорадка, печеночная и/или почечная недостаточность, нефротический синдром, язвенная болезнь желудка и двенадцатиперстной кишки, заболевания кроветворных органов, анемия, лейкопения, повышенная возбудимость, бурно протекающие психотические реакции, ожирение.

Ограничения к применению

Заболевания почек и печени.

Побочные действия вещества Глутаминовая кислота

Повышенная возбудимость, бессонница, боль в животе, тошнота, рвота, диарея, аллергические реакции, озноб, кратковременная гипертермия; при длительном применении — анемия, лейкопения, раздражение слизистой полости рта, трещины на губах.

Способ применения и дозы

Внутрь, за 15–30 мин до еды. Взрослым и детям 10 лет и старше — по 1 г 2–3 раза в сутки. Детям: до 1 года — по 0,1 г; 1–3 лет — по 0,15 г; 3–4 лет — по 0,25 г; 5–6 лет — по 0,4 г; 7–9 лет — по 0,5–1 г, 2–3 раза в сутки; при олигофрении — 0,1–0,2 г/кг. Курс лечения от 1–2 до 6–12 мес.

Меры предосторожности

В период лечения необходимо регулярное проведение общеклинических анализов крови и мочи. При появлении побочных эффектов следует прекратить прием и обратиться к врачу.

Особые указания

После приема внутрь в виде порошка или суспензии рекомендуется полоскание полости рта слабым раствором натрия гидрокарбоната.

Глутаминовая кислота: показания и противопоказания

Глутаминовая кислота представляет собой аминокислоту, которая присутствует в строении белков. Она является активным и незаменимым участником обменных процессов головного мозга.

Состав препарата

Глутаминовую кислоту можно купить в форме таблеток. Каждая содержит 250 мг глутаминовой кислоты. В качестве дополнительных компонентов используются:

Таблетки фасуют в контурные ячейки, которые могут быть как алюминиевыми, так и выполненными из ПВХ. Одна упаковка содержит 10 штук. Также есть возможность купить сразу 60 таблеток. Их продают в полимерных банках, каждая их которых также упаковывается в картонную коробку.

Роль глутаминовой кислоты в организме

Глутаминовая кислота отвечает за активацию процессов метаболизма, протекающих в мозге. Она выступает медиатором нервных импульсов, повышая их активность. Достаточное количество аминокислоты обеспечивает стимуляцию восстановительных процессов в мозге, одновременно способствуя белковому обмену.

Благодаря протекающим обменным процессам, изменяются функции нервной системы и восстанавливается работа эндокринной системы. Одновременно с этим глутаминовая кислота способствует обеспечению нейтрализации аммиака и его выведению из организма. Отсутствие дефицита глутаминовой кислоты повышает устойчивость к гипоксии.

Человек получает глутаминовую кислоту извне с пищей. Кроме этого, она синтезируется и самим организмом в результате процессов катаболизма белков. Вещество легко проникает через гематоэнцефалический барьер, который препятствует прохождению большинства лекарственных препаратов из артериального русла к тканям мозга. Клеточная мембрана также не является непреодолимой преградой для глутаминовой кислоты. Она подвергается процессам метаболизма, и до 7% поступившего объема выводится из организма почками. При прогрессирующей миопатии было выявлено эффективное сочетание глицином или пахикарпином.

Показания к применению глутаминовой кислоты

Глутаминовая кислота в первую очередь применяется для устранения проблем цетнральной нервной системы. Этот препарат назначают как правило неврологи при различных отклонениях и заболеваниях. В числе которых:

Эпилепсия, в том числе малые припадки. Глутаминовая кислота применяется как у больных с врожденными симптомами эпилепсии, так и у пациентов, приобретших заболевание в результате некроза тканей мозга, вызванного ишемическим инсультом. Такая эпилепсия может проявляться только в виде судорожных спазмов мускулатуры верхней части туловища.

Шизофрения, сопровождающаяся галлюцинациями, бессонницей, неспособностью сконцентрироваться на чем-то, отсутствием интереса к жизни.

Психозы различного характера: как интоксикационные, так и соматогенные.

Поражение мозга в результате перенесенного менингита или энцефалита.

Острый полиомиелит и восстановительный период после него.

В педиатрии глутаминовую кислоту используют как средство, помогающее ребенку догнать в развитии своих сверстников. В первую очередь это касается задержки речевого развития. Кроме того, средство нередко используют в качестве помощника в вопросах адаптации, когда ребенок попадает в новую среду, в частности — начинает посещать детский сад.

После родов, прошедших с осложнениями, также назначают глутаминовую кислоту, с целью минимизировать исход внутричерепной родовой травмы.

Глутаминовая кислота: инструкция

Принимают глутаминовую кислоту строго по показаниям и после консультации с лечащим врачом. Каждую дозу необходимо употребить до еды за полчаса:

для детей старше 10 лет и взрослых разовая доза составляет 1 г. Суточная норма не превышает 2-3 г.

для детей грудного возраста (до года) — 0,1г.

детям от 1 года до 3 лет — по 0,15 г препарата.

от 3 до 4 лет дети принимают по 0,25 г.

в возрасте 5-6 лет по 0,4 г. средства.

с 7 до 9 лет по половине грамма или по 1 г за раз.

При лечении олигофрении показан следующий расчет разовой дозы — 0,1 или 0,2 г на 1 кг веса пациента. Длительность курса лечения зависит от тяжести состояния пациента и его диагноза. Минимальная продолжительность — 1 мес, максимальная — 1 год.

Противопоказания к применению

Глутаминовую кислоту не используют при лечении пациентов с:

гиперчувствительностью к глутаминовой кислоте;

язвой желудка в период обострения;

проблемами системы кроветворения;

повышенной нервной возбудимостью.

Если назначение препарата является вынужденной мерой, лечение должно проходить под постоянным контролем состояния больного. В случае возникновения побочных реакций лечение прекращается.

Возможные побочные реакции

В качестве нежелательных реакций у пациентов наблюдается:

частый жидкий стул;

повышенная нервная возбудимость;

трещины вокруг рта и на губах;

кратковременное повышение температуры тела.

Длительное лечение может стать причиной снижения уровня гемоглобина. В связи с этим необходимо регулярно проверять состояние организма через лабораторный анализ крови.

Особые указания

Если лечение проходит лекарственной формой в виде порошка, необходимо ополаскивать полость рта после каждого приема слабым раствором гидрокарбоната натрия, чтобы снизить кислотность среды и защитить зубы от разрушения.

Глутаминовая кислота может использоваться в качестве лечения различных нейротоксических реакций, возникших на фоне приема других лекарственных препаратов.

Прием препарат детьми дошкольного и школьного возраста должен сопровождаться точным расчетом разовой дозы, чтобы исключить возможную передозировку.

Все представленные на сайте материалы предназначены исключительно для образовательных целей и не предназначены для медицинских консультаций, диагностики или лечения. Администрация сайта, редакторы и авторы статей не несут ответственности за любые последствия и убытки, которые могут возникнуть при использовании материалов сайта.

Возрастные ограничения 18+

Полноценное питание и отсутствие серьезных заболеваний помогает организму получать аминокислоты из пищи и синтезировать их самостоятельно. Тем не менее, перебои в получении клетками отдельных аминокислот могут нарушить биохимическое и энергетическое равновесие.

Зачем принимать глутаминовую кислоту?

Четверть всего объема аминокислот в организме человека составляет глутаминовая кислота. Она нужна регулярно в большом количестве, поэтому организм умеет синтезировать ее самостоятельно, чтобы не зависеть от возможности получить ее с пищей. Зачем же тогда нужно принимать ее дополнительно?

Физиолог Вячеслав Дубынин о передаче сенсорики, NMDA-рецепторах и свойствах глутаминовой кислоты.

dubynin.jpg

В основе работы мозга лежит взаимодействие нервных клеток, а они разговаривают друг с другом с помощью веществ, которые называются медиаторами. Медиаторов довольно много, например ацетилхолин, норадреналин. Один из важнейших медиаторов, а может быть, и самый главный, называется глутаминовая кислота, или глутамат. Если посмотреть на строение нашего мозга и на то, какие вещества используют разные нервные клетки, то глутамат выделяют где-то 40% нейронов, то есть это очень большая доля нервных клеток.

С помощью выделения глутамата в нашем мозге, головном и спинном, передаются основные информационные потоки: все, что связано с сенсорикой (зрение и слух), память, движение, пока оно не дошло до мышц, – все это передается с помощью выделения глутаминовой кислоты. Поэтому, конечно, данный медиатор заслуживает особого внимания и очень активно изучается.

Сделать глутамат очень просто. Исходным материалом служит α-кетоглутаровая кислота. Это очень распространенная молекула, она получается по ходу окисления глюкозы, во всех клетках, во всех митохондриях ее много. И дальше на эту α-кетоглутаровую кислоту достаточно пересадить любую аминогруппу, взятую от любой аминокислоты, и вот уже получается глутамат, глутаминовая кислота. Глутаминовая кислота может еще синтезироваться из глутамина. Это тоже пищевая аминокислота, глутамат и глутамин очень легко превращаются друг в друга. Например, когда глутамат выполнил свою функцию в синапсе и передал сигнал, дальше он разрушается с образованием глутамина.

Глутамат – это возбуждающий медиатор, то есть он всегда в нашей нервной системе, в синапсах, вызывает нервное возбуждение и дальнейшую передачу сигнала. Этим глутамат отличается, например, от ацетилхолина или норадреналина, потому что ацетилхолин и норадреналин в одних синапсах могут вызывать возбуждение, в других – торможение, у них более сложный алгоритм работы. А глутамат в этом смысле более прост и понятен, хотя такой уж совсем простоты вы не найдете, поскольку к глутамату существует порядка 10 типов рецепторов, то есть чувствительных белков, на которые действует эта молекула, и разные рецепторы с разной скоростью и с разными параметрами проводят глутаматный сигнал.

Эволюция растений нашла целый ряд токсинов, действующих на глутаматные рецепторы. Для чего это растениям, в общем, достаточно понятно. Растения, как правило, против того, чтобы их ели животные, соответственно, эволюция придумывает некие защитные токсические конструкции, которые останавливают травоядных. Наиболее сильные растительные токсины связаны с водорослями, и именно токсины водорослей способны очень мощно влиять на глутаматные рецепторы мозга и вызывать тотальное возбуждение и судороги. Получается, что суперактивация глутаматных синапсов – это очень мощное возбуждение мозга, судорожное состояние. Наверное, самая известная молекула в этом ряду называется домоевая кислота, она синтезируется одноклеточными водорослями – есть такие водоросли, они живут в западной части Тихого океана, на побережье, например, Канады, Калифорнии, Мексики. Отравление токсином этих водорослей весьма и весьма опасно. А это отравление иногда случается, потому что одноклеточными водорослями питается зоопланктон, всякие мелкие рачки или, например, двустворчатые моллюски, когда фильтруют воду, втягивают в себя эти водорослевые клетки, а дальше в какой-нибудь мидии или устрице оказывается слишком высокая концентрация домоевой кислоты, и можно серьезно отравиться.

Мы едим глутаминовую кислоту и похожий на нее глутамат в большом количестве просто с пищевыми белками. Наши белки, которые входят в состав различных пищевых продуктов, содержат 20 аминокислот. Глутамат и глутаминовая кислота находятся в составе этой двадцатки. Более того, они наиболее распространенные аминокислоты, если тотально посмотреть на строение белков. В итоге за день с обычной пищей мы съедаем от 5 до 10 граммов глутамата и глутамина. В свое время с очень большим трудом поверили, что глутамат выполняет функции медиатора в мозге, потому что получается, что вещество, которое мы буквально в лошадиных дозах потребляем, в мозге выполняет такие тонкие функции. Была такая логическая нестыковка. Но потом поняли, что, собственно, пищевой глутамат в мозг практически не проходит. За это нужно благодарить структуру, которая называется гематоэнцефалический барьер, то есть специальные клетки окружают все капилляры, все мелкие сосуды, которые пронизывают мозг, и довольно жестко контролируют движение химических веществ из крови в нервную систему. Если бы не это, то какая-нибудь съеденная котлета или булочка вызывала бы у нас судороги, а это, естественно, никому не нужно. Поэтому пищевой глутамат почти не проходит в мозг и, действительно, синтезируется для того, чтобы выполнять медиаторные функции прямо в синапсах. Тем не менее если много глутамата одномоментно съесть, то небольшое количество все-таки проникает в мозг. Тогда может возникнуть небольшое возбуждение, эффект которого сравним с чашкой крепкого кофе. Такое действие высоких доз пищевого глутамата известно, и оно возникает довольно часто, если человек использует глутамат в больших количествах как пищевую добавку.

Дело в том, что наша вкусовая система очень чувствительна к глутамату. Опять же это связано с тем, что глутамата много в белках. Получается, что эволюция вкусовой системы, настраиваясь на химический анализ пищи, именно глутамат выделила как признак белковой еды, то есть мы должны есть белок, потому что белок – это главный строительный материал нашего тела. Точно так же глюкозу наша вкусовая система научилась очень хорошо детектировать, потому что глюкоза и подобные ей моносахариды – это главный источник энергии, а белок – главный строительный материал. Поэтому вкусовая система настроилась на идентификацию глутамата именно как сигнала о белковой пище, и наряду с кислым, сладким, соленым, горьким вкусами у нас есть на языке чувствительные клетки, которые реагируют именно на глутамат. И глутамат – это всем известная еще и так называемая вкусовая добавка. Называть его усилителем вкуса не совсем правильно, потому что у глутамата свой собственный вкус, который по значимости так же велик, как горькое, кислое, сладкое и соленое.

К глутамату, действительно, много рецепторов (около 10 типов рецепторов), которые с разной скоростью проводят глутаматные сигналы. И эти рецепторы изучаются прежде всего с точки зрения анализа механизмов памяти. Когда в нашем мозге и в коре больших полушарий возникает память, это реально означает, что между нервными клетками, передающими какой-то информационный поток, начинают активнее работать синапсы. Основной механизм активации работы синапсов – это увеличение эффективности глутаматных рецепторов. Анализируя разные глутаматные рецепторы, мы видим, что разные рецепторы по-разному меняют свою эффективность. Наверное, наиболее изученные – так называемые NMDA-рецепторы. Это аббревиатура, она расшифровывается как N-метил-D-аспартат. Этот рецептор реагирует на глутамат и NMDA. Для NMDA-рецептора характерно то, что он способен блокироваться ионом магния, и если к рецептору присоединен ион магния, то этот рецептор не функционирует. То есть вы получаете синапс, в котором есть рецепторы, но эти рецепторы выключены. Если по нейросети прошел какой-то сильный, значимый сигнал, то ионы магния (их еще называют магниевыми пробками) отрываются от NMDA-рецептора, и синапс начинает буквально мгновенно работать в разы эффективнее. На уровне передачи информации это как раз и означает запись некого следа памяти. В нашем мозге есть структура, которая называется гиппокамп, там как раз очень много таких синапсов с NMDA-рецепторами, и гиппокамп является, пожалуй, наиболее исследуемой с точки зрения механизмов памяти структурой.

Но NMDA-рецепторы, появление и уход магниевой пробки – это механизм кратковременной памяти, потому что пробка может уйти, а потом вернуться – тогда мы что-то забудем. Если формируется долговременная память, там все гораздо сложнее, и там работают другие типы глутаматных рецепторов, которые способны с мембраны нервной клетки передавать сигнал прямо на ядерную ДНК. И получив этот сигнал, ядерная ДНК запускает синтез дополнительных рецепторов в глутаминовой кислоте, и эти рецепторы встраиваются в синаптические мембраны, и синапс начинает работать эффективнее. Но это происходит уже не мгновенно, как в случае выбивания магниевой пробки, а требует нескольких часов, требует повторов. Но зато уж если это случилось, то всерьез и надолго, и это основа нашей долговременной памяти.

Конечно, фармакологи используют глутаматные рецепторы, для того чтобы влиять на различные функции мозга, в основном для понижения возбуждения нервной системы. Очень известен препарат, который называется кетамин. Он работает как вещество для наркоза. Кетамин, кроме того, известен как молекула с наркотическим действием, потому что при выходе из наркоза довольно часто возникают галлюцинации, поэтому кетамин относят еще и к препаратам галлюциногенного, психоделического действия, с ним очень непросто. Но в фармакологии такое часто бывает: вещество, являющееся необходимейшим лекарственным препаратом, обладает какими-то побочными эффектами, которые в итоге приводят к тому, что нужно распространение и использование этого вещества очень жестко контролировать.

Об авторе:
Вячеслав Дубынин – доктор биологических наук, профессор кафедры физиологии человека и животных биологического факультета МГУ, специалист в области физиологии мозга.

Читайте также: