Что переносит кровь кратко

Обновлено: 04.07.2024

4.1. Транспорт кислорода

В сложных механизмах транспорта газов кровью и газообмена в тканях важная роль отводится эритроцитам, ответственным за доставку О2 к различным органам и удаление образующегося в процессе метаболизма СО2.

Эритроцит – безъядерная клетка, лишенная митохондрий, основным источником энергии для эритроцита служит глюкоза, метаболизируемая в гексозомонофосфатном шунте или цикле Эмбдена-Мейергофа. Транспорт О2 обеспечивается в значительной мере гемоглобином, состоящим из белка глобина и гема. Последний представляет собой комплексное соединение железа и порфирина. Глобин представляет собой тетрамер полипептидной цепи. Hb A (HbA) – основной гемоглобин взрослых содержит 2 – альфа и 2 – бета – цепи, Hb A2 – содержит две альфа и две дельта цепи.

Гем состоит из иона железа, встроенного в порфириновое кольцо. Ион железа гема обратимо связывает одну молекулу О2. С одной молекулой Hb максимально связываются 4 молекулы О2 с образованием оксигемоглобина.

Гем может подвергаться не только оксигенации, но и истинному окислению, когда железо становится из двухвалентного трехвалентным. Окисленный гем носит название гематина, а молекула гемоглобина становится метгемоглобином. В крови человека метгемоглобин находится в незначительных количествах, его уровень резко возрастает при отравлениях. Метгемоглобин не способен отдавать кислород тканям.

В норме метгемоглобин составляет менее 3% общего Hb крови. Основная форма транспорта О2 – в виде оксигемоглобина. Кислород транспортируется артериальной кровью не только в связи с гемоглобином, но и в растворенном виде. Принимая во внимание тот факт, что 1 г Hb может связать 1,34 мл О2, кислородная емкость крови в среднем у взрослого человека составляет около 200 мл/л крови. Одним из показателей кислородного транспорта является насыщение артериальной крови О2(Sa O2), равного отношению О2, связанного с Hb, к кислородной емкости крови:

SaO2=O2, связанного с Hb/O2 емкость крови* 100%.

В соответствии с кривой диссоциации оксигемоглобина насыщение артериальной крови кислородом в среднем составляет 97%, в венозной крови – 75%.

PaO2 в артериальной крови около 100 мм. рт. ст., а в венозной – около 40 мм. рт. ст.

Количество растворенного кислорода в крови пропорционально парциальному давлению О2 и коэффициэнту его растворимости.

Последний для О2 составляет 0,0031/100 мл крови/ 1 мм. рт. ст.. Таким образом, 100 мл крови при PaO2, равном 100 мм. рт. ст., содержит менее 0,31 мл O2.

Диссоциация оксигемоглобина в тканях обусловлена главным образом химическими свойствами гемоглобина, а также рядом других факторов – температурой тела, рН среды, р СО2.

При понижении температуры тела наклон кривой диссоциации оксигемоглобина возрастает, а при ее повышении – снижается, и соответственно снижается сродство Hb к О2.

При снижении рН, т.е. при закислении среды, сродство гемоглобина к О2 уменьшается. Увеличение напряжения в крови СО2 также сопровождается снижением сродства Hb к О2 и уплощением кривой диссоциации оксигемоглобина.

Известно, что степень диссоциации оксигемоглобина определяется содержанием в эритроцитах некоторых фосфорорганических соединений, главным из которых является 2,3 – ДФГ (2,3 дифосфоглицерат), а также содержанием в эритроцитах катионов. В случаях развития алкалозов, поглощение О2 в легких увеличивается, но в то же время затрудняется отдача кислорода тканями. При ацидозах наблюдается обратная картина.

4.2.Утилизация кислорода тканями

Касаясь патогенеза метаболических сдвигов, свойственных гипоксическим состояниям, следует отметить, что в организме человека более 90% всего потребляемого кислорода восстанавливается с участием цитохромоксидазы митохондрий, и лишь около 10% кислорода метаболизируется в тканях с участием оксигеназ: диоксигеназы и монооксигеназы.

lekc_6.tif

Рис.6. Схема тканевого дыхания. Конечные продукты каждой стадии даны в рамке (Ленинджер А., 1999)

Наиболее многочисленны и сложны монооксигеназные реакции, протекающие в эндоплазматическом ретикулуме клеток при участии цитохрома Р-450 и обеспечивающие гидроксилирование субстрата (стероидных гормонов, лекарственных препаратов и различных др. соединений) и, как правило, его инактивацию.

Диоксигеназы катализируют реакции, в которых в молекулу органического субстрата включаются оба атома молекулы кислорода (например, реакция окисления катехола молекулярным кислородом с раскрытием кольца).

В реакциях, связанных с переносом электронов, т.е. в реакциях окисления-восстановления, где, как указывалось выше, используется более 90% потребляемого кислорода, атомы водорода, отщепленные дегидрогеназами от субстратов в цикле лимонной кислоты, передают свои электроны в цепь переноса электронов и превращаются также в Н +. Как известно, помимо 4 пар атомов водорода, поставляемых каждым оборотом цикла лимонной кислоты, образуются и другие атомы водорода, отщепленные дегидрогеназами от пирувата, жирных кислот и аминокислот в процессе их расщепления до Ацетил-СоА и других продуктов.

Таким образом, все атомы водорода, отщепляемые дегидрогеназами от субстратов, передают свои электроны в дыхательную цепь к конечному акцептору электронов – кислороду.

Касаясь последовательности транспорта электронов в окислительно-восстановительных реакциях, протекающих на внутренней мембране митохондрий, прежде всего, следует отметить, что от всех НАД – зависимых реакций дегидрирования восстановленные эквиваленты переходят к митохондриальной НАДН – дегидрогеназе, затем через ряд железосерных ферментов передаются на убихинон М цитохрому b. Далее электроны переходят последовательно на цитохромы С1 и С, затем на цитохромы аа 3 (цитохромоксидазу – медьсодержащий фермент). В свою очередь цитохромоксидаза передает электроны на кислород. Для того, чтобы полностью восстановить кислород с образованием 2-х молекул воды требуется 4 электрона и четыре Н+ .

Скорость утилизации О2 в различных тканях различна. В среднем взрослый человек потребляет 250 мл О2 в 1 мин. Максимальное извлечение О2 из притекающей артериальной крови свойственно миокарду.

Кислород используется в клетках, в основном в метаболизме белков, жиров, углеводов, ксенобиотиков, в окислительно-восстановительных реакциях в различных субклеточных фракциях: в митохондриях, в эндоплазматическом ретикулуме, в реакциях липопероксидации, а также в межклеточном матриксе и в биологических жидкостях.

Коэффициент утилизации О2 в тканях равен отношению потребления О2 к интенсивности его доставки, широко варьирует в различных органах и тканях.

В условиях нормы минимальную потребность в О2 проявляют почки и селезенка, а максимальную потребность – кора головного мозга, миокард и скелетные мышцы, где коэффициент утилизации О2 колеблется от 0,4 до 0,6, а в миокарде до 0,7. При крайне интенсивной физической работе коэффициент утилизации О2 мышцами и миокардом может возрастать до 0,9.

Обмен дыхательных газов в тканях происходит в процессе свободной и облегченной диффузии. При этом О2 переносится по градиенту напряжения газа из эритроцитов и плазмы крови в окружающие ткани.

Одновременно происходит диффузия СО2 из тканей в кровь. На выход О2 из крови в ткани влияет диссоциация оксигемоглобина в эритроцитах, что обеспечивает так называемую облегченную диффузию О2. Интенсивность диффузионного потока О2 и СО2 определяется градиентом их напряжения между кровью и тканями, а также площадью газообмена, плотностью капилляров, распределением кровотока в микроциркуляторном русле. Интенсивность окислительных процессов в тканях определяется величиной критического напряжения О2 в митохондриях, которое в условиях нормы должно превосходить 0,1-1 мм рт. ст.

Соответствие доставки О2 к органам и тканям, возросшим потребностям в оксигенации обеспечивается на клеточном, органном уровнях за счет образования метаболитов изнашивания, а также при участии нервных, гормональных и гуморальных влияний.

Основная масса углекислого газа (СО2) образуется в организме как конечный продукт различных метаболических реакций и транспортируется к легким с кровью. Вдыхаемый воздух содержит лишь незначительное количество СО2.

Транспорт СО2 кровью осуществляется в 3-х состояниях: в виде аниона бикарбоната, в растворенной форме и в виде карбаминовых соединений.

СО2 хорошо растворяется в плазме крови и в артериальной крови, около 5% от общей двуокиси углерода содержится в крови в растворенной форме.

Анион бикарбоната составляет около 90% от общего содержания СО2 в артериальной крови: СО2+Н2О - Н++НСО-3.

Эта реакция медленно протекает в плазме крови, но чрезвычайно интенсивно происходит в эритроцитах при участии фермента карбоангидразы. Мембрана эритроцита относительно непроницаема для Н+, как и вообще для катионов, но в тоже время, проницаема для ионов НСО-3, выход которых из эритроцитов в плазму обеспечивается притоком Cl- из плазмы в эритроциты. Часть Н+ забуферивается гемоглобином с образованием восстановленного гемоглобина.

Третьей формой транспорта СО2 кровью являются карбаминовые соединения, образованные взаимодействием СО2 с концевыми группами белков крови преимущественно с гемоглобином:

Hb NH2 + CO2 - Hb NH COOH > Hb NH COO + Н+

Карбаминовые соединения составляют около 5% от общего количества СО2, транспортируемого кровью.

В оксигенированной артериальной крови напряжение СО2 составляет 40 мм. рт. ст., а в венозной крови Рv СО2 равно 46 мм. рт. ст.

4.4.Связывание гемоглобина с окисью углерода

Угарный газ (СО) – окись углерода обладает значительно большим сродством к гемоглобину, чем О2, с последующим образованием карбоксигемоглобина. СО входит в состав бытового газа, а также выделяется при работе двигателей внутреннего сгорания. При концентрации СО во вдыхаемом воздухе всего в количестве 7*10- 4 около 50% гемоглобина превращается в карбоксигемоглобин. В норме в крови содержится около 1% HbCO, у курильщиков – 3% . В крови водителей такси концентрация карбоксигемоглобина достигает 20%. Карбоксигемоглобин диссоциирует с отдачей О2 в 200 раз медленней оксигемоглобина и в то же время препятствует его диссоциации в тканях.

Кровообращение выполняет одну из важнейших функций переноса кислорода от легких к тканям, а углекислого газа — от тканей к легким. Потребление кислорода клетками тканей может изменяться в значительных пределах, например при переходе от состояния покоя к физической нагрузке и наоборот. В связи с этим кровь должна обладать большими резервами, необходимыми для увеличения ее способности переносить кислород от легких к тканям, а углекислый газ в обратном направлении.

Транспорт кислорода.

При 37 С растворимость 02 в жидкости составляет 0,225 мл • л-1 • кПа-1 (0,03 мл/л/мм рт. ст.). В условиях нормального парциального давления кислорода в альвеолярном воздухе, т. е. 13,3 кПа или 100 мм рт.ст., 1 л плазмы крови может переносить только 3 мл 02, что недостаточно для жизнедеятельности организма в целом. В покое в организме человека за минуту потребляется примерно 250 мл кислорода. Чтобы тканям получить такое количество кислорода в физически растворенном состоянии, сердце должно перекачивать за минуту огромное количество крови. В эволюции живых существ проблема транспорта кислорода была более эффективно решена за счет обратимой химической реакции с гемоглобином эритроцитов. Кислород переносится кровью от легких к тканям организма молекулами гемоглобина, которые содержатся в эритроцитах.

Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

Значительная крутизна кривой насыщения гемоглобина кислородом в диапазоне парциального давления от 20 до 40 мм рт. ст. способствует тому, что в ткани организма значительное количество кислорода может диффундировать из крови в условиях фадиента его парциального давления между кровью и клетками тканей (не менее 20 мм рт. ст.). Незначительный процент насыщения гемоглобина кислородом в диапазоне его парциального давления от 80 до 100 мм рт. ст. способствует тому, что человек без риска снижения насыщения артериальной крови кислородом может перемещаться в диапазоне высот над уровнем моря до 2000 м.

Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

Рис. 10.18. Кривая диссоциации оксигемоглобина. Пределы колебания кривой при РС02 = 40 мм рт. ст. (артериальная кровь) и РС02 = 46 мм рт. ст. (венозная кровь) показывают изменение сродства гемоглобина к кислороду (эффект Ходена).

Общие запасы кислорода в организме обусловлены его количеством, находящимся в связанном состоянии с ионами Fe2+ в составе органических молекул гемоглобина эритроцитов и миоглобина мышечных клеток.

Один грамм гемоглобина связывает 1,34 мл 02. Поэтому в норме при концентрации гемоглобина 150 г/л каждые 100 мл крови могут переносить 20,0 мл 02.

Количество 02, которое может связаться с гемоглобином эритроцитов крови при насыщении 100 % его количества, называется кислородной емкостью гемоглобина. Другим показателем дыхательной функции крови является содержание 02 в крови (кислородная емкость крови), которое отражает его истинное количество, как связанного с гемоглобином, так и физически растворенного в плазме. Поскольку в норме артериальная кровь насыщена кислородом на 97 %, то в 100 мл артериальной крови содержится примерно 19,4 мл 02.

Сердце человека, как впрочем, и других живых существ, населяющих нашу планету — это насос, созданный Природой для того, чтобы перекачивать в сосудах организма кровь.

Сердце состоит из полых камер, заключенных в стенки из плотной и мощной мускулатуры. В камерах содержится кровь. Стенки, постоянно сокращаясь, находясь в непрерывном движении, обеспечивают перемещение, продвижение крови по всей огромной сети сосудов тела, именуемой сосудистой системой. Без такого насоса, направляющего и придающего ускорение потоку крови, существование организма невозможно. Даже у мельчайших, прозрачных моллюсков, даже у рыб, живущих постоянно в водной среде, т.е. в невесомости, сердце выполняет свою постоянную рутинную работу. Без сердца — нет жизни, и недаром человечество тысячелетиями считало сердце центром и источником всех жизненных сил и эмоций. Испокон веков люди поклонялись сердцу, видя в нем Божественное начало.

Сердечно-сосудистая система

Анатомически сердечно-сосудистая система включает в себя сердце и все сосуды тела, от самых крупных (диаметром 4–6 сантиметров у взрослых), впадающих в него и отходящих от него, до самых мелких, диаметром всего несколько микрон. Это гигантская по площади сосудистая сеть, благодаря которой кровь доставляется ко всем органам и тканям тела и оттекает от них. Кровь несет с собой кислород и питательные вещества, а уносит — отработанные отходы и шлаки

Каждая из половин, левая и правая, состоят из двух камер: предсердия и желудочка. Соответственно, сердце включает в себя четыре камеры: правое предсердие, правый желудочек, левое предсердие и левый желудочек. Внутри этих камер находятся клапаны, благодаря постоянному ритмичному движению которых поток крови может двигаться только в одном направлении.

Давайте теперь представим себе, что мы — маленькая частица этого потока, и пройдем, как в водном слаломе на байдарке, через все ущелья и пороги сердечно-сосудистой системы. Нам предстоит очень сложный путь, хотя он и совершается очень быстро.

Наш маршрут начнется в левом предсердии, откуда мы, окруженные частицами яркой, оксигенированной (т.е. насыщенной кислородом) крови, только что прошедшей легкие, рвемся вниз, через открывшиеся ворота первого на нашем пути — митрального клапана и попадем в левый желудочек сердца. Поток развернет нас почти на 180 градусов и направит вверх, а оттуда, через открывшийся шлюз аортального клапана мы вылетим в главную артерию тела — восходящую аорту. От аорты будут отходить много ветвей, и по ним мы можем уйти в сосуды шеи, головы, мозга и верхней половины тела. Но этот путь короче, а мы сейчас пройдем более длинным. Проскочив изгиб аорты, именуемый ее дугой, уйдем вниз, по аорте. Не будем сворачивать ни в многочисленные межреберные артерии, ни ниже — в артерии почек, желудка, кишечника и других внутренних органов. Устремимся вниз по аорте, пройдем ее деление на подвздошные артерии и попадем в артерии нижних конечностей. После бедренных артерий наш путь будет все уже и уже. И, наконец, достигнув сосудов стопы, мы обнаружим, что дальше сосуды становятся очень мелкими, микроскопическими, т.е. видимыми только в микроскоп. Это — капиллярная сеть. Ею заканчивается артериальная система в любом органе, в который бы мы свернули. Тут — конец. Дальше проходят только частицы крови — эритроциты, чтобы отдать тканям кислород и питательные вещества, необходимые для жизни клеток. А наше судно через мельчайшие сосуды капиллярной сети пройти уже не сможет.

Перетащим свою байдарку на другую сторону, куда собирается темная, уже отдавшая кислород, венозная кровь, или в венозную часть капиллярной сети. Здесь поток будет более спокойным и медленным. На пути будут встречаться шлюзы в виде клапанов вен, которые не дают крови вернуться назад. Из вен ног мы попадем в вены подвздошной зоны, в которые будут впадать многочисленные притоки венозной крови от тазовых органов, кишечника, печени, почек. Наконец, вены станут широкими и вольются в сердце, в ту часть его правой половины, которая называется правым предсердием. Отсюда мы вместе с темной венозной кровью через шлюз трехстворчатого клапана попадем в правый желудочек. Поменяв направление у его верхушки, поток выбросит нас в легочную артерию через ее клапан. Далее легочная артерия делится на две больших ветви (правую и левую) и по ним кровь попадает в оба легких. До сих пор мы путешествовали по большому кругу кровообращения, а теперь — по малому кругу.

В самом кратком виде схема нашего путешествия выглядит так:

левое предсердие — левый желудочек — аорта и коронарные артерии сердца — артерии органов и тела — артериальная капиллярная сеть — венозная капиллярная сеть — венозная система органов и тела — правое предсердие — правый желудочек (все это — большой круг кровообращения) — легочные артерии — капиллярная сеть легких — альвеолы — венозная система легких — легочные вены — левое предсердие (это малый круг кровообращения).

Круги замкнулись. Все повторяется снова. Внутри системы большой и малый круги не сообщаются. Их связь происходит только на уровне капиллярных сетей. Важно, что в каждый отдельный момент времени объемы крови в обоих кругах кровообращения в норме равны между собой. То есть, количество крови, протекающей через легкие, всегда равно количеству крови, протекающей через весь остальной организм. Так обеспечивается нормальное кровообращение. Давайте теперь поговорим об этих количествах. С каждым сокращением сердце взрослого человека выбрасывает и в большой, и в малый круги в покое около 60 мл крови (у детей эта цифра меньше, но частота сокращений – больше, что и обеспечивает нормальный сердечный выброс). Умножив этот объем на количество сокращений в одну минуту, скажем, 70 (в покое), получаем 60×70 = 4200 мл, или около 4–4,5 литров в минуту. Значит, за один час сердце перекачивает 4,5×60 = 270 литров, а за сутки 270×24 = 6 480 литров крови, или около 170 миллионов литров крови за 70 лет , с помощью 100 000 сокращений и расслаблений в течение одних только суток, или 2,5 миллиардов в течение жизни.

Кровообращением называют движение крови в организме человека. Оно состоит из трех основных частей: крови, кровеносных сосудов (артерий, вен, капилляров) и сердца.

Мы решили подготовить ознакомительный материал, чтобы каждый из вас был осведомлен обо всех нюансах работы сердечнососудистой системы. Это важно, чтобы вы вовремя могли понять, с какой проблемой могли или можете столкнуться в дальнейшем, а также, чтобы терминологические выражения нашего специалиста на очной консультации не казались вам иностранным языком.

Сердце – основа системы кровообращения

Сердце представляет собой мышечный орган размером с человеческий кулак, который располагается в левой части грудной клетки, чуть спереди легких. Этот орган фактически является мощным двойным насосом с четырьмя камерами, перекачивающим кровь и поддерживающим ее движение по всему телу.

Сердечная мышца совершает более 3 миллиардов ударов в течение жизни.

Кровеносные сосуды

Кровеносные сосуды имеют разную форму, структуру и объем, в зависимости от их роли в организме.

1. Артерии являются самыми прочными сосудами в теле человека. Их стенки плотны и эластичны, состоят из трех слоев – эндотелия, волокон гладкой мускулатуры и фиброзной ткани. Задача артерий обстоит в насыщении всех органов и тканей кровью, обогащенной кислородом и питательными веществами. Исключением являются артерии малого круга кровообращения, по которым венозная кровь течет от сердца к легким. Самым крупным артериальным сосудом является аорта.

2 . Вены выполняют функцию перемещения отработанной крови, насыщенной углекислым газом, обратно к сердцу. Эту жидкость вены получают из капилляров. Как и артерия, вена состоит из нескольких слоев – эндотелиального, мягкого соединительного, плотного соединительного и мышечного. Венозные стенки в несколько раз тоньше и уязвимее артериальных. По этой причине, по мере удаления от сердца, движение венозной крови может нарушаться – давление в капиллярах практически равно атмосферному, и нормального тока не создается. Поэтому в гемодинамике сосудам содействуют венозные клапаны и венозный пульс.

3. Капилляры – тончайшие сосуды, схожие по объему с человеческим волосом. Они являются ответвлениями крупных периферических артерий. Именно через них ткани и органы снабжаются кислородом и нутриентами. Они также обладают коммуникацией с венами, чтобы отдавать им клеточные отходы. Следовательно, эти крошечные сосуды одновременно являются кормильцами и санитарами нашего организма.

Нормальную циркуляцию крови внутри сосудистой системы обеспечивает артериальное давление.

Клеточное строение крови

Кровь состоит из двух компонентов: плазмы (50-60%) и взвешенных форменных элементов (40-50%).

Ко второй категории относятся:

· Эритроциты (красные кровяные тельца) – самые многочисленные из форменных элементов. Согласно данным официальных исследований, одна капля крови содержит порядка 5 миллионов эритроцитов. Красные кровяные тельца отвечают за транспорт газов – кислорода и диоксида углерода. Содержат в себе белок гемоглобин, обеспечивающий связывание молекул кислорода в легких. Эритроциты доставляют кислород ко всем тканям и органам, после чего вбирают в себя углекислый газ и несут его к легким. Он удаляется из организма в процессе дыхания.

· Лейкоциты (белые клетки крови) – элементы, защищающие наш организм от чужеродных тел и соединений, являются частью иммунной системы. Белые клетки крови распознают и атакуют патогенные микроорганизмы посредством вырабатываемых антител и макрофагов. Когда в организм проникает инфекция, продукция лейкоцитов существенно усиливается. В норме их количество уступает концентрации в крови других форменных элементов.

Все форменные элементы синтезируются костным мозгом и распространяются при помощи плазмы – жидкой части крови.

Распространенные проблемы с кровообращением

К категории самых распространенных заболеваний кровеносной системы следует отнести:

1. Атеросклероз – хроническая патология, характеризующаяся отложением холестерина и других липидов на стенках артериальных сосудов, которая приводит к нарушению тока крови и окклюзии артерии;

2. Аневризма – выпячивание части артериальной стенки на фоне неудовлетворительной регуляции тонуса сосуда (его растяжения или истончения);

3. Инфаркт миокарда – некроз части миокарда, обусловленный полной или частичной недостаточностью его кровоснабжения на фоне истончения местных сосудов;

4. Артериальная гипертензия (гипертония) – устойчивое повышение кровяного давления, обусловленное нарушением регуляторных факторов деятельности сердечнососудистой системы;

5. Варикозное расширение вен – хроническое заболевание, обусловленное необратимой деформацией вен, связанное с недостаточностью венозных клапанов и нарушением венозного тока крови.

Нормальное кровообращение является важнейшей составляющей здорового организма. Если вы отмечаете у себя характерные признаки того или иного заболевания сердечнососудистой системы, не медлите с обращением к сосудистому хирургу или флебологу. Помните, что игнорирование симптомов в данном случае может стоить вам жизни.

Не могла себе даже и представить, что можно получить такое качественное лечение! Отделение чистое, светлое, работа медиков слаженная. Чувствуешь себя как в санатории. Каждый выполняет свою работу качественно и слаженно. Все проявляют о больных заботу! Всё, что может быть.

Читайте также: