Чем отличается химическая коррозия от электрохимической кратко

Обновлено: 05.07.2024



Влиянию коррозии подвержены не только металлы, но и полимеры (старение полимеров), керамика и даже деревянные материалы.

Контактирующая с веществами окружающая среда вносит свою специфику во взаимодействие с ними, по типу взаимодействия выделяют многочисленные разновидности процессов разрушения, включая электрохимическую коррозию металлоконструкций или химическую коррозию.

Реакции корродирования обусловлены возникновением окислительно-восстановительных реакций вещества с контактирующей с ним средой, необходимых для перехода вещества в наиболее устойчивое термодинамическое состояние.

Классификация процессов корродирования

Многообразие сред и условий протекания коррозионных процессов не позволяет создать всеобъемлющую и единую систему классификации встречающихся коррозий.

Основными критериями разделения коррозионных разновидностей в настоящее время являются:

  1. Степень агрессивности среды, в которой происходит процесс коррозионного разрушения;
  2. Условия протекания коррозионных реакций;
  3. Локальность коррозионных изменений, связанная с корродированием отдельных участков;
  4. Характер разрушений рабочей поверхности металлоконструкции;
  5. Механизм процесса корродирования, согласно которому принято выделять:
  • химическую и
  • электрохимическую коррозии.

Чем химическая коррозия отличается от электрохимической?

Коррозия химическая и электрохимическая принципиально отличаются друг от друга по виду взаимодействия вещества с контактирующей средой, длительности процесса и по конечному результату взаимодействия.

  1. Химическая коррозия происходит в обезвоженной среде, то есть при полном отсутствии влаги. Результатом коррозии химической для металлоконструкций являются образовавшиеся оксиды металлов. Оксиды создают пленку толщиной не более двух периодов кристаллической решетки, но этого оказывается достаточно, чтобы изолировать основной металл от кислорода контактирующей среды и воспрепятствовать дальнейшему окислению.
  2. Реакции электрохимической коррозии обязательно происходят в электролитной среде и относятся к анодно-катодным взаимодействиям. Это могут быть водные растворы, а также иная среда, содержащая влагу, например, обыкновенная атмосфера. Ионы металла поверхностного слоя материала, имеющие положительный заряд, отрываются молекулами воды, в результате основной металл обретает избыточное количество оставшихся электронов и заряжается отрицательно. Слой воды, граничащий с металлом, за счет приобретенных ионов, отданных металлом, заряжается положительно. Граничный слой воды с металлом приобретает скачок потенциала, обусловленный разностью зарядов. Примером электрохимических реакций корродирования являются разрушающие факторы для металлоконструкций, эксплуатируемых в воде или в сырой атмосфере, при воздействии охлаждающих эмульсий и жидкостей, используемых при мехобработке металлов, образование накипи при использовании магниевых анодов в электрических бойлерах.

Немного подробнее об электрохимическом корродировании металлоконструкций

Чем химическая коррозия отличается от электрохимической

Электрохимическая коррозия металлов – самый распространенный вид коррозионного разрушения, представляющий собой разрушение металлов в электролитных средах, с созданием в системе направленного движения электронов и ионов.

На поверхности и в граничном со средой слое металла одновременно происходят анодная и катодная реакции, в ходе которых происходят:

  • Анодное окисление метала;
  • Катодное восстановление водорода или кислорода.

Это важно! Не следует относить к электрохимической коррозии корродирование однородных материалов, например, всем известное ржавление железа. Для протекания электрохимических коррозионных разрушений всегда необходимо присутствие электролита. Ими могут оказаться дождевая вода, конденсат, с которыми происходит соприкосновение структурных элементов материала или двух различных контактирующих веществ, имеющих различные по величине окислительно-восстановительные потенциалы.

Основные методы защиты металлов от электрохимических коррозионных разрушений

Защита металлоконструкций базируется на целенаправленных воздействиях, частично снижающих или полностью предотвращающих активность факторов, провоцирующих развитие коррозионных процессов. Защитные мероприятия однозначно разделены на три категории:

Электрохимическая коррозия представляет собой процесс разрушения металла в результате воздействия на него гальванических элементов, образование которых становится возможным в коррозионной среде.

1 Немного информации о коррозии металла

Обычно под коррозией металла понимают его окисление под влиянием кислот, которые присутствуют в растворах, контактирующих с металлическим изделием, либо кислорода воздуха. Коррозия наиболее часто поражает металлы, находящиеся левее водорода в так называемом ряду напряжений. Впрочем, коррозионному разрушению подвержены и многие другие материалы (неметаллические), например строительный бетон.

Немного информации о коррозии металла

Коррозия возникает в результате какого-либо электрохимического или химического процесса. По этой причине ее принято подразделять на электрохимическую и химическую.

Коррозия приводит к различным разрушениям материала, которые могут быть:

  • неравномерными и равномерными;
  • местными и сплошными.

Если металл испытывает механические напряжения в дополнение к негативному влиянию внешней среды, наблюдается активизация (и существенная) всех коррозионных проявлений, что вызвано разрушением на поверхности изделий оксидных пленок и уменьшением показателя термоустойчивости материала.

Немного информации о коррозии металла фото

Стоит сказать, что в некоторых случаях коррозионные процессы вызывают восстановление, а не окисление компонентов, входящих в различные металлические сплавы. Ярким примером этого является восстановление водородом содержащихся во многих сталях карбидов (такой нестандартный процесс происходит при высоких температурах и давлениях).

2 Электрохимическая коррозия и коррозионный элемент – что это?

Такая коррозия признается наиболее распространенной. Появляется она в том случае, когда среда, характеризуемая электролитической проводимостью, взаимодействует с металлом. Другими словами, ее первопричиной можно смело называть неустойчивость (термодинамическую) металлов в средах, где они находятся. Известные любому человеку примеры такой коррозии – ржавление на открытом воздухе конструкций и изделий из чугуна и разных марок стали (высоколегированной стали, углеродистые стали и так далее), днищ судов в морской воде, инженерных коммуникаций и трубопроводов, по которым транспортируются разнообразные жидкости и агрессивные составы.

Электрохимическая коррозия и коррозионный элемент – что это?

Коррозионный элемент (его обычно называют гальваническим) образуется тогда, когда два металла, имеющие разные потенциалы (окислительно-восстановительные), соприкасаются. Такой элемент – это обычная гальваническая ячейка замкнутого типа. В указанной ячейке металл с меньшим потенциалом медленно растворяется, а второй компонент (с большим потенциалом) обычно не изменяет своего состояния.

Электрохимическая коррозия и коррозионный элемент – что это? фото

Подобным изменениям чаще всего подвергаются металлы, у которых величина отрицательного потенциала высока. В них процесс ржавления (формирования коррозионного компонента) начинается уже тогда, когда на поверхность попадает малый объем постороннего включения.

3 Гальванические элементы и электродные процессы в них

Описанные гальванические элементы образуются по разным причинам. Прежде всего, они могут формироваться из-за неоднородности сплава, что приводит к:

  • неравномерности распределения пленок оксидов на поверхности материала;
  • неоднородности металлической фазы;
  • присутствию кристаллов на границах зерен;
  • различиям в процессе формирования вторичных продуктов ржавления;
  • анизотропности кристаллов.

Гальванические элементы и электродные процессы в них

Также гальванические ячейки возникают в силу следующих причин:

  • неоднородности температуры, влияний внешних токов и облучения;
  • наличия зон, в которые окислитель поступает ограниченно.

Всегда нужно помнить о том, что электрохимическое ржавление подразумевает протекание в один и тот же момент времени двух процессов – анодного и катодного. С точки зрения кинетики они напрямую связаны между собой. Основной металл всегда растворяется на аноде (окислительная реакция).

Гальванические элементы и электродные процессы в них фото

Под катодным процессом понимают ситуацию, когда "лишние" электроны поглощаются атомами либо молекулами электролита. После чего происходит восстановление электронов. Катодный процесс замедляется, если отмечается замедление анодного процесса. Как видим, механизм электрохимической коррозии совсем несложен для понимания. Разобраться с ним может любой человек.

4 Что представляет собой химическая коррозия?

Под таким явлением понимают разрушение металла, вызываемое контактом коррозионной среды и материала. Причем при подобном взаимодействии наблюдается сразу два процесса:

  • коррозионная среда восстанавливается;
  • металл окисляется.

Электрохимическая коррозия металлов отличается от химической тем, что последняя протекает без электротока. А первопричина этих видов коррозии, коей является термодинамическая неустойчивость, остается неизменной. Металлы легко переходят в разные состояния (включая и более устойчивые), причем в этом случае отмечается снижение их термодинамического потенциала.

Что представляет собой химическая коррозия?

Существуют далее приведенные виды химкоррозии:

  • в жидких составах, которые не причисляются к электролитами;
  • газовая.

К жидкостям-неэлектролитам относят составы неспособные проводить электроток:

  • неорганические: сера в расплавленном состоянии, жидкий бром;
  • органические: бензин, керосин, хлороформ и иные.

Неэлектролиты в чистом виде с металлами не контактируют. Но при появлении в жидкостях совсем малого числа примесей сразу же "стартует" химическая коррозия металлов (причем весьма бурная). В тех ситуациях, когда реакция проходит еще и при повышенных температурах, ржавление будет происходить намного интенсивнее. А если в неэлектролитические жидкости попадает вода, запускается механизм электрохимической коррозии, описанный нами выше.

Процесс ржавления (химического) чаще всего идет в пять этапов:

  • сначала к поверхности металла подходит окислитель;
  • на поверхности стартует хемосорбция реагента;
  • после этого начинает формироваться оксидная пленка (взаимодействие металла и окислителя);
  • отмечается десорбция материала и оксидов;
  • фиксируется диффузия в жидкость-неэлектролит оксидов.

Два этапа, указанные последними, отмечаются не каждый раз.

5 Газовая коррозия – какими особенностями она описывается?

Под воздействием газов металлические поверхности могут разрушаться в том случае, когда имеется высокая температура. Данное явление специалисты именуют газовой коррозией, которая признается самым распространенным вариантом химического ржавления. Известная всем вариация подобного процесса – контакт кислорода и металлической поверхности, которая характеризуется двумя показателями:

  • давлением при конкретной температуре диссоциации оксидных паров;
  • давлением (парциальным) кислорода.

Газовая коррозия – какими особенностями она описывается?

Если давление кислорода меньше давления диссоциации, появляется чистый металл, если больше – образуется окисел. При равных величинах реакция будет полностью равновесной. Учитывая это, можно без труда рассчитать, при каких температурах возникнет опасность коррозии.

Химическая коррозия протекает с разной скоростью. Конкретная величина последней находится в зависимости от далее приведенных факторов:


Коррозия металлов, особенно ее основная разновидность — электрохимическая, всегда создавала трудности эксплуатации любых металлических изделий, безвременно разрушая их. Простейшие орудия труда (нож, топор, плуг) быстро приходили в негодность во влажной среде. Потребовались многочисленные и длительные исследования химических процессов разрушения, прежде чем были найдены технические решения, приостанавливающие коррозию металлов.

Суть, причины и признаки химической коррозии

Для возникновения химической коррозии нужно не так уж много: металл и соответствующая коррозионная среда. Причины большой вероятности появления окисления – это неустойчивое термодинамическое состояние металла и стремление его перейти к более устойчивому состоянию. Словесной формулой это можно выразить следующим образом:

Исходный металл + среда окислительного характера = протеканию реакции = результату в виде ржавчины.

Основной признак химической коррозии – окислительная среда – не является электролитом как при электрохимической, то есть окислительно-восстановительные процессы имеют чисто химический подтекст. Химическая коррозия бывает двух видов:

  • та, которая протекает в газовой среде, когда температура вокруг очень высока;
  • второй вид химической коррозии связан с жидкостями.

Для идеальной защиты от коррозии необходимо проводить мероприятия комбинированной защиты, так как в реальности на металл воздействует одновременно и электрохимическое, и химическое окисление.



Коррозийные свойства меди

Медь – металл с высокими пластическими свойствами, имеющий красно-золотистый цвет, а после удаления оксидной пленки – чуть розоватый. По электропроводности он уступает лишь серебру, также характеризуется высокой теплопроводностью. Благодаря низкому удельному сопротивлению медь применяется в электротехнике: идет на изготовление медных пластинок, проволоки, обмотки двигателей.

Из-за высоких антикоррозионных качеств металл включается в сплавы для улучшения их технических характеристик (бронза, латунь и другие). В гальванической среде медь становится катодом, вступает в электрохимические процессы и вызывает ускоренное ржавление прочих металлов.


Отличия химической коррозии от электрохимической

Под процессом электрохимической коррозии понимают окислительно-восстановительную реакцию коррозионной среды за счет электронов металла, которые отнимаются у него под воздействием электрического потенциала, возникающего в электролите, коим является эта окислительная среда. Ионизация сопровождается разрушением той части, которая непосредственно контактирует со средой, а ржавчина, видимая невооруженным глазом, не что иное, как восстановленная коррозионная среда.



Если говорить о том, чем отличается коррозия химического плана от электрохимической, то здесь есть несколько принципиальных моментов:

  1. Сущностью электрохимической коррозии является процесс, протекающий в электролите, и это главное.
  2. В электрохимической обязательно присутствует электрический ток, чего нет при химическом окислении.
  3. Электрохимическая коррозия характеризуется не одномоментным переходом частиц от металла к окислительному компоненту, а определяется величиной потенциала. То есть, чем потенциал выше, тем больше скорость движения частиц и быстрее восстановительный процесс коррозионной среды. При химическом же процессе разрушение вещества сопровождается одновременным восстановлением коррозионной среды.

Выделяют следующие виды электрохимической коррозии:

  1. Межкристаллитная. Электрохимическое явление, когда у алюминия, никеля, иных элементов наблюдается разрушение зерна по его границе, и происходит это избирательно. В результате конструкция теряет свою прочность, ухудшаются свойства пластичности. Опасность в том, что этот электрохимический процесс визуально может быть незаметен.
  2. Питтинговая. Проявляется как поражение точечных участков на таких элементах, как медь, ее сплавы и другие. Размер отдельных участков, где проявляется коррозия, обычно не превышает 1.5 миллиметров. Электрохимический питтинг бывает поверхностного типа, а также открытый и закрытый.
  3. Щелевая. Опасный вид электрохимической коррозии, сопровождающийся быстрым усиленным разрушением областей, где есть микротрещины, зазоры либо щели. Коррозия может протекать при любом состоянии окружающей среды.

Что такое коррозия

Это разрушение металлов в результате воздействия на них окружающей среды. В странах с хорошо развитой промышленность ущерб от коррозии составляет 4–5% национального дохода. Портятся не только металлы, но и механизмы, и детали, изготовленные из них, что ведет к очень большим затратам. В результате ржавления трубопроводов зачастую происходит утечка вредных химических веществ, что приводит к загрязнению почвы, воды и воздуха. Все это пагубно сказывается на здоровье людей. Коррозия меди является спонтанным ее разрушением под влиянием отдельных элементов среды обитания человека. Причина порчи металла заключается в неустойчивости его к отдельным веществам, находящимся в воздухе. Скорость коррозии тем больше, чем выше температура.

Протекторная защита от электрохимической коррозии

Как упоминалось выше, чем больше потенциал металла, тем быстрее происходит электрохимическая коррозия. Значит, снижая электрический потенциал, можно добиться наступления момента, когда процесс окисления станет невозможным. На этом принципе основана протекторная или, другими словами, электрохимическая защита металлических конструкций, газопроводов, корпусов морских судов. Берется такой металл, который ведет себя активнее, нежели основной защищаемый, и соединяется с последним токопроводящим проводником. Получается, что уже этот анод вступает в реакцию с коррозионной средой, а основной металл остается невредимым.

Основные случаи, когда применение протекторной защиты будет оправдано:

  1. Недостаточно средств на проведение более дорогостоящих защитных мероприятий.
  2. Если защитой нужно обеспечить конструкции из металла небольших габаритов.
  3. Когда трубопроводы имеют дополнительную поверхностную изоляцию.

Такую защиту от электрохимической коррозии, как протекторная, применяют, в основном, к разным маркам стали. Здесь уместным будет использование протекторов на основе кадмия, алюминия, магния, хрома, цинка, но используется не чистый элемент, а сплавы.

Цинковые протекторы

Цинковые протекторы, кроме основы из цинка, содержат:

  • до 0.15% кадмия при минимально возможном процентном соотношении в 0.025%;
  • до 0.5% алюминия;
  • примеси железа, свинца и меди, общей суммой не превышающие 0.005%.

Наиболее эффективное применение цинка выявлено в морской воде, где с помощью таких протекторов успешно работает защита, например, газовых или нефтяных магистралей. Плюс цинка еще в том, что он допустим к использованию со взрывоопасными веществами. Когда происходит растворение анода, не наблюдается выделения загрязняющих веществ, которые могут навредить экологии.

Применение цинковых протекторов в водоемах, где вода имеет пресный состав либо в грунте под землей сопровождается быстрым образованием на поверхности протектора таких соединений, как оксиды и гидроксиды, которые приводят к торможению электрохимического процесса окисления анода, и фактически прекращается защита основного металла от электрохимической коррозии.

Установка цинкового протектора на днище корабля:


Магниевые протекторы

В чистом виде магниевые протекторы нецелесообразно применять, что объясняется быстрым ржавлением этого металла. Поэтому коррозионные защитники на базе магния, кроме него, имеют:

  • максимум 5%, минимум 2% цинка;
  • максимум 7%, минимум 5% алюминия;
  • небольшое содержание меди, никеля и свинца, не более десятых долей процента.

Протекторы из магния хороши, когда среда, в которой они применяются, имеет pH не выше 10.5, что соответствует грунтам обычного характера, водным объектам со слабосоленой акваторией либо попросту пресной воде. Для защиты подходят любые трубопроводы и металлоконструкции, находящиеся в описанных выше условиях. Применение магния в агрессивных соленых растворах сопровождается быстрым образованием плохо растворимой пленки на его поверхности.

В некоторых случаях магниевые протекторы влияют на металл таким образом, что последний становится более хрупким, и в теле конструкции могут образовываться трещины. Прежде чем применять магний для защиты от электрохимической коррозии конкретной марки стали, нужно провести дополнительные исследования, чтобы избежать негативных последствий.

Алюминиевые протекторы

Целевое назначение протекторов из алюминия – работать в качестве защиты от электрохимической коррозии в средах с водой проточной с соленым составом, например, в прибрежных морских водах. В составе сплава протектора из алюминия имеются:

  • примеси индия, кадмия, кремния не более 0.02%;
  • цинка – до 8%;
  • магния – до 5%.

Благодаря этим дополнительным металлам нет возможности появления на протекторе жесткой, задерживающей растворение пленки. Допустимо применять алюминиевый протектор и в средах, подходящих для магниевого протектора.




Методы предохранения металла

Практически все металлы в газообразной или жидкой среде подвергаются поверхностному разрушению. Основным способом защиты меди от коррозии является нанесение на поверхность изделий защитного слоя, состоящего из:

  • Металла – на медную поверхность изделия наносится слой металла, который более устойчив к коррозии. Например, в качестве него используют латунь, цинк, хром и никель. В этом случае контакт с окружающей средой и окисление будет происходить с металлом, используемым для покрытия. Если защитный слой частично портится, то происходит разрушение основного металла – меди.
  • Неметаллических веществ – это неорганические покрытия, состоящие из стекловидной массы, цементного раствора, или органические – краски, лаки, битум.
  • Химических пленок – защиту образуют химическим способом, создавая на поверхности металла соединения, надежно предохраняющие медь от коррозии. Для этого используют оксидные, фосфатные пленки или насыщают поверхность сплавов азотом, органическими веществами либо обрабатывают углеродом, соединения которого надежно сохраняют ее.

Коррозия металла

Кроме этого, в состав медных сплавов вводят легирующий компонент, который усиливает антикоррозийные свойства, или изменяют состав окружающей среды, удаляя из нее примеси и вводя ингибиторы, замедляющие протекание реакции.

Способы защиты металлов от химической коррозии

Так как химическая коррозия никоим образом не связана с потенциалом металла, и протекторы либо катоды ее не предотвратят, способы защиты от нее имеют свою специфику. Борьба с разрушением такого характера может проходить по трем основным направлениям:

  1. Метод конструкционного решения проблемы. Он связан с тем, чтобы использовать сплавы, которые имеют очень высокую устойчивость к коррозии, либо применять биметаллические композиции, где основной конструкционный металл покрыт тонким слоем устойчивого соединения (например, оцинковку).
  2. Метод улучшения среды, где будет эксплуатироваться изделие, путем изменения pH, нейтрализации агрессивных составляющих коррозионной среды.
  3. Метод пассивной защиты, наиболее известный тем, что доступ к поверхности конструкции в коррозионной среде блокируется пленкой из неактивного и не вступающего в реакцию материала. Это покрытие разного рода лакокрасочными компонентами для защиты от коррозии.

Если вы сталкивались с электрохимической коррозией, имеете профильное образование, ориентируетесь в вопросах защиты металла, получили практические навыки по организации протекторной защиты металлоконструкций либо применяли метод катодной защиты, поделитесь своими знаниями в комментариях.

Катодная защита

Реализация принципа катодной защиты может осуществляться одним из двух способов. Первый — подача отрицательного потенциала может происходить от специального источника электроэнергии, именуемого станцией катодной защиты.

При использовании катодных станций может возникнуть следующая проблема.

Электричество для установки требуемого потенциала нередко подается по длинному кабелю. Этот кабель подвержен действию молнии и некоторым другим электромагнитным влияниям. Для того, чтобы в результате не произошло перенапряжения, рекомендуется использовать комплексное решение ZANDZ.

Примечания

Коррозия меди в воде

Скорость коррозии меди в воде во многом зависит от наличия на поверхности оксидных пленок.

В быстро движущихся водных растворах и воде медь подвергается такому виду разрушения, как ударная коррозия. Скорость протекания ударной коррозии меди сильно зависит от количества растворенного кислорода. Если вода сильно аэрирована – ударная коррозия меди протекает интенсивно, если же обескислорожена – разрушение незначительно. Коррозия меди в аэрированной воде усиливается с уменьшением рН, увеличением концентрации ионов хлора. Скорость коррозии меди в воде зависит от климатической зоны. В тропиках скорость разрушения несколько выше.

Особенностью меди, омываемой морской водой, можно считать то, что она является одним из немногих металлов, которые не подвержены обрастанию микроорганизмами. Ионы меди для них губительны.

С чистой меди очень часто изготавливают трубопроводы для подачи в дома воды. Они надежны, служат очень долгое время. При наличии в воде растворенной угольной и других кислот медь понемногу корродирует, а продукты коррозии меди окрашивают сантехническое оборудование. Если вода, проходящая через медные трубы контактирует с железом, алюминием или оцинкованной сталью – то коррозию этих металлов значительно усиливается. Ионы меди осаждаются на поверхности этих металлов, образуя коррозионные гальванические элементы.

Чтоб исключить вредное влияние воды с медных труб на другие металлы используют луженую медь. Внутреннюю часть медного трубопровода покрывают оловом. Оловянное покрытие должно быть безпористым, во избежание возникновения гальванического элемента (олово по отношению к меди является катодом).

Электрохимическая коррозия – это самый распространенный вид повреждения, поражающий металлы. Расскажем о методах анодной защиты металлов, отличиях от химической коррозии.

Электрохимическая коррозия

Больше всего металлы боятся коррозии. Она способна привести в негодность самые прочные конструкции. Огромные мосты, линии электропередач, километровые трубопроводы становятся беспомощными перед разрушающим процессом. Чтобы повреждения не допустить, металл защищают. Но важно понимать, что бывает несколько видов окисления. Электрохимическая коррозия, химическая или газовая – все они похожи по следствиям, но эффективными методами защиты от каждого вида будут свои индивидуальные мероприятия, зависящие от многих факторов.

Коррозия электрохимического плана наиболее часто поражает металлы. Это связано с тем, что они, как правило, неустойчивы термодинамически в среде, которая их окружает, а последняя чаще представляет обычный электролит, то есть проводник. Поэтому за счет металла коррозионная среда стремится к восстановлению путем переноса частиц через электрический ток.

Электрохимическая коррозия

Суть, причины и признаки химической коррозии


Для возникновения химической коррозии нужно не так уж много: металл и соответствующая коррозионная среда. Причины большой вероятности появления окисления – это неустойчивое термодинамическое состояние металла и стремление его перейти к более устойчивому состоянию. Словесной формулой это можно выразить следующим образом:

Исходный металл + среда окислительного характера = протеканию реакции = результату в виде ржавчины.

Основной признак химической коррозии – окислительная среда – не является электролитом как при электрохимической, то есть окислительно-восстановительные процессы имеют чисто химический подтекст. Химическая коррозия бывает двух видов:

  • та, которая протекает в газовой среде, когда температура вокруг очень высока;
  • второй вид химической коррозии связан с жидкостями.

Для идеальной защиты от коррозии необходимо проводить мероприятия комбинированной защиты, так как в реальности на металл воздействует одновременно и электрохимическое, и химическое окисление.

Отличия химической коррозии от электрохимической

Под процессом электрохимической коррозии понимают окислительно-восстановительную реакцию коррозионной среды за счет электронов металла, которые отнимаются у него под воздействием электрического потенциала, возникающего в электролите, коим является эта окислительная среда. Ионизация сопровождается разрушением той части, которая непосредственно контактирует со средой, а ржавчина, видимая невооруженным глазом, не что иное, как восстановленная коррозионная среда.

Процесс электрохимической коррозии


Если говорить о том, чем отличается коррозия химического плана от электрохимической, то здесь есть несколько принципиальных моментов:

  1. Сущностью электрохимической коррозии является процесс, протекающий в электролите, и это главное.
  2. В электрохимической обязательно присутствует электрический ток, чего нет при химическом окислении.
  3. Электрохимическая коррозия характеризуется не одномоментным переходом частиц от металла к окислительному компоненту, а определяется величиной потенциала. То есть, чем потенциал выше, тем больше скорость движения частиц и быстрее восстановительный процесс коррозионной среды. При химическом же процессе разрушение вещества сопровождается одновременным восстановлением коррозионной среды.

Выделяют следующие виды электрохимической коррозии:

  1. Межкристаллитная. Электрохимическое явление, когда у алюминия, никеля, иных элементов наблюдается разрушение зерна по его границе, и происходит это избирательно. В результате конструкция теряет свою прочность, ухудшаются свойства пластичности. Опасность в том, что этот электрохимический процесс визуально может быть незаметен.
  2. Питтинговая. Проявляется как поражение точечных участков на таких элементах, как медь, ее сплавы и другие. Размер отдельных участков, где проявляется коррозия, обычно не превышает 1.5 миллиметров. Электрохимический питтинг бывает поверхностного типа, а также открытый и закрытый.
  3. Щелевая. Опасный вид электрохимической коррозии, сопровождающийся быстрым усиленным разрушением областей, где есть микротрещины, зазоры либо щели. Коррозия может протекать при любом состоянии окружающей среды.

Протекторная защита от электрохимической коррозии


Как упоминалось выше, чем больше потенциал металла, тем быстрее происходит электрохимическая коррозия. Значит, снижая электрический потенциал, можно добиться наступления момента, когда процесс окисления станет невозможным. На этом принципе основана протекторная или, другими словами, электрохимическая защита металлических конструкций, газопроводов, корпусов морских судов. Берется такой металл, который ведет себя активнее, нежели основной защищаемый, и соединяется с последним токопроводящим проводником. Получается, что уже этот анод вступает в реакцию с коррозионной средой, а основной металл остается невредимым.

Основные случаи, когда применение протекторной защиты будет оправдано:

  1. Недостаточно средств на проведение более дорогостоящих защитных мероприятий.
  2. Если защитой нужно обеспечить конструкции из металла небольших габаритов.
  3. Когда трубопроводы имеют дополнительную поверхностную изоляцию.

Такую защиту от электрохимической коррозии, как протекторная, применяют, в основном, к разным маркам стали. Здесь уместным будет использование протекторов на основе кадмия, алюминия, магния, хрома, цинка, но используется не чистый элемент, а сплавы.

Цинковые протекторы

  • до 0.15% кадмия при минимально возможном процентном соотношении в 0.025%;
  • до 0.5% алюминия;
  • примеси железа, свинца и меди, общей суммой не превышающие 0.005%.

Наиболее эффективное применение цинка выявлено в морской воде, где с помощью таких протекторов успешно работает защита, например, газовых или нефтяных магистралей. Плюс цинка еще в том, что он допустим к использованию со взрывоопасными веществами. Когда происходит растворение анода, не наблюдается выделения загрязняющих веществ, которые могут навредить экологии.

Применение цинковых протекторов в водоемах, где вода имеет пресный состав либо в грунте под землей сопровождается быстрым образованием на поверхности протектора таких соединений, как оксиды и гидроксиды, которые приводят к торможению электрохимического процесса окисления анода, и фактически прекращается защита основного металла от электрохимической коррозии.

Установка цинкового протектора на днище корабля:

Цинковый протектор на днище корабля

Магниевые протекторы


В чистом виде магниевые протекторы нецелесообразно применять, что объясняется быстрым ржавлением этого металла. Поэтому коррозионные защитники на базе магния, кроме него, имеют:

  • максимум 5%, минимум 2% цинка;
  • максимум 7%, минимум 5% алюминия;
  • небольшое содержание меди, никеля и свинца, не более десятых долей процента.

Протекторы из магния хороши, когда среда, в которой они применяются, имеет pH не выше 10.5, что соответствует грунтам обычного характера, водным объектам со слабосоленой акваторией либо попросту пресной воде. Для защиты подходят любые трубопроводы и металлоконструкции, находящиеся в описанных выше условиях. Применение магния в агрессивных соленых растворах сопровождается быстрым образованием плохо растворимой пленки на его поверхности.

В некоторых случаях магниевые протекторы влияют на металл таким образом, что последний становится более хрупким, и в теле конструкции могут образовываться трещины. Прежде чем применять магний для защиты от электрохимической коррозии конкретной марки стали, нужно провести дополнительные исследования, чтобы избежать негативных последствий.

Алюминиевые протекторы

Целевое назначение протекторов из алюминия – работать в качестве защиты от электрохимической коррозии в средах с водой проточной с соленым составом, например, в прибрежных морских водах. В составе сплава протектора из алюминия имеются:

  • примеси индия, кадмия, кремния не более 0.02%;
  • цинка – до 8%;
  • магния – до 5%.

Благодаря этим дополнительным металлам нет возможности появления на протекторе жесткой, задерживающей растворение пленки. Допустимо применять алюминиевый протектор и в средах, подходящих для магниевого протектора.

Способы защиты металлов от химической коррозии


Так как химическая коррозия никоим образом не связана с потенциалом металла, и протекторы либо катоды ее не предотвратят, способы защиты от нее имеют свою специфику. Борьба с разрушением такого характера может проходить по трем основным направлениям:

  1. Метод конструкционного решения проблемы. Он связан с тем, чтобы использовать сплавы, которые имеют очень высокую устойчивость к коррозии, либо применять биметаллические композиции, где основной конструкционный металл покрыт тонким слоем устойчивого соединения (например, оцинковку).
  2. Метод улучшения среды, где будет эксплуатироваться изделие, путем изменения pH, нейтрализации агрессивных составляющих коррозионной среды.
  3. Метод пассивной защиты, наиболее известный тем, что доступ к поверхности конструкции в коррозионной среде блокируется пленкой из неактивного и не вступающего в реакцию материала. Это покрытие разного рода лакокрасочными компонентами для защиты от коррозии.

Если вы сталкивались с электрохимической коррозией, имеете профильное образование, ориентируетесь в вопросах защиты металла, получили практические навыки по организации протекторной защиты металлоконструкций либо применяли метод катодной защиты, поделитесь своими знаниями в комментариях.

Читайте также: