Чем определяется разнообразие форм вирусных частиц кратко

Обновлено: 07.07.2024

Размеры вирионов различных вирусов варьируют в широких пределах: от 15-18 до 300-400 нм. Они имеют разнообразную форму: палочковидную, нитевидную, сферическую форму параллелепипеда, сперматозоидную (рис. 5.1). Структура простого вириона — нуклеокапсида — свидетельствует о том, что вирусная нуклеиновая кислота — ДНК или РНК — надежно защищена белковой оболочкой — капсидом. Последний имеет строго упорядоченную структуру, в основе которой лежат принципы спиральной или кубической симметрии. Капсиды палочковидных и нитевидных вирионов состоят из структурных субъединиц, уложенных в виде спирали вокруг оси. При таком расположении субъединиц образуется полый канал, внутри которого компактно уложена молекула вирусной нуклеиновой кислоты. Ее длина может во много раз превышать длину палочковидного вириона. Например, длина вируса табачной мозаики (ВТМ) 300 нм, а его РНК достигает величины 4000 нм, или 4 мкм. При этом РНК настолько связана с капсидом, что ее нельзя освободить, не повредив последний. Подобные капсиды встречаются у некоторых бактериальных вирусов и у вирусов человека (например, вируса гриппа).

Сферическая структура вирионов определяется капсидом, построенном по принципам кубической симметрии, в основе которой лежит фигура икосаэдра — двадцатигранника. Капсид состоит из асимметричных субъединиц (полипептидных молекул), которые объединены в морфологические субъединицы — капсомеры. Один капсомер содержит 2, 3 или 5 субъединиц, расположенных по соответствующим осям симметрии икосаэдра. В зависимости от типа перегруппировки и числа субъединиц число капсомеров будет равным 30, 20 или 12. На рис. 5.1 представлены возможные типы простых вирионов, состоящих из определенного количества капсомеров, изображенных в виде шариков, а также капсомеров увеличивающегося объема.

Химический состав вирионов

В состав простых вирионов входит один тип нуклеиновой кислоты — РНК или ДНК — и белки. У сложных вирионов в составе внешней оболочки содержатся липиды и полисахариды, первые получают из клеток хозяина, вторые в виде гликопротеидов закодированы в геноме вируса.

Вирусные ДНК. Молекулярная масса ДНК разных вирусов колеблется в широких пределах (1 * 106- 1 * 108). Она примерно в 10-100 раз меньше молекулярной массы ДНК бактерий. В геноме вирусов содержится до нескольких сотен генов. По своей структуре вирусные ДНК характеризуются рядом особенностей, что дает возможность подразделить их на несколько типов. К ним относятся двунитевые и однонитевые ДНК, которые могут иметь линейную или кольцевую форму.

Хотя в каждой нити ДНК нуклеотидные последовательности встречаются однократно, на ее концах имеются прямые или инвертированные (повернутые на 180°) повторы. Они представлены теми же нуклеотидами, которые располагаются в начальном участке ДНК. Нуклеотидные повторы, присущие как однонитевым, так и двунитевым вирусным ДНК, являются своеобразными маркерами, позволяющими отличить вирусную ДНК от клеточной. Функциональное значение этих повторов состоит в способности замыкаться в кольцо. В этой форме она реплицируется, транскрибируется, приобретает устойчивость к эндонуклеазам и может встраиваться в клеточный геном.

Вирусная РНК. У РНК-содержащих вирусов генетическая информация закодирована в РНК таким же кодом, как в ДНК всех других вирусов и клеточных организмов. Вирусные РНК по своему химическому составу не отличаются от РНК клеточного происхождения, но характеризуются разной структурой. Наряду с типичной однони-тевой РНК у ряда вирусов имеется двунитевая РНК. При этом она может быть линейной и кольцевой. В составе однонитевых РНК имеются спиральные участки типа двойной спирали ДНК, образующиеся вследствие спаривания комплементарных азотистых оснований. Однонитевые РНК в зависимости от выполняемых ими функций разделяют на две группы.

У двунитевых как ДНК, так и РНК-содержащих вирусов информация обычно записана в одной цепи. Однако существуют вирусы, у которых информация может быть частично закодирована и во второй цепи. Таким образом, достигается экономия генетического материала. В то же время это указывает на то, что проведение оценки количества генетической информации по молекулярной массе ДНК или РНК может оказаться недостоверной.

Существенной особенностью капсидных белков является строго упорядоченная структура, обеспечивающая построение капсида из субъединиц-капсомеров, состоящих из идентичных полипептидных цепей способных к самосборке. Таким образом достигается экономия генетического материала вируса. В противном случае, для синтеза разных капсидных белков потребовалась бы информация, закодированная в гораздо большем количестве генов.

Внешняя оболочка сложных вирионов состоит из белков, которые входят в состав гликопротеидов и гликолипидов. У многих вирионов они распространяются в виде шиловидных отростков на поверхности суперкапсида. Гликопротеидные шипы обладают антигенными свойствами. Многие из них ответственны за адсорбцию на специфических рецепторах клетки и принимают участие в слиянии с клеточной мембраной, обеспечивая тем самым проникновение вири-она в клетку хозяина. Наряду с упомянутыми соединениями в составе суперкапсида имеются гликолипиды. Липидный и углеводный состав вириона определяется клеткой хозяина, но модифицируется суперкапсидными белками. Липиды стабилизируют структуру сложных вирионов.

Ферменты вирусов. В отличие от прокариот и клеток всех других организмов, вирусы лишены ферментов, участвующих в многочисленных метаболических реакциях. Однако многие вирусы содержат в составе капсидов одну или две группы ферментов. К первой относятся ферменты репликации и транскрипции, ко второй — ферменты, участвующие в проникновении вирусной нуклеиновой кислоты в клетку хозяина и выходе образовавшихся вирионов (нейраминидаза, лизоцим, АТФ-аза).

Ферменты вирусов подразделяют на вирионные и вирусиндуцированные. К первым относят ферменты транскрипции и репликации (ДНК- и РНК-полимеразы), обнаруженные у многих вирусов, обратная транскриптаза ретровирусов, а также эндо- и экзонуклеазы, АТФ-аза, нейраминидаза отдельных вирусов.

Вирусиндуцированными считаются те ферменты, структура которых закодирована в вирусном геноме. Прежде всего это относится к РНК-полимеразам пикорна-, тога-, орто- и парамиксовирусам, а также ДНК-полимеразе покс- и герпесвирусов. Наряду с собственными вирусы используют клеточные ферменты, которые не являются вирусспецифическими. Однако их активность может модифицироваться в процессе репродукции вируса.

Виды вирионов. Структура и состав вирионов

Различают простые и сложные вирионы. Простые вирионы состоят из нуклеиновой кислоты, окруженной снаружи белковой оболочкой, которую называют капсидом (ящиком, футляром), сложные — имеют дополнительную внешнюю оболочку (суперкапсид, пеплос).

Структура и химический состав простых вирионов. В состав простых вирусов, типичным представителем которых является вирус табачной мозаики, входят только капсидные белки, но у некоторых из них содержатся также геномные, или терминальные, ковалентно связанные с концом вирионной нуклеиновой кислоты и участвующие в регуляции вирусного генома.

Капсидные белки простоорганизованных вирионов обычно состоят из 1-3 вирусоспецифических белков (полипептидных цепей). При этом каждый из них обладает способностью к самосборке, в начале которой из идентичных полипептидных цепей образуются отдельные структурные элементы (субъединицы) или капсомеры белкового чехла, вслед за чем при их взаимодействии с нуклеиновой кислотой вириона происходит полное самопроизвольное формирование капсида. Количество капсомеров в капсиде вирусов варьирует от трех-шести десятков до многих сотен. У одних вирусов капсомеры имеют овальную или округлую форму, у других — пяти- или шестигранную.

2. Формы существования вирусов. Морфология и биохимическая структура вирионов. Прионы.

По характеру расположения капсомеров вирусы делят на три группы: с кубическим, спиральным и смешанным типом симметрии. Большинство патогенных для человека вирусов имеет кубический тип симметрии. Спиральный тип симметрии нередко встречается среди вирусов растений. Смешанный тип симметрии для простых вирусов нетипичен.


Структура и химический состав сложных вирионов. Сложно устроенные вирусы в капсиде имеют много разновидностей белков. Кроме капсидных и геномных белков могут также содержать ферменты, участвующие в репликации и транскрипции вирусного генома, например ДНК- и РНК-полимеразы. Формирование их капсидов и нуклеокапсидов происходит тоже в процессе самопроизвольной сборки, но цикл полного образования сложных вирионов носит многоступенчатый характер.

Суперкапсидные вирусные гликопротеиды выполняют две основные функции: 1) распознают специфические клеточные рецепторы и взаимодействуют с ними, что дало повод называть их прикрепительными белками, и 2) обусловливают проникновение вируса в клетки, инициируя слияние его оболочек с клеточными мембранами, вследствие чего их называют белками слияния.

Количество углеводов в гликопротеидах может достигать 10% общей массы вириона. Обычными сахарными остатками в них являются сахароза, фруктоза, манноза, галактоза, нейраминовая кислота. Углеводы гликопротеидов обеспечивают сохранение конформации белка и его устойчивость к протеазам.

— Читать далее "Строение капсулы вирионов. Нуклеиновые кислоты вирусов"

Оглавление темы "Вирусология. Строение вирусов":
1. Основатели вирусологии. Этапы развития вирусологии
2. Хронология открытий вирусов. Формы существования вирусов
3. Виды вирионов. Структура и состав вирионов
4. Строение капсулы вирионов. Нуклеиновые кислоты вирусов
5. Организация генома вирусов. Генетические данные вирусов
6. Механизм реализации генетической информации у вирусов. Природа и происхождение вирусов
7. Вирусы позвоночных. Виды вирусов поражающие человека
8. Структура ДНК вирусов. Семейства, роды и виды РНК-вирусов
9. Коронавирусы и вазотропные вирусы. Лимфотропные вирусы
10. Предполагаемые семейства Filo- и Birnaviridae. Структура РНК

  1. Отличия вирусов от других инфекционных агентов и черты их сходства.
  2. Вирионы вирусов, их строение и химический состав

Помимо очень интересных различий в форме молекулы и в структуре концевых участков вирусных ДНК существуют также большие различия в величине генома.

Определение формы вирионов

В 1953 г. Уайетт и Коэн сделали неожиданное открытие, весьма существенное для последующих экспериментов: оказалось, что в ДНК бактериофагов содержится не цитозин, а 5-гидроксиметилцитозин. Это отличие дало возможность изучать фаговые ДНК независимо от ДНК хозяина. Были открыты кодируемые фагом ферменты, которые изменяют метаболизм инфицированной клетки, и она начинает синтезировать компоненты, необходимые вирусу. Еще одно биохимическое отличие ДНК бактериофага состоит в том, что к ее гидроксиметилцитозину присоединены остатки глюкозы: последние, видимо, препятствуют прерыванию фаговой ДНК некоторыми ферментами хозяина.

В противоположность этому у вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Большинство вирусных дезоксинуклеотидов не модифицированы, и поэтому нахождение несомненных модификаций представляло бы большой интерес.

Исследования вирусной РНК составили один из самых значительных вкладов вирусологии в молекулярную биологию. Тот факт, что у вирусов растений реплицируемая генетическая система состоит только из РНК, ясно показал, что и РНК способна сохранять генетическую информацию. Была установлена инфекционность РНК вируса табачной мозаики, и выяснилось, что для инфекции необходима вся ее молекула; это означало, что интактность структуры высокомолекулярной РНК существенно для ее активности. Размеры вирионов РНК — вирусов сильно варьируются, однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени.

РНК пикорнавирусов — вероятно, наименьшая из известных — содержит около 7500 нуклеотидов, а РНК парамиксовирусов — едва ли не самая крупная — почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся РНК-вирусам нужен какой-то минимум информации для репликационной системы и капсидного белка, но у них отсутствует очень сложная добавочная информация, которой могут обладать крупные ДНК-вирусы.

Так же резко различаются вирусы по своей устойчивости в солевых растворах. На основании вышеприведенных фактов можно действительно прийти к выводу, что имеются очень стабильные и весьма лабильные виды вирусов, но чаще всего для вирусов характерна избирательная чувствительность к какому-либо определенному виду воздействий наряду с достаточной стабильностью нуклеопротеидной связи к ряду других факторов внешней среды. Стабильность того или иного вируса к определенным воздействиям нельзя считать неизменной, раз и навсегда данной видовой характеристикой. Она, наряду с другими свойствами вирусной частицы, может подвергаться самым радикальным изменениям в результате мутации. При оценке стабильности вирусных частиц необходимо также иметь в виду, что физическая и биологическая инактивация вирусов не всегда совпадает. Чаще всего эти понятия совпадают в случае простых вирусов, у которых отсутствуют специализированные структуры, ответственные за заражение клеток, а физическая и химическая структура вирусных частиц отличается высокой степенью гомогенности и одинаковым уровнем чувствительности по отношению к различного рода воздействиям. У более сложных вирусов очень часто биологическая инактивация связана с повреждением специализированных структур, определяющих адсорбцию вирусной частицы или введение в зараженную клетку нуклеиновой кислоты, хотя вирусный корпускул в целом остается неповрежденным. Из рассмотрения данных о стабильности вирусных частиц и изменений данной характеристики в процессе мутации становится очевидным, что какой-либо универсальной закономерности в этом отношении установить нельзя. Стабильность вируса к тем или иным физическим и химическим факторам определяется всей совокупностью особенностей первичной, вторичной и третичной структуры белка и нуклеиновой кислоты, а также их взаимодействием.

Вирусы — это неклеточная форма жизни. Они имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (РНК или ДНК) и белка. Нуклеиновая кислота пред­ставляет собой генетический материал вируса; она окружена защитной оболочкой — капсидом. Капсид состоит из белковых молекул и обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Кроме нуклеиновой кислоты внутри капсида могут находиться собственные фер­менты вируса. Некоторые вирусы (например, вирус гриппа и ВИЧ) имеют дополнительную оболочку, образованную из клеточной мембра­ны хозяина.

Вопрос 2. Чем простые вирусы отличаются от сложных?

Простые вирусы представляют собой нуклеопротеиды, т. е. состоят из одной нуклеиновой кислоты ДНК или РНК и нескольких белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка вируса называется капсидом. Примером такого вируса может служить вирус табачной мозаики. Его капсид содержит один белок с низкой молекулярной массой.

Сложноорганизованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую. Иногда в наружных оболочках сложных вирусов помимо белка содержатся углеводы, например у вирусов герпеса и гриппа. Их наружная оболочка является фрагментом цитоплазматической мембраны клетки хозяина.

Вопрос 3. Каков принцип взаимодействия вируса и клетки?

Вирусы являются внутриклеточными паразитами. Проникновение вирусов в клетку основано на рецепторных механизмах взаимодействия.

Участок поверхности клеточной мембраны, к которому прикрепляется вирус, погружается а цитоплазму и превращается в вакуоль, которая может сливаться с ядерной мембраной.

Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т. е. происходит редупликация вирусного генома и самосборка капсида. После синтеза новой молекулы нуклеиновой кислоты вируса она одевается синтезированными в цитоплазме клетки хозяина вирусными белками - образуется капсид.

Выход вирусных частиц в окружающую среду может сопровождаться разрушением клетки.

Вопрос 4. Как вирус проникает в клетку?

Вопрос 5. Укажите особенности взаимодействия бактериофага с бактериальной клеткой.

Проникновение бактериофагов в бактериальную клетку имеет некоторые особенности, так как бактериальные клетки имеют толстую клеточную стенку, вирус не может проникнуть в цитоплазму путем впячивания мембраны. Поэтому бактериофаг вводит полый стержень в клетку и через него выталкивает нуклеиновую кислоту в цитоплазму. Геном бактериофага попадает в клетку.

Вопрос 6. В чём проявляется действие вирусов на клетку?

Генетический материал вируса взаимодействует с ДНК хозяина таким образом, что клетка сама начинает синтезировать необходимые вирусу белки. Одновременно происходит копирование нуклеиновых кислот паразита. Через некоторое время в цитоплазме хозяина начинается самосборка новых вирусных частиц. Эти частицы покидают клетку постепенно, не вызывая ее гибели, но изменяя работоспособность, либо выходят одновременно в большом количестве, что приводит к разрушению клетки.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. Чем горизонтальный путь передачи вирусной инфекции отличается от вертикального? Приведите примеры.

Различают механизм передачи возбудителя инфекции горизонтальный и вертикальный. Горизонтальный– это механизм передачи, связанный с выходом возбудителя во внешнюю среду. Он свойственен большинству инфекционных болезней. Горизонтальный путь передачи инфекций может быть осуществлен во время хирургической операции, проведении противоэпизоотических мероприятий через инструменты и предметы, контаминированные микробами (так называемые ятрогенные инфекции).

Вертикальный – это механизм передачи возбудителя от родителей потомству через плаценту, с молоком, через яйцеклетку. Этот механизм свойственен чаще вирусным инфекциям, например, лейкоз, инфекционный ринит свиней, встречается и при бактериозах – сальмонеллезе, пуллорозе, колибактериозе, микоплазмозе.

Вопрос 2. Как происходит синтез вирусных белков и упаковка новых вирусных частиц?

Происхождение надвидовых систематических групп в процессе развития жизни на Земле называют МАКРОЭВОЛЮЦИЯ.

ИДИОАДАПТАЦИИ - частные приспособления, которые позволяют живым организмам лучше освоить свою адаптивную зону, не повышая при этом уровень организации.

- К образовании нескольких новых видов из одного исходного приводит ДИЗРУПТИВНАЯ форма естественного отбора.

3. Объясните факт наличия рога у носорога с позиции учения Чарльза Дарвина и синтетической теории эволюции

Ученые до сих пор не знают функции рога у носорогов.

По Дарвину:

В результате эволюционного процесса выживают наиболее приспособленные. Видимо, рог носорога помогал выживать (выкапывать корни, расчищать дорогу в подлеске) Выживали те, кто делал это лучше.

Синтетическая теория:

Возникла мутация (появился рог). Каким-то образом рог облегчил или не нанес вреда существованию носорогов. Эта мутация стала доминантной и закрепилась у вида.

Вопрос 1. Как устроены вирусы?
Вирусы — это неклеточная форма жизни. Они имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (РНК или ДНК) и белка. Нуклеиновая кислота представляет собой генетический материал вируса; она окружена защитной оболочкой — капсидом. Капсид состоит из белковых молекул и обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Кроме нуклеиновой кислоты внутри капсида могут находиться собственные ферменты вируса. Примером может служить вирус табачной мозаики
(рис. 3).

вирус табачной мозаики

Рис.3. Вирус табачной мозаики

Его оболочка содержит всего один вид белка с небольшой молекулярной массой.
Сложно организованные вирусы имеют дополнительную оболочку, белковую или липопротеиновую. Иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа (рис. 4) и герпеса (рис. 5).

вирус гриппа

Рис.4. Вирус гриппа и вирус герпеса

вирус герпеса

Рис.5. Вирус герпеса

Их наружная оболочка является фрагментом ядерной или цитоплазмптической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. К сложноорганизованным вирусам относятся вирусы гриппа и ВИЧ, они также имеют дополнительную оболочку, образованную из клеточной мембраны хозяина.

Вопрос 2. Каков принцип взаимодействия вируса и клетки?
Вирус функционирует как внутриклеточный паразит. Он внедряется в клетку, блокирует в ней обмен веществ и использует ее ресурсы (ферменты, запасные вещества) для собственного размножения. Некоторые вирусы способны встраиваться в ДНК хозяина и переходить в скрытое состояние, в течение длительного времени никак не выдавая своего присутствия. В такой форме вирусы даже способны передаваться потомству хозяина.

Вопрос 5. Используя знания о путях распространения вирусных и бактериальных инфекций, предложите пути предотвращения инфекционных заболеваний.
Если заболевание широко распространено на данной территории, целесообразно провести вакцинацию населения. Необходим постоянный медицинский контроль, чтобы быстро обнаружить вспышку заболевания и предотвратить его распространение. Многие инфекции передаются воздушно-капельным путем (например, вирус гриппа). Во время вспышек таких заболеваний имеет смысл использовать ватномарлевые повязки или респираторы.
Есть возбудители заболеваний, которые передаются через предметы обихода, пищу и воду. К ним относятся вирус гепатита А, холерный вибрион, чумная палочка и многие другие. Чтобы избежать заражения, необходимо соблюдать правила личной гигиены: мыть руки перед едой, не пользоваться чужими личными вещами (полотенцем, зубной щеткой), мыть фрукты и овощи, избегать контакта с больными. Необходим постоянный санитарный контроль состояния источников воды и пищевых продуктов, а также дезинфекция помещений, стерилизация инструментов и перевязочного материала.
Существуют заболевания, передающиеся через кровь и другие жидкости тела, в частности ВИЧ и вирус гепатита С. В группы риска по таким заболеваниям попадают наркоманы (часто шприцы используются больше одного раза) и лица, практикующие беспорядочные незащищенные половые контакты. Пока не существует эффективных методов лечения таких заболеваний, поэтому лучшим способом защиты является соблюдение следующих мер предосторожности:
• следует избегать случайных половых связей, а при контактах изолировать себя при помощи презерватива;
• в медицине и косметологии необходимо использовать одноразовые шприцы и тщательно стерилизовать инструменты многоразового использования;
• донорскую кровь следует обязательно проверять на наличие вирусов.

Читайте также: