Сообщение является продуктом обмена

Обновлено: 28.06.2024


Для начала работы в IM-системе пользователю необходимо получить уникальный идентификатор (в этом качестве может выступать UIN, уникальное имя пользователя, либо адрес его электронной почты) и загрузить на свой компьютер клиентскую программу. Долгое время самой популярной и всеми любимой службой для общения в режиме реального времени была ICQ. Но у этой платформы есть существенный недостаток — она представляет собой закрытую собственность своих разработчиков и все передающиеся по этой сети данные являются интеллектуальной собственностью компании. Это серьезная угроза конфиденциальности для бизнеса. Поэтому крайне нежелательно использовать систему ICQ внутри компании. [1]

‒ чат (текстовый, голосовой и видеочат);

‒ инструменты для совместной работы в режиме реального времени;

‒ напоминания и оповещения;

‒ звонки на компьютер;

‒ возможность отправки SMS;

‒ хранение истории общения с контактами;

‒ индикация сетевого статуса присутствия собеседников (в сети или отсутствует), занесенных в список контактов.

При всех существенных преимуществах также следует поговорить слабые стороны IM-служб, такие как:

Обмен веществ_виды.jpg

В результате окисления \(1\) г белка происходит выделение \(17,2\) кДж (\(4,1\) ккал) энергии. Но в качестве источника энергии белки обычно не используются, так как они выполняют другие функции: строительную, защитную, каталитическую и т. д.

В процессе пищеварения белки пищи расщепляются под действием пищеварительных ферментов до аминокислот. Аминокислоты всасываются ворсинками тонкого кишечника и попадают в кровь, которая доставляет их к клеткам. В клетках из аминокислот синтезируются новые белки, свойственные организму человека.

В белковом обмене важную роль играет печень. Она управляет содержанием отдельных аминокислот в крови, осуществляет синтез белков плазмы крови. Одним из продуктов распада аминокислот является ядовитый аммиак. Клетки печени преобразуют аммиак в менее опасную мочевину, которая удаляется из организма с мочой и частично с потом.

Расщепление белков.jpg

Основная функция углеводов в организме — энергетическая. \(1\) г углеводов при окислении даёт \(17,2\) кДж (\(4,1\) ккал) энергии.

С пищей в наш организм поступают разные углеводы. Чаще всего это крахмал (из растительных продуктов), гликоген (из животных продуктов), сахароза, лактоза и др. Эти соединения распадаются в органах пищеварения до глюкозы, которая всасывается стенками тонкого кишечника и попадает в кровь.

Обмен углеводов.jpg

Основная часть глюкозы окисляется в клетках до углекислого газа и воды, которые удаляются с выдыхаемым воздухом или с мочой. Неиспользованная глюкоза превращается в гликоген (животный крахмал) и накапливается в клетках печени и в мышцах.

В крови содержание глюкозы поддерживается на уровне \(0,10\)–\(0,15\) % . В регуляции уровня глюкозы участвуют гормоны поджелудочной железы инсулин и глюкагон. Инсулин ускоряет превращение глюкозы в гликоген, а также затормаживает его распад. Глюкагон обладает противоположным действием. Он, наоборот, способствует расщеплению гликогена и повышению уровня глюкозы в крови.

Если поджелудочная железа вырабатывает недостаточное количество инсулина, то содержание глюкозы в крови увеличивается, и это может привести к тяжёлой болезни — сахарному диабету.

Расщепление углеводов.jpg

Если с пищей в организм поступает слишком много углеводов, они преобразуются в жиры и накапливаются в разных органах.

Окисление жиров в два раза эффективнее окисления углеводов или белков. \(1\) г жира даёт \(38,9\) кДж (\(9,3\) ккал) энергии.

Жиры — это вещества, образованные жирными кислотами и глицерином. В органах пищеварения жиры расщепляются на составные части под влиянием ферментов поджелудочной железы и тонкого кишечника. Образовавшиеся продукты поступают в лимфатические сосуды ворсинок тонкого кишечника, а затем вместе с лимфой попадают в кровеносную систему и доставляются к клеткам.

Обмен жиров.jpg

Расщепление жиров.jpg

  • Окисление жиров обеспечивает энергией работу внутренних органов.
  • Липиды образуют все клеточные мембраны, выполняют функции медиаторов и гормонов.
  • Откладываются в запас в подкожной жировой клетчатке и сальнике, защищают органы от механических повреждений.
  • Жиры плохо проводят тепло и защищают организм от перегревания и переохлаждения, способствуя поддержанию постоянной температуры тела.

Ежедневно рекомендуется употреблять \(80\)–\(100\) г разных жиров. Лишний жир запасается под кожей, но может откладываться также в печени и в кровеносных сосудах.

3 (2).jpg

Органические вещества могут взаимно превращаться. Из белков образуются жиры и углеводы. Углеводы превращаются в жиры, и наоборот, источником углеводов могут стать жиры. Но заменить белки другими веществами невозможно.

Установлено, что взрослому человеку в сутки необходимо получить с пищей не менее \(1500\)–\(1700\) ккал. Причём на обеспечение процессов жизнедеятельности тратится \(15\)–\(35\) % полученной энергии, а остальная энергия тратится на поддержание постоянной температуры тела.

Важной частью метаболизма является пластический обмен. Другие названия этого явления — анаболизм, ассимиляция или биосинтез. Благодаря ему, в организме синтезируются белки, сложные углеводы, ферменты и гормоны. Из белков и липидов строятся живые клетки и другие структурные единицы организма. Это сложный процесс, который присущ большинству живых существ на планете.

  • Синтез белка
  • Анаболизм углеводов
  • Производство нуклеотидов и жирных кислот
  • Процесс фотосинтеза
  • Особенности хемосинтеза
  • Взаимосвязь пластического и энергетического обмена

Виды пластического обмена в организме

Синтез белка

К процессам пластического обмена относят реакции образования белков, углеводов и липидов.

Образование протеинов происходит в цитоплазме клеток. Белковая молекула — сложное полимерное образование. Её составной частью или мономером являются аминокислоты. Всего описано 20 основных аминокислот. Из них состоят белки большинства живых организмов. В отдельных случаях в процессе задействованы модифицированные аминокислоты:

  • десмозин;
  • гамма-карбоксиглутаминовая кислота;
  • селеноцистеин.

Синтез белков основан на принципе матрицы. В организме существуют особые матричные молекулы. Они несут в себе информацию о последовательности аминокислот в протеиновой цепочке. Наиболее часто такой матрицей служит молекула рибонуклеиновой кислоты — матричная или информационная РНК. С её помощью происходит определение структуры вещества.

Этапы пластического обмена белков:

Синтез белков, углеводов, жирных кислот, нуклеотидов

  1. Трансляция — формирование полипептидной цепочки.
  2. Фолдинг — цепочка занимает определённое положение и структуру в трёхмерном пространстве.
  3. Химическое преобразование молекулы.
  4. Доставка готового полипептида к месту назначения — органу или клетке.

В процессе трансляции последовательность аминокислот в белковой цепочке выстраивается в соответствии с кодом информационной РНК. В этом участвуют рибосомы — особые клеточные структуры, состоящие из 2 частей. В каждой части рибосомы содержится белковая часть и рибонуклеотидная.

Аминокислоты доставляются к рибосомам с помощью транспортной РНК (сокращённо тРНК). На одном из участков этой молекулы имеется так называемый антикодон. Подходя к иРНК, он связывается с её участком — кодоном по принципу комплементарности. Молекула тРНК попадает в большую единицу рибосомы, и доставленная аминокислота присоединяется к строящейся белковой цепочке.

Синтез протеинов требует большого количества энергии. Она используется на следующие цели:

  1. Для активирования трансляции.
  2. На активацию каждой аминокислоты, участвующей в процессе.
  3. Для связывания комплекса тРНК + аминокислота с рибосомой.
  4. Для перемещения рибосомы после присоединения новой аминокислоты к пептидной цепи.
  5. Для завершения процесса трансляции.

Такой значительный расход энергии нужен, чтобы обеспечить точность формирования белковой молекулы и необратимость процесса.

Анаболизм углеводов

Синтез углеводов состоит из нескольких этапов. Вначале из неуглеводных соединений формируются молекулы глюкозы (глюконеогенез). Затем из глюкозы синтезируется гликоген (процесс называется гликонеогенез).

Функции синтеза глюкозы в организме человека выполняют:

  • печень;
  • почки;
  • кишечный эпителий.

Основная совокупность химических реакций происходит в цитозоле. Часть подготовительных процессов протекает в эндоплазматической цепи клетки и митохондриях.

Исходным веществом для синтеза может служить пируват. Процесс характеризуется расходом большого количества энергии.

Процесс гликонеогенеза протекает в клетках печени и мышечной ткани. Основная часть реакций проходит в цитозоле. Синтез состоит из нескольких стадий:

Реакции и этапы пластического обмена в организме

  • Молекула глюкозы подвергается фосфорилированию с использованием энергии от 1 молекулы АТФ. В результат получается глюкозо-6-фосфат.
  • Фосфатная группа в новой молекуле направится с шестого атома углерода на первый. Образуется глюкозо-1-фосфат.
  • Полученное соединение переносится на УТФ — получается молекула УДФ-глюкозы.
  • УДФ-глюкоза полимеризуется и получается гликоген. В процессе участвует фермент гликогенсинтаза. При этом молекула УДФ отделяется от моносахаридной части.

Производство нуклеотидов и жирных кислот

Сходство и различия фотосинтеза и хемосинтеза

Нуклеотиды образуются во всех живых клетках организма в цитоплазме. Процесс этот сложный и многоступенчатый. И сходными компонентами являются ионы и нециклические молекулы. В процессе синтеза получаются гетероциклические азотистые основания.

Жирные кислоты синтезируются в цитоплазме адипоцитов — клеток жировой ткани. Процесс состоит из большого количества химических реакций. Практически все они протекают с помощью единого катализатора. Этот комплекс состоит из большого количества ферментов. Синтез липидов — циклическое явление. В результате каждого цикла к молекуле кислоты присоединяются 2 новых атома углерода.

Процесс фотосинтеза

Взаимосвязь пластического и энергетического обмена

Этот биохимический процесс присущ растительному царству. Без него жизнь на планете оказалась бы невозможной. Больше половины живых организмов, существующих на Земле, нуждаются в кислороде для нормальной жизнедеятельности. Они используют его для дыхания, а взамен выделяют в окружающую среду углекислый газ.

Атмосферный кислород поступает из зелёных листьев растений. В них содержатся особые включения — хлоропласты. Снаружи каждый хлоропласт покрыт двойной мембраной. Внутри в цитоплазме содержатся гранулы (тилакоиды) с собственными защитными покрытиями. В тилакоидах и содержится хлорофилл, обеспечивающий процесс фотосинтеза. Именно он придаёт листьям и траве зелёную окраску.

В ходе реакции фотосинтеза осуществляется объединение 6 молекул углекислого газа с молекулами воды. В результате образуется молекула глюкозы. В качестве побочного продукта выделяется кислород. Этот процесс возможен только в присуствии солнечного света.

Особенности хемосинтеза

Пластический обмен: этапы и реакции биосинтеза веществ в живой клетке

Этот тип питания, вероятно, наиболее древний и возник раньше фотосинтеза. Схема химических реакций существенно отличается от фотосинтеза. Энергия для химических процессов берётся не от солнечного света, а от окисления неорганических веществ. Некоторые виды бактерий получают запасы энергии при окислении аммиака. Это соединение образуется при гниении органических остатков.

Этот вид аутотрофного питания характерен только для некоторых представителей ряда прокариот. Многие доядерные организмы живут в условиях, где нет кислорода — на большой глубине в морях и океанах и пр.

Стадии метаболизма

Как и фотосинтез, хемосинтез относится к типам аутотрофного питания. То есть органические вещества, необходимые для жизни, образуются из неорганических исходных компонентов. Энергия в обоих случаях накапливается в виде молекул АТФ (аденозинтрифосфата).

Основные характеристики хемосинтеза:

Основные характеристики хемосинтеза

  • Получение энергии не от солнечных лучей, а от химических реакций окисления.
  • Использование этого типа питания только некоторыми доядерными бактериями.
  • Отсутствие хлорофилла в клетках.
  • Использование в качестве исходного материала не только углекислоты, но и окиси углерода, метанола, уксусной и муравьиной кислоты и пр.
  • Получение энергии в результате окисления неорганических молекул — серы, железа, водорода, марганца, азотистых соединений.

Все организмы, использующие хемосинтез, делят на несколько классов по субстрату для получения энергии. Примеры представлены в таблице.

Класс микроорганизмов Субстрат
серобактерии сернистый водород
железобактерии соли железа
нитрифицирующие аммиак
метанобразующие органические остатки

В природе хемотрофы поддерживают почвы в плодородном состоянии, насыщая их полезными веществами, необходимыми для роста и развития растений.

Взаимосвязь пластического и энергетического обмена

Взаимосвязь пластического и энергетического обмен

Конечным продуктом, в котором накапливается энергия в живых клетках, является АТФ. Образуются молекулы в результате окисления органических веществ.

Пластический обмен — это в биологии процесс, обратный энергетическому. Все вещества при этом распадаются и образуется молекула АТФ. Энергия, полученная в результате распавшихся химических связей, используется для сборки и удержания связей аденозинтрифосфата. В ходе пластического обмена происходит обратный процесс — молекула АТФ распадается, освобождённая при расщеплении энергия используется для химических реакций.

Читайте также: