Сообщение на тему виды теплопередачи в авиации

Обновлено: 07.07.2024

В проекте "Виды теплопередачи в быту и технике" всесторонне изучена информация по видам теплопередачи, использованию излучения, теплопроводности и конвекции в быту и технике, выявлено влияние теплопередачи на организм человека, о пределены способы снижения вреда от этого воздействия.

ВложениеРазмер
vidy_teploperedachi_v_bytu_i_tehnike.doc 122.5 КБ

Предварительный просмотр:

КРАЕВОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВИДЫ ТЕПЛОПЕРЕДАЧИ В БЫТУ И ТЕХНИКЕ

учащиеся 8 класса

Добровольский Анатолий Андреевич

1. Теплопередача и ее виды

1.1 Что такое теплопередача …. . 4

1.2 Виды теплопередачи …. 4

1.3 Теплопроводность …. . 4

1.4 Излучение …. 5

1.5 Конвекция …. . 8

1.6 Все виды теплопередачи одновременно …. 9

2. Заключение …. 11

3. Информационные ресурсы …. 13

Проблема - изучить насколько воздействие бытовых приборов, аппаратуры и гаджетов опасно для человека и способах снижения вреда от этого воздействия.

Объект исследования — теплопередача.

Предмет исследования — причины возникновения и последствия воздействия теплопередачи на организм человека.

Цель — всесторонне изучить информацию по видам теплопередачи, использованию излучения, теплопроводности и конвекции в быту и технике, выявить влияние теплопередачи на организм человека.

1. Изучить явление теплопередачи.

  1. Рассмотреть виды теплопередачи и их применение в быту и технике.
  2. Проанализировать насколько воздействие теплопередачи опасно для человека.
  3. Определить способы снижения вреда от этого воздействия.
  1. явление теплопередачи не имеет применения в быту и технике;
  1. возможно, что виды теплопередачи имеют широкое применение в нашей жизни.
  2. оно влияет на организм человека и может быть смертельно опасно.

Методы исследования – поиск, изучение источников информации (книги, статьи, сайты), наблюдение, анализ.

Теоретическая значимость нашей исследовательской работы заключается в том, что результаты исследования могут быть использованы для снижения влияния явления теплопередачи на организм человека.

Практическая значимость исследования состоит в том, что оно может быть использовано школьниками для повышения образовательного уровня, учителем биологии и физики для объяснения тем и проведения занимательного урока охраны здоровья.

подготовительный (сентябрь 2019 г.) – сбор информации по теме исследования из различных источников, планирование работы;

проведение наблюдений (сентябрь-октябрь 2019 г.) – проведение наблюдений за применением данного явления в быту и технике;

подведение итогов эксперимента (октябрь 2019 г.) – анализ собранных данных, выводы.

Тип проекта — информационный.

1. ТЕПЛОПЕРЕДАЧА И ЕЕ ВИДЫ

1.1 Что такое теплопередача

Процесс передачи тепла от более нагретого тела к менее нагретому называется теплопередачей .

1.2 Виды теплопередачи

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение. (Слайд 2). Эти виды теплопередачи имеют свои особенности, однако передача теплоты при каждом из них всегда идет в одном направлении: от более нагретого тела к менее нагретому. При этом внутренняя энергия более нагретого тела уменьшается, а более холодного — увеличивается.. Внутренняя энергия может передаваться не только непосредственно от одного тела к другому, как, например, от горячей воды к опущенной в нее холодной ложке, но и через промежуточные тела. Так, через стенку чайника часть внутренней энергии от горячей электроплиты передается воде; через металлические трубы отопительной системы тепло передается воздуху, находящемуся в помещении и т.д. Внутренняя энергия может передаваться и от более нагретой части одного и того же тела к другой его части, менее нагретой.

Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретого тела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью. (Слайд 3).

Металлы имеют большую теплопроводность, особенно медь, серебро. Они являются хорошими проводниками тепла. Это происходит из-за того, что молекулы, обладающие большей энергией, передают часть своей энергии соседним молекулам. В результате все тело постепенно нагревается. Само вещество при этом не перемещается [1].

Нагревание металлического стержня, к которому с помощью пластилина прикреплены гвоздики. (Слайд 4). При нагревании конца стержня пламенем свечи гвоздики начинают последовательно отпадать. Это происходит потому, что молекулы, находящиеся у конца стержня приобретают при нагревании большую энергию и передают ее соседним молекулам. Постепенно эта энергия передается следующим молекулам и стержень нагревается.

В жидкостях внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: более быстрые молекулы проникают в менее нагретую область. У жидкостей, за исключением расплавленных металлов, например ртути, теплопроводность невелика. (Слайд 5).

В газах, особенно разреженных, молекулы находятся на достаточно больших

расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

Явление диффузии при теплопередаче в газах проявляется больше, чем в жидкостях. Совершенным изолятором является вакуум, потому что в нем отсутствуют частицы для передачи внутренней энергии. (Слайд 6).

В зависимости от внутреннего строения теплопроводность разных веществ (твердых, жидких, газообразных) различна. (Слайд 7).

1. Птицы зимой сидят нахохлившись. Перья задерживают воздух, а он обладает плохой теплопроводностью. Снег, особенно рыхлый, обладает очень плохой теплопроводностью. Этим объясняется то, что сравнительно тонкий слой снега предохраняет озимые посевы от вымерзания. Погреба утепляют соломой. Мех животных из-за плохой теплопроводности предохраняет их от охлаждения зимой и перегрева летом. Люди зимой носят шубы.

2. Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуда из металла – он лучше проводит тепло и еда быстрее нагревается. в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

3. Пористые вещества (пенопласт, минеральная вата, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью. Тонкий слой воздуха между оконными стеклами предохраняет наше жилище от холода так хорошо, как и кирпичная стена. У термоса внутренняя поверхность зеркальная, а между внутренним и внешним сосудами пустота. (слайд 8)

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем. Излучение - это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. (Слайд 9) .

Излучение - это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.

Виды излучения. (Слайд 10).

1.Тепловое. При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет (Солнце, лампа накаливания, пламя и др.) (Слайд 11).

2.Электролюминесценция. При разряде в газе электрическое поле увеличивает кинетическую энергию электронов. Быстрые электроны возбуждают атомы в результате неупругого ударения с ними. Возбужденные атомы отдают энергию в виде световых волн. (трубки для рекламных надписей, северное сияние и др.) (Слайд 12).

Способность тел по-разному поглощать энергию излучения используется человеком.

Например: - воздушные шары и крылья самолетов красят серебристой краской, чтобы они не нагревались солнцем. - если же нужно использовать солнечную энергию для нагревания некоторых приборов на искусственных спутниках Земли, то эти части окрашивают в темный

цвет. Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета). Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются. Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения — тепловизорах. (Слайд 13)

Электромагнитное поле всегда возникает при движении свободных электронов в проводнике, поэтому передача электрической энергии сопровождается интенсивным электромагнитным излучением (ЭМИ).

К настоящему времени, по данным экологов и врачей-гигиенистов известно, что все диапазоны электромагнитного излучения оказывают влияние на здоровье и работоспособность людей и имеют определенные последствия [8]. Воздействие электромагнитных полей на человека в силу их большой распространенности более опасна, чем радиация. Особенно опасно действие электромагнитных излучений на детей, подростков, беременных женщин и лиц с ослабленным здоровьем [9].

Наиболее быстро реагирующими на излучение являются ткани организма, которые подвержены интенсивному клеточному делению. Вследствие облучения такие ткани, как правило, либо мутируют, либо подвергаются интенсивному разрушению. В организме человека такие ткани — это, прежде всего гонады (половые железы), красный костный мозг, щитовидная железа, слизистые оболочки. А также такие клетки (ткани) имеются в мышцах, хрусталиках глаз и так далее [8,10].

  1. Результаты измерений ЭМИ от бытовых приборов

Название электроприбора Уровень излучения

Расстояние от электроприбора, при котором ЭМИ в норме (м)

Электрическое (норма 25В/м)

Магнитное (норма 250 нТл)

Микроволновая печь 2992

Кухонная плита 1540

(индукционная) 10955 1 м

Стиральная машина 210

  1. Утюг 656
  2. 2359 0,5 м
  3. Вывод: на основании проделанных измерений видно, что у всех бытовых электроприборов при работе превышается норма ЭМИ, причем в рейтинге самых опасных является микроволновая печь, при этом безопасное расстояние от нее является целых 2,5 метра.
  • включать электроприборы по очереди, а не все разом: мобильный телефон, компьютер, СВЧ-печь, телевизор должны работать в разное время,
  • не группировать электроприборы в одном месте, распределить их так, чтобы они не усиливали ЭМП друг друга,
  • не располагать эти приборы рядом с обеденным, рабочим столом, местами отдыха, сна

Пожалуй, одним из самых распространенных электроприборов в повседневности является сотовый телефон. При работе сотовой связи ее основные компоненты – сотовый телефон и базовая станция – создают электромагнитное поле. И владелец сотового телефона, и человек, не имеющий его, но живущий вблизи объектов сотовой связи, находятся в этом электромагнитном поле. Во время работы, когда связь с абонентом установлена, мобильный телефон окружен довольно мощным электромагнитным полем. Оно проникает в тело человека и поглощается, прежде всего, тканями головы – кожным покровом, ухом, частью головного мозга, включая зрительный анализатор.

Сотовый телефон марки Soni

Вывод: Проанализировав результаты таблицы видно, что ЭМИ от сотового телефона превышает норму, причем значение исходящего вызова больше, чем входящего. это связанно с поиском базовой станции во время исходящего вызова. Наименее опасным является СМС связь. ( Слайд 14,15).

Медицинская диагностика.
Досмотр багажа и грузов.
Дефектоскопия изделий и материалов.
Рентгеноспектральный анализ.
Рентгеноструктурный анализ.

Рентгеновская микроскопия.
Рентгеновская астрономия.
Рентгеновские лазеры.

Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков . Благодаря тому же явлению движутся тектонические плиты . Конвекция ответственна за появление гранул н а Солнце .

При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой. (Слайд 17).

Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Конвекция невозможна при нагревании твердых тел. Всему виной достаточно сильное взаимное притяжение при колебании их твердых частиц. В результате нагрева тел твердой структуры не возникают конвекция, излучение. Теплопроводность заменяет указанные явления в таких телах и способствует передаче тепловой энергии. Яркие примеры конвекции – перемещение теплого воздуха в середине помещения с отопительными приборами, когда нагретые потоки движутся под потолок, а холодный воздух опускается к самой поверхности пола. Именно поэтому при включенном отоплении вверху комнаты воздух заметно теплее по сравнению с нижней частью помещения. (слайд 18).

Наиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Циркуляция охлажденного газа фреона по трубам холодильной камеры приводит к снижению температуры верхних пластов воздуха.

Соответственно, замещаясь более теплыми потоками, холодные опускаются вниз, охлаждая, таким образом, продукты. Расположенная на тыльной панели холодильника решетка играет роль элемента, способствующего отводу теплого воздуха, образованного в компрессоре агрегата во время сжатия газа.

Охлаждение решетки также основывается на конвективных механизмах. Именно по этой причине не рекомендуется загромождать пространство позади холодильника. Ведь только в таком случае охлаждение может происходить без затруднений. (Слайд 19).

Другие примеры конвекции можно заметить, наблюдая за таким природным явлением, как движение ветра. Нагреваясь над засушливыми континентами и охлаждаясь над местностью с более суровыми условиями, потоки воздуха начинают вытеснять друг друга, что приводит к их движению, а также перемещению влаги и энергии. На конвекции завязана возможность парения птиц и планеров. Менее плотные и более теплые воздушные массы при неравномерном нагревании у поверхности Земли приводят к образованию восходящих

потоков, что способствует процессу парения. Для преодоления максимальных расстояний без затраты сил и энергии птицам требуется умение находить подобные потоки. Хорошие примеры конвекции – образование дыма в дымоходах и вулканических кратерах. Перемещение дыма вверх основано на его более высокой температуре и низкой плотности по сравнению с окружающей средой. При остывании дым постепенно оседает в нижние слои атмосферы. Именно по этой причине промышленные трубы, посредством которых происходит выброс вредных веществ в атмосферу, делают максимально высокими.

Среди наиболее простых, доступных для понимания примеров, которые можно наблюдать в природе, быту и технике, следует выделить:

  1. движение воздушных потоков во время работы бытовых батарей отопления;
  2. образование и движение облаков;
  3. процесс движения ветра, муссонов и бризов;
  4. смещение тектонических земных плит;
  5. процессы, которые приводят к свободному газообразованию. (Сдайд 20)

Приготовление пищи. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи. Естественно, для хозяек, которые готовят в духовом шкафу всего лишь несколько раз в год, бытовой прибор с функцией конвекции нельзя назвать техникой первой необходимости. Однако для тех, кто не может жить без кулинарных экспериментов, такое устройство станет просто незаменимым на кухне. (Слайд 21).

1.6 Все виды теплопередачи одновременно

В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Типичный пример — термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому, например, горячий чайник, снятый с плиты, при соприкосновении с окружающим

воздухом через некоторое время остывает. Чтобы помешать телу остывать (или нагреваться), нужно предотвратить возможный теплообмен, причем во всех его трех проявлениях (при конвекции, теплопроводности и излучении). Это достигается путем помещения тела в специальный сосуд - сосуд Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром. Сосуды Дьюара вначале применялись лишь для хранения легкоиспаряющихся сжиженных газов (например, жидкого гелия). Впоследствии их стали применять и в бытовых целях - для сохранения при неизменной температуре помещаемых в них пищевых продуктов. Такие сосуды Дьюара стали называть термосами. Термоса, предназначенный для хранения жидкостей, состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность этих стенок покрыта блестящим металлическим слоем, а из пространства между стенками выкачан воздух. Чтобы защитить стеклянный корпус термоса от повреждений, его помещают в картонный или металлический футляр. Сосуд закупоривают пробкой, а сверху футляра навинчивают колпачок. Термос устроен таким образом, что теплообмен его содержимого с окружающей средой сведен до минимума. Отсутствие воздуха между его стенками препятствует переносу энергии путем конвекции и теплопроводности, а блестящий слой на внутренней поверхности термоса препятствует передаче энергии излучением.

Это можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение). (Слайд 23).

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

2. Теплопередача. Виды теплопередачи

Процесс изменения внутренней энергии без совершения работы называется теплопередачей. Без совершения работы тела могут нагреваться и остывать. Без совершения работы могут перемешиваться теплые и холодные слои жидкостей и газов. Без совершения работы может изменяться внутренняя энергия тела путем излучения, в том числе и через пустоту - вакуум. Рассмотрим виды теплопередачи.

Теплопроводность – явление передачи энергии от более нагретой части тела к менее нагретой в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Можно провести опыт, сконструировав установку: на треноге помещается кольцо из тонкой оцинкованной жести. В кольцо под углом 120 градусов вставляются (прикрепляются) три проволоки (медь, алюминий и сталь) в виде спиц, предварительно нужно окунуть их в расплавленный воск от старых свечей. Пока воск на них застывает, нужно прикрепить хотя бы через сантиметр сапожные гвоздики шляпками к стержню. Три начала спиц близко расположены в середине кольца. Зажжем спиртовку (или таблетку сухого спирта), поместим на подставке так, чтобы три начала спиц одинаково нагревались. И наблюдаем: через некоторое время начинает таять воск и первыми начинают отпадать гвоздики на медной спице, чуть позже – на алюминиевой и ещё позже – на железной.

Металлы обладают хорошей теплопроводностью, плохой теплопроводностью обладают пластмасса, резина, стекло, дерево, плексиглас, большинство изоляторов.

Второй вид теплопередачи – конвекция .

Конвекция – процесс теплообмена, осуществляемый путём переноса энергии потоками жидкости или газа. Проведём опыт: в колбу налить подкрашенную воду: капнуть раствора медного купороса или кристаллик марганцовки и снизу на спиртовке (или таблетка сухого спирта , или свеча) нагревать колбу. Через некоторое время можно заметить перемещение слоёв воды снизу вверх (а потом и по кругу).

Воздух – плохой проводник тепла, но он в комнате нагревается сам и, перемешивая тёплые и холодные слои, нагревает всю комнату. Под окнами находятся батареи центрального отопления. Здесь прикоснувшиеся к чугунной батарее, слои теплого воздуха по закону Архимеда, вытесняются холодными и поднимаются вверх. На освободившееся место подходят холодные слои, прикасаясь к поверхности батареи, нагреваются, и опять идут вверх и т.д. Слои теплого и холодного воздуха перемешиваются и нагревают всю комнату.

Третий вид теплопередачи - излучение . Излучение – перенос энергии от одного тела к другому, обусловленный процессами испускания, распространения, рассеяния и поглощения электромагнитного излучения. Можно показать распространение солнечного света и тепла, проговорив, что излучение передаётся и через вакуум. Светлая поверхность отражает излучение, а темная поглощает. Поэтому летом нужно использовать светлую одежду, а зимой – темную. Поэтому самолеты и ракеты красят светлой краской, цистерны с перевозимым топливом – то же красят в светлые тона.

Основы теплопередачи в авиационной и ракетно-космической технике, Авдуевский В.С. и др. скачать


Создание и развитие гиперзвуковой и высотной авиации, дальнейшее совершенствование космических летательных аппаратов, создание космических аппаратов многоразового действия, совершенствование энергосистем для авиационной и ракетно-космической техники, развитие радиоэлектроники требуют непрерывного совершенствования науки о процессах тепло- и массообмена, развития теории теплопередачи. Все это обусловило необходимость второго исправленного и дополненного издания учебника.

Раздел физики, изучающий теплопередачу и её виды, основывается на механической теории теплоты, выдвинутой в XVIII веке великим русским учёным М. В. Ломоносовым. Современные исследователи активно применяют этот процесс в различных сферах жизнедеятельности человека, например, в технике, авиации и ракетостроении. В школе такую тему проходят на уроках физики в восьмом классе.

Виды теплопередачи

Описание процесса

Теплопередача представляет собой один из важнейших физических процессов, состоящий из нескольких простых превращений. Во время него теплота переносится от одного объекта к другому или внутри тела при наличии разности температур. Тепловая энергия присутствует в следующих средах:

  • газы;
  • жидкости;
  • твёрдые тела.

Способы передачи теплоты примеры

Передача тепла — это самопроизвольный процесс, проходящий в свободном пространстве. Энергия распространяется от объектов, которые имеют высокую температуру, к телам с меньшим показателем. Исследования, проведённые учёными, говорят, что теплопередача слишком сложна для рассмотрения её в виде одного процесса. В связи с этим физическое явление было разделено на три следующие вида:

  • теплопроводность;
  • конвекция;
  • излучение.

Характеристика теплопроводности

Теплопроводность — это передача энергии от объекта к объекту или от одной части некоего физического тела к другой посредством теплового движения молекул и атомов. Необходимо отметить, что при этом явлении вещество не перемещается, передаётся лишь внутренняя энергия. Наблюдать теплопроводность позволяет следующий опыт:

Теплопроводность это

  1. К стержню из металла на воск прикреплено несколько гвоздей.
  2. Один конец стержня прочно фиксируют в штативе, а другой начинают нагревать.
  3. Спустя некоторое время гвозди по очереди отпадают.

Это происходит из-за плавления воска, которое вызывает повышение температуры металла. Тот факт, что гвозди отпали не одновременно, свидетельствует о постепенном нагревании стержня. Следовательно, внутренняя энергия тела по мере своего увеличения передавалась от горячего конца к холодному.

Передача тепла имеет ещё одно объяснение, базирующееся на внутреннем строении вещества. Частицы нагреваемого конца стержня из-за внешнего воздействия увеличивают свою энергию. В результате их колебание становится более интенсивным, из-за чего часть полученного потенциала молекулы передают соседним частицам, которые тоже начинают колебаться быстрее. Процесс передачи энергии постепенно охватывает весь стержень. Результатом её увеличения становится повышение температуры объекта.

Теплопроводность различных веществ отличается, даже существуют специальные таблицы, содержащие информацию об этом качестве физических тел. К примеру, если на дно пробирки с водой опустить кусок льда, а её верхний конец нагреть, то вскоре вода, находящаяся рядом с источником огня, закипит, хотя лёд сохранит своё состояние. Из этого следует, что у воды плохая теплопроводность. Этим качеством отличаются все жидкости.

Газообразные вещества имеет ещё более низкую теплопроводность. Доказать утверждение можно опытным путём:

Конвекция опыт

  1. В штативе закрепляют пробирку, в которой находится воздух.
  2. Под ней ставят зажженную спиртовку.

Если в пробирку опустить палец, то тепло ощущаться не будет. Эксперимент позволяет сделать вывод, что воздух, как и прочие газы, плохо передаёт внутреннюю энергию.

Наилучшими проводниками теплоты считаются металлические тела, а к наихудшим относятся сильно разреженные газы. Причиной этого является их молекулярное строение. Частицы газообразных веществ расположены на больших расстояниях друг от друга, а потому сталкиваются редко, из-за чего передача теплоты происходит значительно медленнее, чем в твёрдых телах. Жидкости по уровню теплопроводности находятся между газами и твёрдыми объектами.

Описание конвекции

Конвекция является ещё одним способом передачи теплоты. Её сущность заключается в переносе внутренней энергии слоями жидких или газообразных веществ.

Поскольку конвекция происходит только при перемещении веществ, осуществляться такой процесс может лишь в жидкостях и газах. Известно, что физические тела в этих двух состояниях плохо проводят тепло, но благодаря концекции их всё же можно нагреть. Эффективное применение этого процесса можно наблюдать в холодное время года, когда в помещениях, оборудованных батареями парового отопления, воздух согревается. Этот тип теплопередачи можно наблюдать при проведении простого опыта:

Конвекция это

  1. На дно наполненной водой колбы аккуратно опускают кристалл марганцовокислого калия.
  2. Ёмкость нагревают в том месте, где лежит соль марганцовой кислоты.
  3. Через некоторое время со дна начинают подниматься окрашенные струи воды.
  4. Поднявшись в верхние слои, струи опускаются.

Нижний слой жидкости при нагреве расширяется, что приводит к увеличению её объёма и уменьшению плотности. Под воздействием архимедовой силы нагретая часть вещества перемещается выше. На освободившееся место опускается холодная жидкость, которая по мере нагревания поднимается. В этом случае внутренняя энергия передаётся движущимися вверх потоками воды.

Подобным образом происходит передача теплоты и в газах. Так, если бумажную вертушку размещают над источником тепла, то она начинает вращаться. Лопасти объекта приходят в движение потому, что наименее плотные слои нагретого воздуха поднимаются из-за воздействия на них выталкивающей силы, в то же время холодные слои опускаются, занимая место тёплых. Это передвижение воздуха заставляет вертушку вращаться.

Определение излучения

Последним видом теплопередачи является излучение. Его можно почувствовать, поднеся руку к включенной электрической лампочке, батарее отопления, спирали нагретой электроплиты, горячему утюгу и т. д. Опытным путём выявить излучение можно следующим образом:

Формула теплопередачи

  1. Металлический теплоприёмник, имеющий блестящие и чёрные поверхности, закрепляют в штативе.
  2. К нему присоединяют манометр.
  3. В сосуд, одна сторона которого окрашена в белый цвет, а другая — в чёрный, наливают кипяток.
  4. Ёмкость с водой поворачивают к чёрной поверхности теплоприёмника сначала белой, а затем чёрной стороной.
  5. В обоих случаях уровень воды в колене манометра понижается.
  6. Но следует обратить внимание, что когда к теплоприёмнику обращена чёрная сторона сосуда, жидкости в колене меньше.

Изменение уровня воды в манометре объясняется тем, что воздух, находящийся в теплоприёмнике, начинает расширяться. Но расширение газа возможно только при нагревании, значит, вещество получило от ёмкости с кипятком энергию. Известно, что у воздуха плохая теплопроводность, а конвекции в этой ситуации нет, поскольку сосуд расположен на одном уровне с теплоприёмником, следовательно, ёмкость излучает тепловую энергию.

Излучение теплопередачи

Кроме того, опыт свидетельствует, что от тёмной стороны сосуда исходит больший потенциал, чем от белой. Это подтверждает разный уровень жидкости в манометре.

Чёрная поверхность не только отдаёт большое количество энергии, но и принимает её больше. Экспериментальным доказательством этого утверждения может служить включенная электрическая плита, к которой сначала подносят светлую сторону теплоприёмника с присоединённым к нему манометром, а затем тёмную. Во втором случае уровень жидкости в измерительном приборе будет ниже, чем в первом.

Приведённые опыты подтверждают тот факт, что чёрные тела поглощают и испускают энергию значительно лучше, чем белые. А светлые, в свою очередь, плохо излучают и поглощают её, но хорошо отражают. Именно поэтому в летнее время люди предпочитают светлую одежду, а дома, расположенные в тёплых странах, часто красят в белый цвет.

В природе основным примером теплопередачи в виде излучения можно считать энергию, передаваемую Земле Солнцем. Так как пространство между звездой и планетой заполнено космическим вакуумом, то энергетический потенциал не может быть передан ни посредством конвекции, ни путём теплопроводности. Это значит, что такой вид теплопередачи не зависит от какой-либо среды, излучение обладает способностью свободно проходить даже через вакуум.

Закон охлаждения Ньютона и коэффициенты

Рассчитать скорость теплоотдачи можно с помощью эмпирического уравнения теплоотдачи, основанного на законе охлаждения Ньютона. Если процесс установился, то уравнение выглядит следующим образом: Q = α*F*(tж — tст)*τ, где:

Закон охлаждения ньютона формула

  • Q — поток тепла;
  • α — коэффициент теплоотдачи, показывающий, сколько теплоты получает или отдаёт теплоноситель 1 м² в некий отрезок времени, если температурная разница между составляющими равна 1 °C (эта величина даёт характеристику скорости передвижения тепла в теплоносителе, она зависит от режима перемещения, физических свойств теплоносителя, геометрии каналов, состояния поверхности, отдающей энергию);
  • F — теплоотдающая поверхность;
  • tж — температура вещества;
  • tст — температура стенки;
  • τ — время.

При рассмотрении процесса теплопередачи в твёрдой стенке обязательным условием является разница между температурами поверхностей. Она образует тепловой поток, который направлен от плоскости с наиболее высокой температурой к поверхности с меньшим подобным показателем. Если процесс установился, то закон Фурье принимает вид: Q = λ*F*(t'ст — t''ст)/δ, где:

Закон Фурье

  • Q — тепловой поток;
  • λ — коэффициент теплопроводности, показывающий, сколько тепла проходит за временную единицу через некий отрезок теплоотдающей поверхности, если температура опускается на 1 °C на единицу длины нормали по отношению к изотермической поверхности (это физическая характеристика, которая определяет способность вещества к теплопроводности, зависящая от его природы, структуры и иных показателей);
  • F — поверхность стенки;
  • t’ст — t''ст — температурная разница между поверхностями стенки;
  • δ — толщина стенки.

Зачастую для решения задач по физике необходимо сделать расчёт теплопередачи по формулам, подходящим для различных видов процесса. Такая разница объясняется разными физическими характеристиками веществ, а также особенностями методов передачи теплоты.

Читайте также: