Сообщение на тему пирометры излучения

Обновлено: 05.07.2024

Пирометр, или его равнозначные названия – инфракрасный термометр — это точный инженерный прибор нового поколения для бесконтактного и быстрого измерения температурных показателей на расстоянии до трех метров от исследуемого объекта.

В основе его работы лежит принцип определения по тепловому электромагнитному излучению практически любого объекта температурного значения его поверхности. Это позволяет контролировать и своевременно регулировать температуру и ее перепады в промышленных и бытовых объектах, их деталях и элементах.

Сфера использования

  • тепло- и электроэнергетика;
  • металлургия и металлообработка;
  • гражданское, военное и промышленное строительство;
  • проверка электрического оборудования;
  • в пищевой промышленности;
  • в лабораторных исследованиях;
  • обследование двигателей внутреннего сгорания и подшипниковых элементов, компьютерных составляющих.

Как стационарные, так и мобильные модели термодетекторов особенно рациональны для обследования объектов инфраструктуры, рефрижераторной техники, оснащения мобильных охраннопожарных бригад, контроля условий хранения и транспортировки пищевых и медикаментозных продуктов.

Строение пирометра

Базисом конструкции прибора является детектор инфракрасного (теплового) излучения, интенсивность и спектр которого напрямую зависит от температуры поверхности объекта. Встроенная электронная система измерения фиксирует данные и отображает их на дисплее в удобном формате для дальнейшего анализа пользователем.

Стандартный пирометр представляет собой пистолет, который выглядит как лазерный бластер из фантастических фильмов, с небольшим жидкокристаллическим дисплеем, на котором отображаются замерянные показатели температурных режимов. Небольшая и удобная панель управления, лазерная наводка и высокая точность при близком контакте с объектом делают инструмент весьма востребованным среди технического и инженерного персонала.

Устройство пирометра формирует следующие технические характеристики приборов:

  • оптическое разрешение (кратность варьируется в пределах 2…600);
  • рабочий диапазон температур (-50…+4000°С);
  • измеряемое разрешение;
  • быстродействие (в современных моделях менее секунды, что особенно актуально при измерении быстро меняющихся показаний).

Обычно пирометры обладают небольшими, компактными габаритными размерами; устройство отображение информации может быть как аналоговым, так и цифровым. Диаметр объекта излучения должен составлять не менее 13-15 мм.

Современные модели могут обладать расширенным функционалом:

  • функцией внутренней памяти для хранения данных замеров;
  • определением минимального и максимального показателей серии измерений;
  • подача звукового или визуального сигнала при достижении заданного порогового значения.

Для переноса информационных данных на персональный компьютер или внешний носитель усовершенствованные пирометрические устройства оборудуются USB-интерфейсом.

Принцип действия

Работа приборов этого типа основана на возникновении инфракрасного излучения и определении показателя абсолютного значения излучаемой в инфракрасном спектре энергии длины волны.

Принцип работы пирометра определяет основной функционал инструмента:

  • измерение температуры удалённых (недоступных или труднодоступных) объектов, а также температуры их движущихся элементов;
  • анализ температурного режима находящихся под напряжением объектов при невозможности контактных способов измерения;
  • экспресс-фиксация быстрых температурных изменений поверхности объектного тела;
  • исследование объектов, обладающих низкой теплоёмкостью или теплопроводностью.

Видео по теме

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Область применения

Достаточно широкое применение нашлось для пирометров на тех производствах, где установлено большое количество нагревательных приборов. В области строительства и теплоэнергетики они используются для расчета теплопотерь конструкций, в том числе пирометр помогает выявить повреждения теплоизоляции.

В промышленности подобные приборы дают возможность подвергать анализу температуру всевозможных процессов дистанционно. Это бывает необходимо, например, в машиностроении, металлургии и в прочих отраслях промышленности.

Так, электрики проверяют уровень нагрева мест соединения проводов, а автослесари проверяют нагрев деталей машины. Ученым пирометры приходят на помощь во время осуществления различных исследований или опытов: так они определяют верность показателей температуры веществ и тел.

В быту люди применяют подобные устройства для определения температуры тела, воды, еды и др.

Типы и классификация

В зависимости от функционального признака, выделяют несколько классификаций пирометров.

По существенному методу, используемому в работе:

Оптические пирометры подразделяются на:

  • Яркостные;
  • Цветовые, или мультиспектральные.

По образу прицеливания различают устройства с оптическим или лазерным прицелами.

По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.

По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).

Основываясь на возможном диапазоне измерений выделяют:

  • низкотемпературные (-35…-30 °С);
  • высокотемпературные (+400 °С и выше).

Устройство и принцип действия

Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее.

Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер.

Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник (термобатарея, полупроводник, термопара).

Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление -- в случае использования полупроводников. Эти изменения преобразуются в показания температуры.

Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры -- по шкале Цельсия или Фаренгейта.

Технические характеристики

Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.

Оптическое разрешение

Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.

Рабочий диапазон

Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.

Погрешность

Погрешность предполагает уровень возможных отклонений значений температуры и зависит от точности пирометра. В среднем допустимые отклонения -- не превышающие 2% от нормы.

Коэффициент излучения

Данный параметр представляет собой отношение мощности текущего температурного излучения к такому же показателю эталонного абсолютно черного тела.

СПРАВКА. Для матовых материалов коэффициент излучения равняется 0,9-0,95. По этой причине большее количество приборов подбираются именно на это значение. Результат будет заметно отличаться от реального, например, в случае измерения степени нагрева поверхности блестящего алюминия.

В целях более точного измерения многие модели оснащаются лазерной указкой. При этом световой луч размещается не в центре, а указывает оптимальную границу области измерения.

Инфракрасный радиометр

Этот вид пирометра работает на основе радиационного способа и в ограниченном интервале инфракрасного излучения.

Для удобства пользования аппарат снабжён специальным лазерным указателем.

Он помогает навести прибор на конкретное место детали и измерить его температуру.

Инфракрасный пирометр состоит из таких компонентов:

  • диафрагма;
  • объектив;
  • кожух из меди;
  • корпус;
  • лампа;
  • светофильтр;
  • окуляр;
  • накал;
  • милливольтметр.

Принцип действия прибора основан на улавливании теплового излучения, идущего от горячего объекта, и фокусировке чувствительным элементом, соединённым с термопарой.

Работает прибор таким образом:

  1. Включённый пирометр наводится на изучаемую деталь так, чтобы она оказалась в объективе и полностью закрыла от глаз человека другие предметы.
  2. Окуляр передвигается и достигается максимальная чёткость изображения. При этом важно использовать светофильтр. Он не только позволит более точно выполнить измерения, но и убережёт глаза от вредного воздействия яркого света.
  3. Тепловое излучение поступает на чувствительный элемент прибора. Она изготовлен в виде пластинки из платины.
  4. К ней припаяны термопары, которые нагреваются в зависимости от температуры объекта.
  5. Она измеряется, и результат выдаётся на экран прибора.

Пирометры оптоволоконные и лазерные

Принцип работы такого оборудования идентичен приборам традиционным. Отличием является наличие оптоволоконного кабеля. По этому кабелю транспортируется световой поток. Такая комплектация хороша тем, что можно произвольно изгибать такой шнур. Благодаря такому качеству замеры можно проводить даже в самых труднодоступных местах.

Пирометры оптоволоконные нашли широкое применение в местах, где повышенное электромагнитное поле, и полностью бессильны традиционные модели. Они оснащены фиксированным фокусом. Эти устройства позволяют производить замеры излучения тепловой энергии с самым минимальным диаметром пятна 0,1 миллиметр. Но этот фокус ограничивает расстояние замеров: для того чтобы измерение было точным необходимо соблюдать указанную дистанцию в инструкции.

Лазерные прицелы на пирометрах были установлены для того, чтобы производить замеры на большой дистанции.

Пирометры классифицируются по определенным признакам, и разделяются на основные виды.

По основному принципу действия:

  • Оптические устройства, действующие в диапазонах спектра видимого света и инфракрасных невидимых лучей.

1 — Объектив
2 — Ослабляющий светофильтр
3 — Лампа
4 — Нить накаливания лампы
5 — Милливольтметр
6 — Реостат
7 — Движок реостата
8 — Монохроматический светофильтр
9 — Окуляр
10 — Кольцевая рукоятка реостата
11 — Рукоятка прибора

Принцип его работы основан на сравнении яркости излучения объекта с яркостью нити, излучение которой заранее известно. Луч света от нагретого объекта по объективу попадает в прибор. Далее по окуляру наблюдатель видит и сравнивает яркость объекта с яркостью нити температурной лампы.

Такое сравнение производят в монохроматическом свете, который создает специальный светофильтр. Нить накаливается от аккумулятора, ее накал регулируют реостатом. Температуру определяют по показанию милливольтметра пирометра, который имеет градуировку в градусах соответственно накалу нити.

  • Радиометры (инфракрасные), применяющие радиационный способ для ограниченного интервала инфракрасных лучей. Оснащаются лазерным указателем для обеспечения точности наведения.

1 — Объектив
2 — Диафрагма
3 — Лампа
4 — Медный кожух
5 — Корпус
6 — Светофильтр
7 — Окуляр
8 — Накал
9 — Милливольтметр
10 — Накал

Принцип их работы заключается в том, что тепловое излучение от нагретого объекта улавливается и фокусируется чувствительным элементом прибора, который соединен с термопарой. Прибор состоит из корпуса с объективом. Чувствительная часть пирометра выполнена в виде крестообразной платиновой пластины, к которой припаяны 4 спая термопар, выполненных в виде термобатареи.

При охлаждении или нагревании чувствительного элемента нагреваются и эти термопары. Термопары и платиновая пластина находятся в стеклянной лампе, закрытой медным кожухом, в котором есть отверстия для тепловых лучей, проходящих на чувствительный элемент. По цоколю лампы отведены концы термопар и подключены к клеммам.

При наведении пирометра необходимо добиться того, чтобы объект оказался в телескопе и закрыл поле зрения. Четкость изображения достигают передвижением окуляра. Для предохранения глаза человека от яркого света пользуются светофильтром. Он передвигается ручкой, находящейся возле клемм.

Оптические устройства также разделяют:
  • Цветовы е , мультиспектральные, действующие путем сравнения энергии яркости предмета с другими областями спектра. Они применяются минимум для двух исследуемых участков.
  • Яркостные пирометры. Их называют устройствами с пропадающей нитью. Работа основана на сравнении излучения поверхности со значением излучения нити, по которой проходит электрический ток. Величина силы тока и является значением исследуемой температуры объекта.
По методу прицеливания пирометры разделяют:
По виду коэффициента излучения:
  • С постоянным коэффициентом.
  • С переменным коэффициентом.
По методу перемещения:
  • Переносные (мобильные), применяемые на производственных участках, где необходима мобильность измерений. Предназначены для эксплуатации в тяжелых климатических и промышленных условиях. Имеют повышенное оптическое разрешение, что позволяет определять тепловое состояние предметов размером 5 мм. Переносные устройства применяются в различных сферах промышленности для измерения температуры и слежения за сложными технологическими процессами, которые связаны с соблюдением температурного режима.
  • Стационарные пирометры, применяемые в тяжелой промышленности. Служат для постоянного контроля над процессом производства в литейном производстве металлов, а также изготовления пластиковых элементов. Их монтируют в труднодоступных местах, где нет возможности применить датчики температуры с точки зрения безопасности работников.
По рабочей температуре:
  • Высокотемпературные (более +400 градусов). Служат для измерения высоко нагретых предметов.
  • Низкотемпературные (до -30 градусов). Служат для исследования температуры тел при отрицательных величинах.
Устройство и работа

Температуру можно измерять различными устройствами, которые разделяют на контактные модели, и с дистанционным методом измерения. Пирометры относятся к приборам с дистанционным принципом действия.

Пирометр стандартного исполнения выполнен в виде пистолета. На нем имеется маленький жидкокристаллический индикатор, на котором выводится информация измеряемых параметров температуры.

Удобный корпус и панель управления, лазерное наведение и повышенная точность сделали популярным этот инструмент среди инженерно-технических работников. Дисплей прибора может быть цифровым или аналоговым. Для обеспечения необходимой точности измерения, диаметр поверхности излучения допускается не меньше 15 мм

В функции пирометра обычно включены:
  • Визуальный и звуковой сигнал при достижении определенной границы измерения.
  • Определение наибольшего и наименьшего значения среди серии замеров.
  • Встроенная память для сохранения информации.

Инновационные модели пирометров оснащены USB выходом для передачи информации на внешний носитель или компьютер.

Работа пирометра заключается в идентификации тепловых волн, излучающихся от нагреваемой поверхности. Схема прибора изображена ниже.

1 — Измеряемый объект
2 — Тепловое излучение
3 — Оптика
4 — Зеркало
5 — Видоискатель
6 — Ось видоискателя
7 — Измерительно-счетное устройство
8 — Электронный преобразователь
9 — Корпус
10 — Кнопка
11 — Датчик

Тепловое излучение поступает на датчик пирометра через раструб. В датчике энергия тепла преобразуется в сигнал электрического тока. Мощность этого полученного сигнала имеет зависимость от температуры исследуемого объекта. Чем больше температура, тем большая величина тока возникает в датчике.

Далее сигнал поступает на электронный преобразователь, который подает информацию на жидкокристаллический экран. Одной из разновидностей пирометров являются тепловизоры, которые работают по принципу сравнивания спектра излучения тепла с образцовым спектром.

На многоцветном экране появляется проекция картинки от воздействия теплового излучения объектов, попавших в зону действия прибора. С помощью параметров спектра определяют значение температуры и наглядно наблюдают ее динамическое изменение на поверхности материала. Тепловизоры стали популярными для контроля функциональности отопления жилых домов, а также выявления мест утечки теплоносителя, находящегося в скрытой области.

Технические параметры

Функционирование пирометров сопровождается своими определенными параметрами, которые учитываются при выборе модели прибора, основные из таких параметров рассмотрим подробнее.

Оптическое разрешение

Этот параметр определяет площадь исследуемого предмета для измерения температуры, и зависит от угла обзора объектива прибора, чем больше угол обзора, тем больше возможная площадь исследования, с учетом удаленности до объекта.

Основным условием выполнения точного исследования является наведение прибора именно на измеряемую поверхность. Если захват площади будет больше, то температура определится с большой погрешностью. Оптическим разрешением называется величина отношения размера (диаметра) захвата пирометра к удаленности до объекта.

Этот параметр зависит от модели устройства и колеблется в значительных пределах: от 2:1 до 600:1. Показатель с более высоким разрешением относится к профессиональным пирометрам, используемым для измерения температуры поверхностей в промышленном производстве. Для бытовых условий вполне подойдут модели пирометров с оптическим разрешением 10:1.

Рабочий диапазон

Величина диапазона работы зависит от свойств датчика прибора. Чаще всего этот параметр находится в пределах -30 +360 градусов. Для бытовых нужд вполне подойдут любые виды пирометров, так как в системе отопления наибольшая температура теплоносителя не превосходит 110 градусов.

Точность

Эта величина показывает пределы колебаний температуры при измерении, и зависит от правильности настройки прибора. Средняя величина точности пирометров равна 2%.

Коэффициент излучения

Отношение мощности излучения тепла исследуемой поверхности к мощности излучения абсолютно черного тела называют коэффициентом излучения. Черные неблестящие предметы имеют коэффициент излучения, равный 0,95. Поэтому многие приборы дистанционного измерения температуры имеют настройки на эту величину.

Однако, при попытке измерения температуры предмета, выполненного из алюминия, и отполированного до блеска, величина температуры на экране прибора будет иметь большие отличия от действительной температуры.

Для обеспечения необходимой точности исследований температурного режима большинство приборов оснащают лазерной указкой, с помощью которой пятно света находится не в центре, а определяет оптимальную границу измерения.

Правила пользования

После покупки устройства следует тщательно изучить прилагаемую инструкцию. Правила применения прибора несложные. Неправильное пользование пирометром приведет к большой погрешности измерения, или к возникновению неисправностей.

Рекомендуется следовать некоторым правилам при применении этого устройства:

Обычный человек легко справится с практическим использованием пирометра. Для фирм, монтирующих и проектирующих автономные отопительные системы, они стали необходимым прибором.

Сфера применения

Широкую популярность пирометры приобрели на производстве с наличием оборудования теплоэнергетики: паропроводы, теплотрассы, бойлеры, различные нагревательные устройства.

Нередко пирометрами пользуются в сфере электроэнергетике для измерения элементов в распределительных щитах, трансформаторах,кабелей и контактных соединений.

В металлургической отрасли такими приборами измеряют температуру прессов, станков, печей. В электронной промышленности его используют для замера уровня нагревания деталей и компонентов схем.

Автолюбители используют их для диагностики двигателя автомобиля. Другими сферами применения этого полезного прибора являются: определение нагрева электродвигателей, узлов транспортных средств, температуры при хранении пищевых продуктов.

При обследовании сооружений и жилых домов состояние функционирования отопления, кондиционирования и вентиляции, контроля холодильного оборудования пирометры являются незаменимыми помощниками.

Действие пирометров излучения основано на измерении излучаемой телом энергии, зависящей от его температуры и физико-химических свойств. Чем выше температура нагретого тела, тем больше интенсивность излучения. При нагреве до 500 °С тело излучает невидимые инфракрасные (тепловые) лучи с большой длиной волны. Дальнейшее повышение температуры вызывает появление излучения видимых световых лучей- Вначале раскаленное тело имеет темно-красный цвет, который по мере увеличения температуры переходит в красный, оранжевый, желтый и, наконец, в белый. Наряду с повышением температуры нагретого тела и изменением его цвета быстро возрастает интенсивность (яркость) монохроматического (одноцветного) излучения, а также заметно увеличивается суммарное излучение (радиация). Такие свойства нагретых тел, как яркость и радиация, используются для измерения температуры пирометрами излучения, которые по принципу действия подразделяются на яркостные (оптические), фотоэлектрические и радиационные.

Яркостные пирометры действуют по методу сравнения яркости двух тел: тела, температура которого измеряется, и эталонного тела (нити лампы накаливания с регулируемой яркостью). Принципиальная схема яркостного пирометра с исчезающей нитью приведена на рис. Объектив служит для фокусирования изображения раскаленного тела с плоскостью нити лампы. Перед лампой включен фильтр 2, уменьшающий видимую интенсивность излучения раскаленного тела. Внутри телескопической трубы в фокусе объективной линзы находится пирометрическая лампа 3, питающаяся током от батареи Б.

Схема яркостного пирометра с исчезающей нитью

Рис. Схема яркостного пирометра с исчезающей нитью.

Рис. Нить пирометрической лампы на фоне раскаленного тела.

Для определения силы питающего тока в цепь включен миллиамперметр мА, шкала которого градуируется в градусах МПТШ-68. Через окуляр 4 корректируется изображение нити по глазу наблюдателя. В момент отсчета включается красный светофильтр 5 и реостатом R с помощью поворотного кольца 6 регулируется сила тока до тех пор, пока средняя часть нити не исчезнет на фоне раскаленного тела (рис.), т. е. не наступит равенство яркостных температур нити и тела. Промышленностью выпускаются яркостные пирометры с исчезающей нитью для измерения температур от 880 до нескольких тысяч градусов. Фотоэлектрические пирометры отличаются от оптических тем, что оценка яркости производится не глазом наблюдателя, а с помощью фотоприемников - фотоэлементов и фотоумножителей. Действие фотоэлектрического пирометра основано на свойствах фотоэлемента изменять возникающий в нем фототок пропорционально световому потоку. На рис. показана схема фотоэлектрического яркостного пирометра. Тело 1 (лампа накаливания 1') излучает световой поток, который концентрируется линзой 2 (2'), а затем через светофильтр 3, служащий для изменения пределов измерения, и красный светофильтр попадает на фотоприемник 6. Очередность освещения создается модулятором 5, вибрирующим с частотой 50 Гц. При разных яркостных температурах излучающего тела и лампы накаливания в цепи фотоэлемента возникает переменная составляющая фототека, совпадающая по фазе с фототоком от тела либо от лампы. Переменная составляющая усиливается электронным усилителем, выходной сигнал которого управляет цепью питания лампы до тех пор, пока освещенности измеряемого тела и лампы не уравняются. Сила тока, питающего лампу, измеряется автоматическим электронным потенциометром П, имеющим самопишущее устройство. Предел измерения температуры 800-4000 °С.

Радиационные пирометры действуют по принципу измерения мощности излучения нагретого тела. Испускаемые нагретым телом лучи воспринимаются теплоприемником, состоящим из нескольких последовательно соединенных термопреобразователей (термобатарея), термометра сопротивления и измерительных приборов (милливольтметров, автоматических потенциометров и уравновешенных мостов). Корпус с оптической системой, теплоприемником и другими устройствами называют телескопом радиационного пирометра.

Оптические системы бывают двух разновидностей: рефракторная - преломляющая (с линзой) и рефлекторная - отражающая (с собирательным зеркалом).

Схема фотоэлектрического яркостного пирометра

Рис. Схема фотоэлектрического яркостного пирометра.

Схема радиационного пирометра с термобатареей

Рис. Схема радиационного пирометра с термобатареей.

Радиационные пирометры могут быть установлены стационарно с применением дистанционной передачи, автоматической записи и регулирования температуры.


Пирометр, или его равнозначные названия – инфракрасный термометр (термодетектор, даталоггер температуры), — это точный инженерный прибор нового поколения для бесконтактного и быстрого измерения температурных показателей на расстоянии до трех метров от исследуемого объекта.

В основе его работы лежит принцип определения по тепловому электромагнитному излучению практически любого объекта температурного значения его поверхности. Это позволяет контролировать и своевременно регулировать температуру и ее перепады в промышленных и бытовых объектах, их деталях и элементах.

Что такое пирометр?

Относительно недорогой прибор идеален для использования как в бытовых рабочих процессах, так и в различных промышленных отраслях (если речь идет о мощном электронном пирометре) и высокотехнологичных производствах:

  • тепло- и электроэнергетика;
  • металлургия и металлообработка;
  • гражданское, военное и промышленное строительство;
  • проверка электрического оборудования;
  • в пищевой промышленности;
  • в лабораторных исследованиях;
  • обследование двигателей внутреннего сгорания и подшипниковых элементов, компьютерных составляющих.

Как стационарные, так и мобильные модели термодетекторов особенно рациональны для обследования объектов инфраструктуры, рефрижераторной техники, оснащения мобильных охраннопожарных бригад, контроля условий хранения и транспортировки пищевых и медикаментозных продуктов.

Виды пирометров

Существует несколько классифицирующих подразделений пирометров:

  1. По основной используемой методике работы:
  • инфракрасные (радиометры), использующие радиационный метод для ограниченного инфракрасного волнового диапазона; для точного наведения на цель снабжены лазерным указателем;
  • оптические пирометры, работающие в не менее, чем в двух диапазонах: инфракрасного излучения и спектра видимого света.
  1. Оптические инструменты в свою очередь делятся на:
  • яркостные (пирометры с пропадающей нитью), основанные на эталонном сравнении излучения предмета с величиной излучения нити, сквозь которую пропускается электроток. Значение силы тока и служит показателем измеряемой температуры поверхности объекта.
  • цветовой (или мультиспектральный), работающий по принципу сравнения энергетических яркостей тела в различных областях спектра, — используются как минимум два детектирующих участка.
  1. По способу прицеливания: инструменты с оптическим или лазерным прицелом.
  2. По используемому коэффициенту излучения: переменный коэффициент или фиксированный.
  3. По способу транспортировки:
  • стационарные, используемые в тяжелой промышленности;
  • переносные, используемые на участках производимых работ, для которых важна мобильность.
  1. Исходя из температурного диапазона измерений:
  • низкотемпературные (от -35…-30°С);
  • высокотемпературные (от + 400°С и выше).

Строение пирометра

Базисом конструкции прибора является детектор инфракрасного (теплового) излучения, интенсивность и спектр которого напрямую зависит от температуры поверхности объекта. Встроенная электронная система измерения фиксирует данные и отображает их на дисплее в удобном формате для дальнейшего анализа пользователем.

Стандартный пирометр представляет собой пистолет, который выглядит как лазерный бластер из фантастических фильмов, с небольшим жидкокристаллическим дисплеем, на котором отображаются замерянные показатели температурных режимов. Небольшая и удобная панель управления, лазерная наводка и высокая точность при близком контакте с объектом делают инструмент весьма востребованным среди технического и инженерного персонала.

Принцип работы пирометра.

Устройство пирометра формирует следующие технические характеристики приборов:

  • оптическое разрешение (кратность варьируется в пределах 2…600);
  • рабочий диапазон температур (-50…+4000°С);
  • измеряемое разрешение;
  • быстродействие (в современных моделях менее секунды, что особенно актуально при измерении быстро меняющихся показаний).

Обычно пирометры обладают небольшими, компактными габаритными размерами; устройство отображение информации может быть как аналоговым, так и цифровым. Диаметр объекта излучения должен составлять не менее 13-15 мм.

Современные модели могут обладать расширенным функционалом:

  • функцией внутренней памяти для хранения данных замеров;
  • определением минимального и максимального показателей серии измерений;
  • подача звукового или визуального сигнала при достижении заданного порогового значения.

Для переноса информационных данных на персональный компьютер или внешний носитель усовершенствованные пирометрические устройства оборудуются USB-интерфейсом.

Принцип действия

Работа приборов этого типа основана на возникновении инфракрасного излучения и определении показателя абсолютного значения излучаемой в инфракрасном спектре энергии длины волны.

Применение пирометра.

Принцип работы пирометра определяет основной функционал инструмента:

  • измерение температуры удалённых (недоступных или труднодоступных) объектов, а также температуры их движущихся элементов;
  • анализ температурного режима находящихся под напряжением объектов при невозможности контактных способов измерения;
  • экспресс-фиксация быстрых температурных изменений поверхности объектного тела;
  • исследование объектов, обладающих низкой теплоёмкостью или теплопроводностью.

Вы можете изучить и скачать доклад-презентацию на тему Лекция 4 – Пирометры излучения Учебные вопросы Введение 1. Презентация на заданную тему содержит 20 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Введение Пирометры излучения – это бесконтактные термометры, действие которых основано на использовании теплового излучения нагретых тел. Используются следующие виды пирометров: квазимонохроматические; спектрального отношения; полного излучения.

1 Квазимонохроматические пирометры Принцип измерений температуры квазимонохроматическим пирометром основан на использовании зависимости от температуры спектральной энергетической яркости (СЭЯ). Эта зависимость для абсолютно черного тела определяется по формуле Планка где B0(,T) – СЭЯ абсолютно черного тела для волны длиной ; T – абсолютная температура тела; С1, С2 – константы излучения.

Если температура Т не превышает 3000 К, то вместо формулы Планка может быть использовано уравнение Вина Если температура Т не превышает 3000 К, то вместо формулы Планка может быть использовано уравнение Вина Спектральная энергетическая яркость неодинакова для различных длин волн, поэтому для квазимонохроматических пирометров условились применять длину волны красного света К от 0,65 до 0,66 мкм. Поскольку реальные физические тела излучают энергию менее интенсивно, чем абсолютно черное тело, то в результате измерения квазимонохроматическими пирометрами получают условную так называемую яркостную температуру. Яркостной температурой реального тела ТЯ в свете длины волны К называется такая температура абсолютно черного тела, при которой его СЭЯ и СЭЯ реального тела, имеющего реальную температуру Т, равны между собой.

Для перехода от показаний пирометра, то есть от значения яркостной температуры ТЯ к значению реальной температуры Т используют уравнение Вина. Для перехода от показаний пирометра, то есть от значения яркостной температуры ТЯ к значению реальной температуры Т используют уравнение Вина. Абсолютно черное тело при яркостной температуре ТЯ и длине волны К имеет СЭЯ B0(К,TЯ). Такую же СЭЯ при той же длине волны имеет реальное тело при температуре Т, то есть справедливо равенство СЭЯ реального тела, нагретого до температуры Т, равна где  – спектральный коэффициент излучения (степень черноты тела).

СЭЯ абсолютно черного тела, нагретого до температуры ТЯ, равна СЭЯ абсолютно черного тела, нагретого до температуры ТЯ, равна Приравняв правые части уравнений и логарифмируя, получим уравнения для вычисления значений реальной температуры тела Т по значению яркостной температуры ТЯ, полученному с помощью квазимонохроматического пирометра Правая часть выражения всегда положительна, поэтому то есть Следовательно, яркостная температура нагретых тел всегда меньше их реальной температуры. Это отличие будет тем больше, чем меньше размер К.

Квазимонохроматические пирометры подразделяются на два вида: Квазимонохроматические пирометры подразделяются на два вида: оптические; фотоэлектрические. Оптические пирометры называют также визуальными пирометрами с исчезающей нитью. Их действие основано на сравнении СЭЯ исследуемого тела и СЭЯ нити пирометрической лампы. Оператор должен навести телескоп пирометра на исследуемый объект и изменять ток, проходящий через нить лампы до тех пор, пока светящаяся нить не сольется с фоном раскаленного объекта. По значению тока судят о значении яркостной температуры. Оптические пирометры относятся к приборам с ручной наводкой и в качестве датчиков в АСУ использоваться не могут.

Принцип действия фотоэлектрического пирометра основан на использовании свойства фотоэлемента изменять фототок пропорционально падающему на него световому потоку. Принцип действия фотоэлектрического пирометра основан на использовании свойства фотоэлемента изменять фототок пропорционально падающему на него световому потоку. В этих пирометрах используется тот же участок спектра, что и в пирометрах с исчезающей нитью. Вследствие этого, температура, показываемая фотоэлектрическим пирометром, совпадает с яркостной температурой, измеренной оптическим пирометром. Для получения реальных значений температуры пересчет выполняют по той же формуле, что и для оптического пирометра. Рассмотрим схему фотоэлектрического пирометра. Световой поток от излучающего тела концентрируется линзой 1 и через верхнее отверстие кассеты красного светофильтра 2 попадает на фотоэлемент 3.

При неравенстве этих световых потоков в цепи фотоэлемента возникает переменная составляющая тока, пропорциональная разности освещенностей фотоэлемента обоими источниками. При неравенстве этих световых потоков в цепи фотоэлемента возникает переменная составляющая тока, пропорциональная разности освещенностей фотоэлемента обоими источниками. На выходе усилителя 6 ток накала лампы 4 будет изменяться до тех пор, пока на фотоэлементе не уравняются световые потоки. Таким образом, сила тока накала лампы однозначно связана с яркостной температурой тела. В цепь лампы включен постоянный калиброванный резистор 7, падение напряжения на котором измеряется автоматическим потенциометром. Пирометр фотоэлектрический типа ПФО имеет диапазон измерений от 700 ОС до 1100 ОС, погрешность ±8 ОС. Показатель визирования 1:30. Расстояние до объекта контроля от 120 до 240 мм.

2 Пирометры спектрального отношения Принцип измерений температуры пирометром спектрального отношения основан на использовании зависимости от температуры отношений СЭЯ в двух спектральных интервалах. При повышении температуры абсолютно черного тела область спектра, обладающая максимальной энергией, смещается в направлении малых длин волн. Спектральное распределение энергии излучения происходит согласно закону смещения Вина где max – длина волны, соответствующая максимальному излучению при данной температуре Т; b – постоянная.

Пользуясь законом смещения Вина, абсолютную температуру тела можно определить по положению максимума на кривой распределения энергии. Пользуясь законом смещения Вина, абсолютную температуру тела можно определить по положению максимума на кривой распределения энергии. В видимой части спектра смещение max, вызываемое изменением температуры тела, приводит к изменению его цвета. Это послужило основанием назвать цветовыми пирометры, реализующие данный принцип измерений. Цветовой температурой реального тела ТЦ называется такая температура абсолютно черного тела, при которой отношение его СЭЯ при двух длинах волн 1 и 2 равно отношению СЭЯ реального тела, обладающего температурой Т при тех же длинах волн. Для перехода от показаний пирометра, то есть от значения цветовой температуры ТЦ к значению реальной температуры Т используют уравнение Вина.

Пусть B0(1, Tц) и B0(2, Tц) - СЭЯ абсолютно черного тела при температуре ТЦ для длин волн соответственно 1 и 2. Пусть B0(1, Tц) и B0(2, Tц) - СЭЯ абсолютно черного тела при температуре ТЦ для длин волн соответственно 1 и 2. Пусть B (1, T) и B (1, T) - СЭЯ реального (серого) тела при реальной температуре Т для длин волн соответственно 1 и 2. Тогда согласно определению цветовой температуры должно выполняться равенство Откуда получаем соотношение между цветовой температурой ТЦ и его реальной температурой Т то есть Т  ТЦ В этом выражении 1 и 2 - спектральные коэффициенты излучения (степень черноты) реального тела для лучей с длиной волны соответственно 1 и 2.

В цветовых пирометрах определяется отношение СЭЯ реального в лучах двух заранее выбранных дли волн, то есть показания N пирометра являются функцией В цветовых пирометрах определяется отношение СЭЯ реального в лучах двух заранее выбранных дли волн, то есть показания N пирометра являются функцией И это отношение изменяется при изменении температуры тела. Рассмотрим схему цветового пирометра.

Измеряемое излучение через объектив 1 и обтюратор 2 попадает на фотоэлемент 3. Измеряемое излучение через объектив 1 и обтюратор 2 попадает на фотоэлемент 3. В обтюраторе имеются два отверстия, закрытые светофильтрами: красным 4 и синим 5. При вращении обтюратора синхронным двигателем на фотоэлемент попеременно попадают излучения с соответствующими СЭЯ. Ток фотоэлемента усиливается усилителем 6 и преобразуется логарифмическим устройством 7 в постоянный ток, сила которого зависит от ТЦ и измеряется вторичным прибором 8.

3 Пирометры полного излучения Пирометр полного излучения – это пирометр, действие которого основано на использовании зависимости от температуры тела интегральной энергетической яркости излучения, характеризуемой для абсолютно черного тела с достаточным приближением законом Стефана-Больцмана: где '0 – константа излучения абсолютно черного тела; Т – абсолютная температура излучающей поверхности. Пирометром излучения измеряют условную так называемую радиационную температуру.

Радиационной температурой реального тела ТР называется такая температура абсолютно черного тела, при которой его полная энергетическая яркость излучения равна полной энергетической яркости излучения реального тела при температуре Т: Радиационной температурой реального тела ТР называется такая температура абсолютно черного тела, при которой его полная энергетическая яркость излучения равна полной энергетической яркости излучения реального тела при температуре Т: В свою очередь где Т – степень черноты при всех длинах волн. Учитывая формулу Стефана-Больцмана, получаем откуда

В схему радиационного пирометра входят: телескоп, вторичный прибор и соединительный кабель. В схему радиационного пирометра входят: телескоп, вторичный прибор и соединительный кабель. Объектив телескопа направляется на объект контроля таким образом, что поток лучей от излучателя проходит через линзу объектива 1, диафрагму 2 (ограничивает тепловой поток излучения) и фокусируется на чувствительный элемент 3.

Телескоп типа ТЭРА-50 предназначен для измерений температур от 20 ОС до 2500 ОС. Телескоп типа ТЭРА-50 предназначен для измерений температур от 20 ОС до 2500 ОС. Расстояние от телескопа до объекта контроля должно составлять от 0,9 до 1,1 м.

Читайте также: