Сообщение асимптоты графика функции

Обновлено: 17.05.2024

Достаточно часто на практике приходится иметь дело с функциями, которые определены не на всей числовой прямой, либо принимают не любые значения из множества действительных чисел.

Асимптота -- это такая прямая, к которой график заданной функции приближается сколько угодно близко, но не пересекает ее.

Среди асимптот выделяют следующие виды:

  • вертикальная асимптота (параллельна оси ОY);
  • горизонтальная асимптота (параллельна оси ОХ);
  • наклонная асимптота (расположена под углом к осям координат).

Отметим, что асимптоты на графике функции изображаются пунктирной линией.

Вертикальная асимптота -- это прямая, определяемая уравнением $x=a$, для которой выполняются условия $\mathop<\lim >\limits_ f(x)=\infty $ или $\mathop<\lim >\limits_ f(x)=\infty $.

Вертикальная асимптота может быть только в точках разрыва функции $y=f(x)$, т.е. в тех точках, где данная функция неопределенна.

Найти вертикальную асимптоту графика данной функции: $y=\frac $.

Следовательно, прямая $x=2$ является вертикальной асимптотой (см. рис.).


Горизонтальная асимптота -- это прямая, определяемая уравнением $y=b$, для которой выполняются условия $\mathop<\lim >\limits_ f(x)=b$.

Готовые работы на аналогичную тему

Найти горизонтальную асимптоту графика данной функции: $y=5^ $.

Следовательно, прямая $y=0$ является горизонтальной асимптотой (см. рис.).


График функции может иметь только правую либо только левую горизонтальную асимптоту.

Наклонная асимптота -- это прямая, определяемая уравнением $y=kx+b$, для которой выполняется условие $\mathop<\lim >\limits_ [f(x)-kx+b]=0$.

Условия существования наклонной асимптоты определяются следующей теоремой.

Если функция $y=f(x)$ имеет конечные пределы $\mathop<\lim >\limits_ \frac =k;\mathop<\lim >\limits_ [f(x)-kx]=b$, то данная функция имеет наклонную асимптоту, заданную уравнением $y=kx+b$ при $x\to \infty $.

Частным случаем наклонной асимптоты при $k=0$ является горизонтальная асимптота.

Наклонная асимптота может быть левой (график приближается справа), правой (график приближается слева) или двусторонней (график приближается с обоих сторон).

Найти наклонную асимптоту графика данной функции: $y=\frac > $.

Следовательно, прямая $y=x+2$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.


Найти наклонную асимптоту графика данной функции: $y=\frac > $.

Следовательно, график данной функции не имеет наклонной асимптоты.

График функции может иметь одновременно несколько асимптот, например, вертикальную и наклонную.

Найти асимптоты графика данной функции: $y=\frac > $.

Область определения функции: $D_ =\ < x\in R|x\ne 1\>$.

Следовательно, прямая $x=1$ является вертикальной асимптотой (см. рис.).

Следовательно, прямая $y=3x+3$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное. Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

Определение 1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy .

Определение. Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x) , если выполняется хотя бы одно из условий:

  • (предел функции при значении аргумента, стремящимся к некоторому значению a слева, равен плюс или минус бесконечности)
  • (предел функции при значении аргумента, стремящимся к некоторому значению a справа, равен плюс или минус бесконечности).
  • символом обозначается стремление x к a справа, причём x остаётся больше a;
  • символом обозначается стремление x к a слева, причём x остаётся меньше a.

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.


Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции .

Пример 3. Найти асимптоты графика функции

Пример 4. Найти асимптоты график функции .

Горизонтальные асимптоты

Первое, что нужно узнать о горизонтальных асимптотах: они параллельны оси Ox .

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b), то y = bгоризонтальная асимптота кривой y = f(x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).


Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении "икса" к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении "икса" к плюс бесконечности равен бесконечности:

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число - точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше - угловой коэффициент k, который показывает угол наклона прямой, и свободный член b, который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё - уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом. Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f(x) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.


При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:


Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва:

Заключение: x = −1 - точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция - дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой - наклонной асимптоты:


Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

На рисунке график функции обозначен бордовым цветом, а асимптоты - чёрным.

Пример 8. Найти асимптоты графика функции

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при .


Пример 9. Найти асимптоты графика функции

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство и при этом . Знак переменной x совпадает со знаком . Поэтому рассмотрим эквивалентное неравенство . Из этого получаем область определения функции: . Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при (левосторонний предел не существует):

Точка x = 2 - точка разрыва второго рода, поэтому прямая x = 2 - вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Итак, y = x + 1 - наклонная асимптота графика данной функции при . Ищем наклонную асимптоту при :

Итак, y = −x − 1 - наклонная асимптота при .


Пример 10. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при :

Оба предела нашли, используя первый замечательный предел. Заключение: x = 0 - точка устранимого разрыва, поэтому у графика функции нет вертикальных асимптот.

Ищем наклонные асимптоты:


Таким образом, при наклонной асимптотой графика данной функции является прямая y = x . Но при найденные пределы не изменяются. Поэтому при наклонной асимптотой графика данной функции также является y = x .

Пример 11. Найти асимптоты графика функции

Решение. Сначала найдём вертикальные асимптоты. Для этого найдём точки разрыва функции и их виды. Знаменатель не может быть равным нулю, поэтому должно соблюдаться условие . Функция имеет две точки разрыва: , . Чтобы установить вид разрыва, найдём односторонние пределы:

Так как все пределы равны бесконечности, обе точки разрыва - второго рода. Поэтому график данной функции имеет две вертикальные асимптоты: x = 2 и x = −2 .

Ищем наклонные асимптоты. Так как данная функция является дробно-рациональной, пределы при и при совпадают. Поэтому, определяя коэффициенты прямой, ищем просто пределы:


Подставляем найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты y = 2x . Таким образом, график данной функции имеет три асимптоты: x = 2 , x = −2 и y = 2x .

Призрак асимптоты давно бродил по сайту чтобы, наконец, материализоваться в отдельно взятой статье и привести в особый восторг читателей, озадаченных полным исследованием функции. Нахождение асимптот графика – одна из немногих частей указанного задания, которая освещается в школьном курсе лишь в обзорном порядке, поскольку события вращаются вокруг вычисления пределов функций, а они относятся всё-таки к высшей математике. Посетители, слабо разбирающиеся в математическом анализе, намёк, думаю, понятен ;-) …стоп-стоп, вы куда? Пределы – это легко!

Примеры асимптот встретились сразу же на первом уроке о графиках элементарных функций, и сейчас тема получает детальное рассмотрение.

Итак, что такое асимптота?

Примечание: определение содержательно, если вам необходима формулировка в обозначениях математического анализа, пожалуйста, обратитесь к учебнику.

На плоскости асимптоты классифицируют по их естественному расположению:

2) Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты . Например, та же гипербола с асимптотой .

Резво пошло-поехало, ударим по теме короткой автоматной очередью:

Сколько асимптот может быть у графика функции?

Ни одной, одна, две, три,… или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции. Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса – бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.

Что значит найти асимптоты графика функции?

Это значит выяснить их уравнения, ну и начертить прямые линии, если того требует условие задачи. Процесс предполагает нахождение пределов функции.

Вертикальные асимптоты графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.

Примечание: обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой – зависит от контекста.

Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции. Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций).

Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.

Наклонные асимптоты графика функции

Общее практическое правило:

Если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

Покажем, что у параболы нет наклонных асимптот:

Предел бесконечен, значит, наклонная асимптота отсутствует. Заметьте, что в нахождении предела необходимость отпала, поскольку ответ уже получен.

Очевидно, что у любой квадратичной, кубической функции, многочлена 4-й и высших степеней также нет наклонных асимптот.

А теперь убедимся, что при у графика тоже нет наклонной асимптоты. Для раскрытия неопределённости используем правило Лопиталя:
, что и требовалось проверить.

При функция неограниченно растёт, однако не существует такой прямой, к которой бы её график приближался бесконечно близко.

Переходим к практической части урока:

Как найти асимптоты графика функции?

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса – речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться). Начнём с чего-нибудь простого:

Найти асимптоты графика функции

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв, а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

А вот в знаменателе получается бесконечно малое отрицательное число:
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого – они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО. Поэтому обязательно вычислим и правосторонний предел:

Вывод: односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

2) Проверим наличие наклонных асимптот:

Второй предел тоже конечен.

Таким образом, наша асимптота:

Вывод: прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты
можно пользоваться упрощенной формулой:

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста, а значит, искомый предел будет конечным:

Ответ:

Найти асимптоты графика функции

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта – вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдена по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Найти асимптоты графика функции

Решение: Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва, поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение:

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

Перепишем функцию в виде

Найдём односторонние пределы в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ:

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции. Правильная картинка – в конце урока.

Найти асимптоты графика функции

Найти асимптоты графика функции


Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше, чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста. В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая – через предел .

Найти асимптоты графика функции

Решение: классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово – отлично! Пункт № 1 закрыт.

2) Проверим наличие наклонных асимптот:

Второй предел тоже конечен, следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод:

Найти асимптоты графика функции

Решение: комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ:

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Но в жизни происходят и другие чудеса:

Исследовать график функции на наличие асимптот

Решение: функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствует. Но вот наклонные вполне могут быть. Проверяем:

Вспоминаю, как ещё в ВУЗе столкнулся с похожей функцией и просто не мог поверить, что у неё есть наклонная асимптота. До тех пор, пока не вычислил второй предел:

Строго говоря, здесь две неопределённости: и , но так или иначе, нужно использовать метод решения, который разобран в Примерах 5-6 статьи о пределах повышенной сложности. Умножаем и делим на сопряженное выражение, чтобы воспользоваться формулой :

Ответ:

Пожалуй, самая популярная наклонная асимптота.

Исследовать график функции на наличие асимптот

Решение: подкоренное выражение положительно, значит, область определения – любое действительно число, и вертикальных палок быть не может.

Проверим, существуют ли наклонные асимптоты.

Таким образом, прямая является наклонной асимптотой графика при .

Ответ:
, если ;
, если .

Две разные наклонные асимптоты графика

Не удержусь от графического изображения:

Это одна из ветвей гиперболы .

Не редкость, когда потенциальное наличие асимптот изначально ограничено областью определения функции:

Исследовать график функции на наличие асимптот

Решение: очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

1) Функция непрерывна на интервале , а значит, если вертикальная асимптота и существует, то это может быть только ось ординат. Исследуем поведение функции вблизи точки справа:

Обратите внимание, здесь НЕТ неопределённости (на таких случаях акцентировалось внимание в начале статьи Методы решения пределов).

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопиталя мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ:
, если ;
, если .

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Исследовать график функции на наличие асимптот

Исследовать график функции на наличие асимптот

А здесь могут быть только наклонные асимптоты, причём направления , следует рассмотреть отдельно.

Надеюсь, вы отыскали нужную асимптоту =)

Решения и ответы:

Пример 2: Решение:
1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Найдём односторонние пределы:

Прямая является вертикальной асимптотой графика функции при .
2) Наклонные асимптоты.

Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ:

Две вертикальных и горизонтальная асимптоты графика

Чертёж к Примеру 3:

Пример 4: Решение:
1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Вычислим односторонние пределы:

Примечание: бесконечно малое отрицательное число в чётной степени равно бесконечно малому положительному числу: .

Прямая является вертикальной асимптотой графика функции.
2) Наклонные асимптоты.

Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ:

Пример 5: Решение:
1) Исследуем функцию на наличие вертикальных асимптот. Найдём точки, в которых знаменатель обращается в ноль:

Действительных корней нет.
Исследуемая функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствуют.
2) Наклонные асимптоты.

Прямая является горизонтальной асимптотой графика функции при .
Ответ:

Вертикальная и наклонная асимптота графика

Чертёж к Примеру 7:

Успехов в дальнейшем изучении математического анализа!

Пример 8: Решение:
1) Вертикальные асимптоты. Исследуем точку .
,
Примечание: бесконечно малое отрицательное число в нечётной степени равно бесконечно малому отрицательному числу: .
.
Прямая (ось ) является вертикальной асимптотой для графика , если .
2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .
Ответ:
График данной функции:

Пример 12: Решение: найдём область определения функции:

.
Помимо аналитического способа нахождения области определения можно использовать и метод интервалов.
1) Проверим наличие вертикальных асимптот. Для удобства и наглядности вычислений разложим аргумент логарифма на множители:

Вычислим односторонние пределы:
Таким образом, прямые являются вертикальными асимптотами для графика функции при и соответственно.
2) Наклонные асимптоты.
Дважды используем правило Лопиталя:
Первый предел конечен, находим второй предел:

Значит, наклонные асимптоты отсутствуют.
Ответ:
, если ;
, если .

Пример 13: Решение: так как функция непрерывна на , то вертикальные асимптоты отсутствуют.
Выясним, есть ли у графика наклонные асимптоты:

Значит, при у графика нет наклонной асимптоты.

Таким образом, прямая является горизонтальной асимптотой графика данной функции при .
Ответ: ось абсцисс при .

Автор: Емелин Александр

(Переход на главную страницу)

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Асимптота графика функции у=f (x) представляет собой прямую L, максимально приближающеюся к графику функции, точка которого стремится к бесконечности, то есть неограниченно удаляется от начала координат по кривой. Расстояние между этой точкой функции у=f(x) и асимптотой L стремится к нулю.

На рисунке приведены примеры асимптот графиков функций.

Асимптоты

На рисунке слева продемонстрирована кривая, которая приближается к асимптоте и остается с одной стороны по отношению к ней.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

На рисунке справа представлена кривая (график функции), которая пресекает асимптоту бесконечное множество раз с разных сторон

Асимптоты графика функции, основные виды

Асимптоты делятся на три вида: вертикальные, наклонные и горизонтальные.

У разных функции в наличии может быть различное количество асимптот:

  1. Парабола и синусоида не имеют асимптот.
  2. Экспоненциальная и логарифмическая функции имеют 1 асимптоту.
  3. Арктангенс и арккотангенс — две.
  4. Тангенс и котангенс — бесконечное количество.
  5. Гипербола имеет горизонтальную и вертикальную асимптоты.

Приведем пример нахождения асимптот гиперболы.

Гипербола — геометрическое место расположения точек, от которых абсолютная величина разности растояний до двух фокусов (заданных точек), является постоянной и меньшей, чем расстояние между самими фокусами.

Асимптоты гиперболы — прямые, которые тесто связаны с ней и определяются уравнениями \(y=\frac bax\) и \(-y=\frac bax\) .

При \(x\rightarrow+\infty\) разность ординат асимптоты и гиперболы будет \(\delta\rightarrow0\) .

Это действительно, так как:

Следовательно, если абсцисса х неограниченно возрастает, то график гиперболы и ее асимптота неограниченно сближаются.

Расположение асимптот гиперболы соответствует диагоналям прямоугольника, стороны которого параллельны оси Ох и оси Оу, а центром служит начало координат.

В равносторонней гиперболе, имеющей вид \(x^2-y^2=a^2\) , когда \(b=a\) , асимптоты будут иметь угловые коэффициенты \(k=\pm\frac ba\) , равные \(\pm1\) . Свойством этих асимптот является взаимная перпендикулярность. Они также делят пополам углы между осями симметрии гиперболы.

Пример

Необходимо составить уравнение гиперболы, если следующие уравнения задают ее асимптоты:

Гипербола проходит через точку М(6; -4).

Решение

Применим формулу \(y=\frac bax\) и получим:

Подставим координаты точки М в общую формулу уравнения гиперболы:

Получим систему уравнений. Чтобы получить уравнение данной гиперболы, необходимо вычислить полученную систему уравнений.

В итоге получим:

Вертикальные асимптоты

Если хотя бы один из пределов \(\lim_f(x)\) или \(\lim_f(x)\) является равным +∞ или —∞, то вертикальной асимптотой графика функции у=f(x) будет являться прямая х=с.

Другое определение подразумевает, что если в определении асимптоты х0 является конечным числом, то такая асимптота является вертикальной. При этом в точке левый или правый предел (или оба) равны +∞ или -∞.

Примеры вертикальных асимптот:

Пример 1

Необходимо определить вертикальную асимптоту функции \(\lim_a(x)=0.\)

Решение

то x=0 — вертикальная асимптота.

Пример 2

Ось ординат является вертикальной асимптотой, так как

Наклонные асимптоты

Если в определении асимптоты присутствует +∞ или —∞, то она относится либо к горизонтальной, либо к наклонной.

Асимптота графика функции у=f(x) является наклонной, если эту функцию можно представить в виде f(x)=kx+b+а(х). При этом должно выполняться условие: \(a(x)\rightarrow0\) при \ \(x\rightarrow+\infty\) . Прямая будет иметь вид y=kx+b.

Прямая у=kx+b будет наклонной асимптотой при \(x\rightarrow+\infty\) и \(x\rightarrow-\infty\) , если существуют пределы:

Если k=0, то наклонная асимптота превращается в горизонтальную.

Применение правила Лопиталя

Правило Лопиталя применяется, когда границы не определены, например, 0/0 или ∞/∞:

Если функции можно дифференцировать, и они относятся к окрестностям точки x=a, тогда наклонную асимптоту необходимо искать по формуле:

Производная может применяться многократно для получения константы в числителе или знаменателе.

Пример 1

Прямая у=х — наклонная асимптота графика данной функции.

Пример 2

Рассмотрим два варианта:

То есть правая ветвь кривой имеет наклонную асимптоту в виде прямой у=х-2.

То есть левая ветвь кривой имеет наклонную асимптоту в виде прямой у=-х+2.

Горизонтальные асимптоты

Прямая y=b является горизонтальной асимптотой для графика функции y=f(x), если

При \(x\rightarrow+\infty\) или при \(x\rightarrow-\infty\) , когда только один из представленных пределов равен числу b, прямая y=b становится горизонтальной асимптотой не всей кривой, а соответствующей ее части.

Пример 1

Имеется функция: \(y=4+\frac1x.\)

поэтому y=4 — горизонтальная асимптота данной функции.

Пример 2

Значит, у=1 — горизонтальная асимптота графика функции.

Пример 3

то y=0 — горизонтальная асимптота графика функции при \(x\rightarrow+\infty\) .

Читайте также: