Перегрузка сообщение по физике

Обновлено: 07.07.2024

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Во время старта космического корабля космонавты испытывают перегрузок. Этот термин означает, что вес космонавта по модулю становится больше силу тяжести. Выясним, почему это происходит.

После включения ракетного двигателя, когда ракета начинает разгоняться, ее движение и движение космонавта осуществляются с ускорением, направленным вертикально вверх. При этом вес космонавта будет больше силу тяготения:

^ Отношение силы, с которой тело давит на опору в случае ускоренного движения вверх, к его весу в инерциальной системе отсчета называют перегрузкой. Когда вес тела больше силы тяжести, говорят, что тело испытывает перегрузки. Перегрузка испытывают пассажиры лифтов, космонавты при взлете на ракете в космос, летчики при выходе из пикирования и т.д.. Вследствие перегрузки увеличивается не только вес человека в целом, но и каждого ее органа. Здоровый человек может без вреда для своего здоровья выдерживать кратковременные трехкратные перегрузки, т.е. увеличение веса втрое. Космонавтам же во время старта и посадки космического корабля приходится выдерживать многократные перегрузки.

Вопрос к ученикам во время изложения нового материала

1. При каких условиях вес тела равен по модулю силе тяжести, действующей на это тело?

2. Ли вес гиря, висит на нитке? Чему равна вес, если нить перерезать?

3. Ли вес у дерева, растущего во дворе?

4. Камень бросили вертикально вверх. В какие моменты полета он находится в состоянии невесомости, если можно пренебречь сопротивлением воздуха? Изменится ответ, если камень бросить под углом к горизонту?

5. Почему необходимо учитывать перегрузки?

6. Что общего в падении тел на Землю, вращении Луны вокруг Земли, приливах и отливах?

Закрепление изученного материала

1. Тренируемся решать задачи

1. В лифте установили динамометр, на котором подвесили тело массой 1 кг. Что покажет динамометр, если:

а) лифт движется равномерно;

б) лифт поднимается вверх с ускорением 5 м/с2;

в) лифт опускается вниз с ускорением 5 м/с2?

3. Ученик утверждает, что вес человека, находящегося в лифте, обязательно увеличивается, когда лифт движется вверх, и уменьшается, когда лифт движется вниз. Согласны ли вы с этим утверждением? Решение

Утверждение неверно: вес зависит не от скорости лифта, а от его ускорения.

4. Космический корабль сразу же после старта движется вертикально вверх с ускорением 40 м/с2. С какой силой космонавт массой 70 кг давит на кресло кабины? Чему равна в этом случае коэффициент перегрузки?

2. Контрольные вопросы

1. Приведите примеры движений, когда вес тела равен силе тяжести, действующей на это тело.

2. Приведите примеры движений, при которых вес тела меньше силу тяжести, действующая на него (больше силы тяжести, действующей на него).

3. Или исчезает сила притяжения тела к Земле во время перехода тела в состояние невесомости?

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Перегрузка и невесомость

Я почувствовал: какая то непреодолимая сила все

больше и больше вдавливает меня в кресло. И хотя

оно было расположено так, чтобы до предела

сократить влияние огромной тяжести,

наваливающейся на мое тело, было трудно

пошевелить рукой и ногой …

Ю. А. Гагарин о перегрузке

hello_html_m3f309dab.jpg

Что же должен чувствовать человек, находящийся на борту космического корабля?

После включения ракетного двигателя, когда ракета-носитель начинает разгоняться, на человека массой m в космическом корабле будут действовать две силы: сила тяжести mg и сила реакции опоры N. Так как ускорение ракеты a направлено вверх, то преобладающей оказывается сила реакции опоры: N > mg. Их равнодействующая F = N – mg по второму закону Ньютона равна произведению массы на ускорение:

N – mg = ma, откуда N = mg + ma.

Вес космонавта Р по третьему закону Ньютона равен по величине силе реакции N, поэтому

P = mg + ma = m(g + a).

До старта ракеты вес космонавта был равен силе тяжести mg . Теперь, как это видно из последнего равенства, его вес увеличился, превысив силу тяжести на величину ma.
Состояние тела, при котором его вес превышает силу тяжести, называют перегрузкой .

При перегрузке не только все тело начинает давить сильнее на опору, но и отдельные части этого тела начинают сильнее давить друг на друга. У человека в состоянии перегрузки затрудняется дыхание, ухудшается сердечная деятельность, происходит перераспределение крови, ее прилив или отлив к голове и т. д. Поэтому переносить значительные перегрузки могут только хорошо тренированные люди.

Количественно перегрузку характеризуют отношением a/g, которое обозначают буквой n и называют коэффициентом перегрузки. При n-кратной перегрузке, т е. когда a = ng, вес человека (и любого другого тела) увеличивается в (1 + n) раз.

Чем меньше время действия перегрузки, тем большую перегрузку способен выдержать человек. Так, установлено, что человек, находясь в вертикальном положении, достаточно хорошо переносит перегрузки от 8g за 3 с до 5g за 12–15 с. При мгновенном действии, когда они длятся менее 0,1 с, человек способен переносить двадцатикратные и даже большие перегрузки.

После выключения двигателей, когда космический корабль выходит на орбиту вокруг Земли, его ускорение, как мы знаем, становится равным ускорению свободного падения: a = g. Точно такое же ускорение будет и у космонавта, находящегося внутри корабля. Это ускорение направлено вниз, к центру Земли, и поэтому теперь из двух сил N и mg, действующих на космонавта, преобладающей оказывается сила тяжести. Их равнодействующая F = mg – N по второму закону Ньютона равна произведению массы на ускорение космонавта, т.е. mg. Поэтому

mg – N = mg, откуда N = 0.

Это означает, что опора никак не реагирует на присутствие космонавта. По третьему закону Ньютона такое возможно лишь в том случае, если и сам космонавт не оказывает никакого действия на свою опору, т. е. его вес равен нулю.

Состояние тела, при котором его вес равен нулю, называется невесомостью .

Следует помнить, что невесомость означает отсутствие веса, а не массы. Масса тела, находящегося в состоянии невесомости, остается такой же, какой и была.

Наряду с этим невесомость в условиях орбитального полета играет роль специфического раздражителя, действующего на организм человека. Она оказывает существенное влияние на многие его функции: слабеют мышцы и кости, организм обезвоживается и т. д. Однако все эти изменения, вызванные невесомостью, обратимы. С помощью лечебной физкультуры, а также лекарственных препаратов нормальные функции организма могут быть снова восстановлены.

В состоянии невесомости может находиться не только космонавт в орбитальной космической станции, но и любое свободно падающее (без вращения) тело. Чтобы испытать это состояние, достаточно совершить простой прыжок: между моментом отрыва от Земли и моментом приземления вы будете невесомы!

Готовя космонавтов к космическому полету, состояние невесомости моделируют в специальных самолетах-лабораториях. Для воспроизведения на самолете состояния невесомости надо перевести самолет в режим набора высоты по параболической траектории с ускорением, равным ускорению свободного падения. Пока самолет будет двигаться по восходящей, а затем по нисходящей части параболы, пассажиры в нем будут невесомы.

В периоды воздействия больших перегрузок ( на старте корабля и при его торможении) большинство операций, связанных с управлением кораблем, должно быть автоматизировано.

Космонавт. Архивное фото

В авиационной и космической медицине перегрузкой считается показатель величины ускорения, воздействующего на человека при его перемещении. Он представляет собой отношение равнодействующей перемещающих сил к массе тела человека.

Перегрузка измеряется в единицах, кратных весу тела в земных условиях. Для человека, находящегося на земной поверхности, перегрузка равна единице. К ней приспособлен человеческий организм, поэтому для людей она незаметна.

Если какому-либо телу внешняя сила сообщает ускорение 5 g, то перегрузка будет равна 5. Это значит, что вес тела в данных условиях увеличился в пять раз по сравнению с исходным.

При взлете обычного авиалайнера пассажиры в салоне испытывают перегрузку в 1,5 g. По международным нормам предельно допустимое значение перегрузок для гражданских самолетов составляет 2,5 g.

В момент раскрытия парашюта человек подвергается действию инерционных сил, вызывающих перегрузку, достигающую 4 g. При этом показатель перегрузки зависит от воздушной скорости. Для военных парашютистов он может составлять от 4,3 g при скорости 195 километров в час до 6,8 g при скорости 275 километров в час.

Реакция на перегрузки зависит от их величины, скорости нарастания и исходного состояния организма. Поэтому могут возникать как незначительные функциональные сдвиги (ощущение тяжести в теле, затруднение движений и т.п.), так и очень тяжелые состояния. К ним относятся полная потеря зрения, расстройство функций сердечно-сосудистой, дыхательной и нервной систем, а также потеря сознания и возникновение выраженных морфологических изменений в тканях.

С целью повышения устойчивости организма летчиков к ускорениям в полете применяют противоперегрузочные и высотно-компенсирующие костюмы, которые при перегрузках создают давление на область брюшной стенки и нижние конечности, что приводит к задержке оттока крови в нижнюю половину тела и улучшает кровоснабжение головного мозга.

Для повышения устойчивости к ускорениям проводятся тренировки на центрифуге, закаливание организма, дыхание кислородом под повышенным давлением.

При катапультировании, грубой посадке самолета или приземлении на парашюте возникают значительные по величине перегрузки, которые могут также вызвать органические изменения во внутренних органах и позвоночнике. Для повышения устойчивости к ним используются специальные кресла, имеющие углубленные заголовники, и фиксирующие тело ремнями, ограничителями смещения конечностей.

Перегрузкой также является проявление силы тяжести на борту космического судна. Если в земных условиях характеристикой силы тяжести является ускорение свободного падения тел, то на борту космического корабля в число характеристик перегрузки также входит ускорение свободного падения, равное по величине реактивному ускорению по противоположному ему направлению. Отношение этой величины к величине называется "коэффициентом перегрузки" или "перегрузкой".

На участке разгона ракеты-носителя перегрузка определяется равнодействующей негравитационных сил — силы тяги и силы аэродинамического сопротивления, которая состоит из силы лобового сопротивления, направленной противоположно скорости, и перпендикулярной к ней подъемной силы. Эта равнодействующая создает негравитационное ускорение, которое определяет перегрузку.

Ее коэффициент на участке разгона составляет несколько единиц.

Если космическая ракета в условиях Земли будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды, то произойдет увеличение давления на опору из-за чего возникнет перегрузка. Если движение будет происходить с выключенными двигателями в пустоте, то давление на опору исчезнет и наступит состояние невесомости.

При старте космического корабля на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. По статистике, космонавты редко испытывают перегрузки, превышающие 4 g.

Способность переносить перегрузки зависит от температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и т.д. Существуют и другие более сложные или менее уловимые факторы, влияние которых еще не до конца выяснено.

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, которое длится более трех секунд, могут возникнуть серьезные нарушения периферического зрения. Поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести. При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта иллюзия называется окологиральной и является следствием воздействия перегрузок на органы внутреннего уха.

Многочисленные экспериментальные исследования, которые были начаты еще ученым Константином Циолковским, показали, что физиологическое воздействие перегрузки зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Из-за увеличения своего веса внутренние органы смещаются вниз и вызывают сильное натяжение связок.

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси, от спины к груди. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

\overline<P></p>
<p>Вес
, как и любая другая сила, в системе СИ измеряется в Ньютонах.

Следы на снегу или на песке свидетельствуют о том, что человек или животное, проходя, давит на снежную или песчаную опору с некоторой силой.

Вес тела во время движения. Состояния невесомости и перегрузки

Вес тела зависит от ускорения, с которым движется тело, а потому может быть различным:

    Если тело покоится или движется равномерно прямолинейно, т.е. ускорение тела равно нулю, вес тела равен силе тяжести.

\[\overline<N></p>
<p>+m\overline=0\]

или в проекции на ось :


\[\left|\overline<P></p>
<p>\right|=\left|\overline\right|=mg\]


По второму закону Ньютона:

\[\overline<N></p>
<p>+m\overline=m\overline\]

или в проекции на ось :

По третьему закону Ньютона:

\[\left|\overline<P></p>
<p>\right|=\left|\overline\right|=m(g+a)\]

Перегрузки испытывают космонавты при взлете и на участках торможения космического корабля, летчики при выполнении фигур высшего пилотажа, пассажиры лифта при разгоне или торможении лифта и т.д.


По второму закону Ньютона:

\[\overline<N></p>
<p>+m\overline=m\overline\]

или в проекции на ось :

По третьему закону Ньютона:

\[\left|\overline<P></p>
<p>\right|=\left|\overline\right|=m(g-a)\]

Если ускорение тела в этом случае будет равно ускорению свободного падения, вес тела равен нулю, т.е. тело будет находиться в состоянии невесомости.

Поскольку вес покоящегося тела равен силе тяжести, часто считают, что вес и сила тяжести – это одна и та же сила. Однако это неверно. Во-первых, вес и сила тяжести приложены к разным телам: сила тяжести приложена к телу, а вес – к опоре или подвесу. Во-вторых, вес и сила тяжести имеют различную физическую природу: вес, как правило, является силой упругости, а сила тяжести – это сила гравитационного взаимодействия. Наконец, как было показано выше, вес тела изменяется с изменением ускорения и может быть равен нулю, когда сила тяжести нулю не равна.

Примеры решения задач

Задание При раскрытии парашюта скорость парашютиста уменьшается с 50 до 10 м/с за 1 с. Какую перегрузку испытывает парашютист?
Решение Сделаем рисунок.


На парашютиста действуют сила тяжести " width="26" height="15" />
и сила натяжения строп парашюта " width="14" height="16" />
.

По второму закону Ньютона:

\[m\overline<g></p>
<p>+\overline=m\overline\]

или в проекции на ось

откуда сила натяжения строп парашюта:

По третьему закону Ньютона:

\[\left|\overline<P></p>
<p>\right|=\left|\overline\right|=m\left(g+a\right)\]

Ускорение парашютиста при раскрытии парашюта:

\[a=\frac<\Delta v></p>
<p>\]

поэтому вес парашютиста:

\[P=m\left(g+\frac<\Delta v></p>
<p>\right)\]

\[\frac<\Delta v></p>
<p>=\frac=40\approx 4g\]

На тело, которое находится на экваторе планеты, действует гравитационная сила " width="15" height="16" />
и сила реакции поверхности планеты " width="18" height="16" />
. Тело вместе с планетой равномерно вращается вокруг ее оси. Следовательно, тело будет двигаться с центростремительным ускорением, которое направлено к центру по радиусу окружности.


\[\overline<F></p>
<p>+\overline=m\overline\]

или в проекции на ось :

По условию задачи тело на экваторе должно находиться в состоянии невесомости, т.е. .

\[\left|\overline<P></p>
<p>\right|=\left|\overline\right|\]

поэтому можно записать:

\[F=G\frac<mM></p>
<p>\]

\[a=\frac<v^2></p>
<p>\]

\[G\frac<mM></p>
<p>=m\frac\]

\[G\frac<M></p>
<p>=v^2\]

откуда скорость тела:

\[v=\sqrt<G\frac<M></p>
<p>\ >\]

Период обращения Земли, т.е. время, за которое Земля делает один полный оборот:

\[T=\frac<2\pi R></p>
<p>=2\pi R\sqrt>\]

Количество оборотов планеты за время

\[N=\frac</p>
<p>=\frac<2\pi R>\sqrt\ >\]

Гравитационная постоянная ^\ /^2\ .>" width="236" height="22" />
Масса Земли ^" width="101" height="17" />
кг, радиус Земли ^6" width="106" height="20" />
м.

Время сут ч с.

Подставив в формулу численные значения физических величин, вычислим:

\[N=\frac<86400></p>
<p><2\pi \cdot 6,4\cdot ^6>\cdot \sqrt^\cdot 6\cdot ^><6,4\cdot ^6>>=1,7\cdot ^7\]

Читайте также: