Новые технологии современного производства сообщение 9 класс

Обновлено: 04.07.2024

Список новых перспективных технологий содержит некоторые из самых выдающихся текущих событий, достижений и инноваций в различных областях современной технологии. Новые технологии — технические нововведения, которые представляют прогрессивные изменения в рамках области конкурентного преимущества. Существуют разные мнения по вопросу о целесообразности, значимости, статусу и экономической жизнеспособности различных новых технологий. По многим новым технологиям и их последствиям для общества идут постоянные общественно-политические дискуссии.

Перспективных технологий XXI века огромное множество, далее рассмотрим по три примера из различных сфер деятельности.

1)Сельскохозяйственный робот или агробот — робот, используемый в сельскохозяйственных целях.

2) Генетически модифицированная пища — это продукты питания, полученные из генетически модифицированных организмов (ГМО) — растений, животных или микроорганизмов. Продукты, которые получены при помощи генетически модифицированных организмов или в состав которых входит хоть один компонент, полученный из продуктов содержащих ГМО так же могут считаться генетически модифицированными, в зависимости от законодательства страны. Генетически модифицированные организмы получают некоторые новые свойства благодаря переносу в геном отдельных генов теоретически из любого организма (в случае трансгенеза) или из генома родственных видов (цисгенез).

3) Мясо из пробирки, также известное как культивируемое мясо или искусственное мясо — это мясо, которое никогда не было частью живущего, полноценного животного. В нескольких современных исследовательских проектах пытаются выращивать мясо в пробирке экспериментально, хотя пока что до производства культивируемого мяса для общественного потребления дело не дошло.[1] На первом этапе скорее всего будет производиться мясной фарш, а долгосрочной целью является выращивание полноценной культивированной мышечной ткани. Потенциально мышечную ткань любого животного можно выращивать в пробирке.

Биотехнология и здравоохранение

1)Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

2) Выращивание органов — перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях, однако идут активные разработки и эксперименты в этой области. По словам директора Федерального научного центра трансплантологии и искусственных органов имени Шумакова профессора Сергея Готье выращивание органов станет доступным через 10—15 лет.

3) Импланта́ты (нем. Implantat) — класс изделий медицинского назначения, используемых для вживления в организм либо в роли протезов (заменителей отсутствующих органов человека), либо в качестве идентификатора (например, чип с информацией о домашнем животном, вживляемый под кожу). Имплантаты стоматологические — вид имплантатов для вживления в кости верхней и нижней челюсти, которые используются в качестве основы для прикрепления съемных и несъёмных стоматологических протезов. Существует также имплантация капсул с фармакологическим содержимым, например противозачаточных капсул Norplant (англ.), содержащих гормональные контрацептивы.

1) Биото́пливо — топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.

Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты, топливные гранулы, щепа, солома, лузга) и газообразное (синтез-газ, биогаз, водород)

3) На́ноанте́нна (нанте́нна) — устройство преобразования солнечной энергии в электрический ток, построенное по принципу выпрямляющей антенны, но работающее не в радиодиапазоне, а в оптическом диапазоне длин волн электромагнитного излучения. Идея использования антенн для сбора солнечной энергии была впервые предложена Робертом Бейли в 1972 году.

1) Иску́сственный интелле́кт (ИИ, англ. Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

2) Маши́нный перево́д — процесс перевода текстов (письменных, а в идеале и устных) с одного естественного языка на другой с помощью специальной компьютерной программы. Так же называется направление научных исследований, связанных с построением подобных систем.

3) Объёмная опти́ческая па́мять — это разновидность компьютерной памяти, в которой информация может быть записана и считана в трёхмерном пространстве (а не в привычной двумерной плоскости как, например, в компакт-дисках).

Такой способ хранения информации потенциально способен позволить записывать на диски, сопоставимые по размерам с компакт дисками, порядка терабайта данных. Чтение и запись файлов достигается фокусировкой лазера в объёме. Однако, поскольку структура данных имеет объёмный характер, луч лазера должен проходить сквозь другие точки данных для достижения области, где необходимо произвести чтение или запись. Таким образом, требуется своего рода нелинейность, чтобы эти данные не мешали достичь желаемой точки. [3]

Новые технологии современного производства

Почему в технологиях современного производства на второй план уходят технологии механического резания?

Почему в технологиях современного производства на второй план уходят технологии механического резания?

Почему в технологиях современного производства на второй план уходят технологии механического резания?

На основе новых научных открытий создаются устройства, позволяющие выполнять немыслимые ранее работы

На основе новых научных открытий создаются устройства, позволяющие выполнять немыслимые ранее работы

На основе новых научных открытий создаются устройства, позволяющие выполнять немыслимые ранее работы

На смену механического резания материалов при изготовлении деталей пришло резание лазером, плазмой

На смену механического резания материалов при изготовлении деталей пришло резание лазером, плазмой

На смену механического резания материалов при изготовлении деталей пришло резание лазером, плазмой.
Электронный луч — это ускоренные до больших скоростей и сфокусированные в остронаправленный поток электроны.

3D- принтеры

3D- принтеры

Всегда ли те чудеса, о которых рассказывается в сказках, с современных позициях столь уж чудесны?

Всегда ли те чудеса, о которых рассказывается в сказках, с современных позициях столь уж чудесны?

Всегда ли те чудеса, о которых рассказывается в сказках, с современных позициях столь уж чудесны? Многое ли из романов писателей-фантастов 20 века для нас уже обычное явление?

Сверхпроводник – это материал, который при определенных условиях приобретает сверхпроводящие свойства

Сверхпроводник – это материал, который при определенных условиях приобретает сверхпроводящие свойства

Сверхпроводник – это материал, который при определенных условиях приобретает сверхпроводящие свойства.

Метаматериалы – это композитные (составные) материалы

Метаматериалы – это композитные (составные) материалы

Метаматериалы – это композитные (составные) материалы.

Самовосстанавливающиеся материалы

Самовосстанавливающиеся материалы

Нанотехнологии Нанообъекты

Нанотехнологии Нанообъекты

З направления нанотехнолоии:

З направления нанотехнолоии:

З направления нанотехнолоии:

Вопросы для закрепления: 1. Какие технологии в машиностроении приходят на смену технологиям механического резания? 2

Вопросы для закрепления: 1. Какие технологии в машиностроении приходят на смену технологиям механического резания? 2

Вопросы для закрепления:

На смену механического резания материалов при
изготовлении деталей пришло резание лазером,
плазмой.
Электронный луч — это ускоренные до больших
скоростей и сфокусированные в остронаправленный
поток электроны.

Всегда ли те чудеса, о которых рассказывается
в сказках, с современных позициях столь уж
чудесны? Многое ли из романов писателейфантастов 20 века для нас уже обычное
явление?

9. Сверхпроводник – это материал, который при определенных условиях приобретает сверхпроводящие свойства.

10. Метаматериалы – это композитные (составные) материалы.

11. Самовосстанавливающиеся материалы

12. Нанотехнологии

14. Вопросы для закрепления:

§ 24. Современные технологии обработки материалов

Создание новых технологий всегда связано, с одной стороны, с возникновением у людей новых потребностей, а с другой стороны, с уровнем развития науки, который даёт возможность развивать технику. Например, бурное развитие техники в конце XX в. требовало использования всё большей энергии, а успехи атомной и ядерной физики XX в. открыли возможность для появления новых источников энергии. В результате с середины XX в. началось строительство атомных электростанций.

Какие промышленные предприятия есть в вашем регионе? Что они производят? Люди каких профессий на них работают?

Для обеспечения человечества необходимыми продуктами труда: изделиями и энергией – используются сложные технологические системы, входящие в промышленные предприятия, которые образуют промышленность страны.

Для работы промышленности необходимо использовать специальные знания, которые называются промышленными технологиями . Наиболее важными промышленными технологиями являются следующие.

Технологии металлургии включают в себя знания о процессах получения металлов и сплавов из руд и других материалов, а также о процессах, связанных с изменениями состава и свойств металлических материалов (рис.1). Разновидностями технологий металлургии являются технологии получения стали, меди, бронзы.

https://i2.wp.com/1001student.ru/wp-content/uploads/2018/09/0_b6f91_41234a4f_XXL.jpg

Рис.1. Использование технологий металлургии:

а – добыча железной руды; б – процесс литья алюминия

Машиностроительные технологии включают разработку процессов конструирования и производства различных машин, приборов, проектирования машиностроительных заводов и организации производства на них (рис. 2).

https://for.ge/uploads/images/1592398262_188278.jpg
https://hevcars.com.ua/wp-content/uploads/2019/12/audi-e-tron-batteries-hevcars-3.jpg

Рис. 2. Использование машиностроительных технологий:

а – сборочный конвейер на автомобильном заводе;

б – автоматическая линия на машиностроительном заводе

Энергетические технологии – технологии производства, передачи и использования различных видов энергии, в первую очередь электрической. Современная техника позволяет осваивать новые, поистине неисчерпаемые источники энергии: солнечной, ветровой, энергии морских и океанских приливов и отливов (рис. 3).

https://experience-ireland.s3.amazonaws.com/thumbs2/1dc1dd2c-b03f-11e4-8c69-22000ad04020.800x600.jpg

Рис. 3. Использование энергетических технологий:

а – Красноярская гидроэлектростанция;

б – линии электропередачи

Биотехнологии – технологии использования живых организмов или продуктов их жизнедеятельности для решения технологических задач, а также создания живых организмов с необходимыми свойствами (рис. 4). Всемирная известность к шотландскому ученому, обладателю докторских степеней в медицине, биологии и генетике сэру Иэну Уилмуту пришла в 1997 году – с явлением миру первого в мире клонированного из взрослой клетки животного, которое окрестили овечкой Долли. Эксперимент команды исследователей под его руководством доказал, что для создания копий животных – их клонов могут быть использованы не только половые или стволовые, но также соматические клетки, то есть обычные. Биотехнологии с давних пор используются, например, для получения молочных продуктов.

https://www.patrasevents.gr/imgsrv/f/full/1385394.jpg

Рис. 4. Использование биотехнологий: первое клонированное животное – овечка Долли с сэром Иэн Уилмут

Биотехнологии используются в медицине для создания новых лекарств. Так, первый антибиотик — пенициллин — был создан в 1928 г. британским учёным Александром Флемингом (1881—1955) на основе продуктов жизнедеятельности плесневых грибов. До этого открытия десятки тысяч людей умирали от болезней, которые сейчас успешно лечат антибиотиками.

Технологии производства продуктов питания – технологии, связанные с производством, обработкой продуктов сельского хозяйства и получения из них продуктов, пригодных для питания человека (рис. 5).

https://airsprings.com.au/wp-content/uploads/2016/12/icecream-machine.jpg
https://zeny.osobnosti.cz/wp-content/uploads/2019/01/011.jpg

Рис. 5. Использование технологий производства продуктов питания:

а – линия по производству мороженного;

б – производство кондитерских изделий

Космические технологии – технологии, связанные с запуском объектов или живых существ в космос, спуском на Землю и с непосредственной работой в космосе. Эти технологии используются при создании космической техники.

Космической техникой являются все космические аппараты, в том числе спутники, космические телескопы, межпланетные автоматические станции, орбитальные станции, а также оборудование, которое на них расположено (рис. 6). Ракеты-носители, спускаемые аппараты и прочая техника, обеспечивающая работу космических аппаратов, но постоянно не работающая в космосе, также относится к космической технике. В конце XX в. началось промышленное освоение космоса. Кроме использования привычных уже спутников связи, сейчас на космических станциях при меняют уникальные биотехнологии, выращивают кристаллы. Учёные и инженеры изучают возможности строительства космических электростанций и промышленного освоения Луны для добычи на ней сырья, например железа, алюминия, титана, а также гелия, который может использоваться как топливо для перспективных атомных электростанций.

https://teletype.in/files/5b/12/5b1299ad-0d05-410e-8b3f-f7c6d569794a.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg/800px-%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg

Рис. 6. Космические технологии:

а – Международная космическая станция;

Электрофизические и электрохимические методы

Под электрофизическими и электрохимическими методами размерной обработки понимается совокупность электрических, электрохимических, электромагнитных и ядерных процессов воздействия на твердое тело для придания ему заданной формы и размеров. Эти процессы действуют в различных сочетаниях с тепловыми, механическими и химическими процессами.

Электрофизические и электрохимические методы используются для формообразования поверхностей заготовок из труднообрабатываемых материалов (весьма вязких, твердых и очень твердых, керамических, металлокерамических) и позволяют обрабатывать сложные фасонные внешние и внутренние поверхности, отверстия малых диаметров и т. д.

Эти методы можно разделить на 6 групп:

  • электроэрозионные,
  • лучевые,
  • ультразвуковые
  • электрохимические,
  • плазменная обработка,
  • формование в магнитном поле.
  1. Электроэрозионные методы обработки применяют для всех токопроводящих материалов. Эти методы основаны на явлении электрической эрозии, т.е. разрушение поверхности электродов электрическим разрядом, проходящим между ними. Разрушение материала происходит путем его плавления с последующим выбросом из рабочей зоны в виде парожидкостной смеси. Основными методами электроэрозионной обработки являются электроискровая и анодно-механическая. Для этих методов характерны наличие жидкой диэлектрической среды между электродами и подачи энергии в форме импульсов. Жидкая среда повышает эффективность разрушения металла и является средством эвакуации продуктов эрозии из зоны обработки.

Электроэрозионный метод обработки токопроводящих металлов и сплавов основан на использовании преобразуемой в теплоту энергии импульсных электрических разрядов, возбуждаемых между инструментом и изделием. В зависимости от вида электрического разряда (искра, дуга), параметров импульсов тока, напряжения и других условий электроэрозионная обработка подразделяется на электроискровую, электроимпульсную, электроконтактную и анодо-механическую. Каждой разновидности электроэрозионной обработки свойственны определенные технологические характеристики, оборудование и область промышленного применения.

При электроискровом метоле обработки применяют импульсы длительностью 20…200 мкс. Электрическая эрозия проявляется наиболее интенсивно, если межэлектродное пространство заполнено диэлектрической жидкостью. В качестве такой жидкости используют керосин, минеральное масло, водные растворы электролитов и дистиллированную воду.

  1. Лучевой метод обработки, к которому относится обработка световым, электронным и ионным лучами, используют для обработки токопроводящих материалов и диэлектриков. Они основаны на съеме материала при воздействии на него сфокусированными лучами с высокой плотностью энергии. Съем материала осуществляется преобразованием этой энергии непосредственно в зоне обработке в теплоту.

Высокая плотность энергии сфокусированного электронного луча так же, как и светового луча лазера, позволяет проводить размерную обработку за счет нагрева и испарения материала с узколокального участка. Для этих методов характерна практическая независимость обрабатываемости материала от механических характеристик, поэтому как металлы, так и неметаллические материалы (магнитные материалы, керамика, полупроводниковые материалы, легированные стали и ферриты, твердые сплавы, корунд и т.д.) обрабатываются одинаково успешно.

Возможность точного дозирования энергии луча позволяет осуществлять широкий круг технологических процессов от местной термообработки, ионной очистки и сварки до механической обработки. В ряде случаев, когда для обработки особо миниатюрных деталей изготовление инструмента практически неосуществимо (например, для отверстий диаметром 5…10ики), лучевая обработка является единственно возможной.

  1. Ультразвуковой метод обработки заключается в механическом воздействии на материал. Он назван ультразвуковым благодаря тому, что частота ударов соответствует диапазону неслышимых звуков, т.е. выше 16 кГц. Ультразвуковым методом можно обрабатывать твердые и хрупкие материалы, частицы которых могут, как бы выкалываться при ударе.

Широко используют ультразвуковую очистку деталей. Ультразвуковые колебания, накладываемые на жидкость для очистки деталей, особенно малогабаритных и имеющих сложную конфигурацию, резко повышают скорость и качество очистки.

Для пайки алюминия и его сплавов применяют способ удаления окисленной пленки, основанный на ее механическом разрушении интенсивными ультразвуковыми колебаниями. При этом осуществляется процесс ультразвукового лужения. Сущность явлений, происходящих при ультразвуковом лужении, заключается в следующем. Излучаемые рабочей частью паяльника знакопеременные упругие колебания частотой 16…22 кГц вызывают периодические растяжения и сжатия частиц жидкого припоя. В результате чего образуются кавитационные процессы в расплавленном припое. При этом возникают большие ударные импульсы, воздействующие на жидкий припой и поверхность облуживаемых деталей и вызывающие разрушение окисной пленки. Раздробленные частицы окисной пленки, обладают меньшей плотностью, всплывают на поверхность припоя, и он беспрепятственно облуживает очищенную поверхность металла.

Процесс ультразвукового лужения позволяет облудить всю обрабатываемую поверхность, с которой сняты окисные пленки, в то время как при механическом удалении окисной пленки обслуживаются только отдельные зачищенные места поверхности.

  1. Электрохимические методы обработки материалов основаны на преобразовании электрической энергии в энергию химических связей, на превращении материала заготовки в легко удаляемые из зоны обработки химические соединения (анодное растворение). Электрохимическая обработка имеет две разновидности: обработка в среде проточного электрона и электроабразивная. В последнем случае происходит комбинированный электрохимический и механический съем металла.
  2. Плазмой называют ионизированный газ, перешедший в это состояние результате нагрева до очень высокой температуры или в следствии столкновении частиц газа с быстрыми электронами (в газовом разряде). При этом молекулы распадаются на атомы, от которых отрываются электроны и возникают ионы. Последние ионизируют газ и делают его электропроводным. Однако не всякий ионизированный газ можно назвать плазмой. Необходимым условие существования плазмы является ее электрическая квазинейтральность, т.е. она должна содержать в единице объема примерно равное количество электронов и положительно заряженных ионов. Наряду с ними в плазме может находиться некоторое количество неионизированных атомов или молекул.

На плазму могут воздействовать магнитные и электрические поля.

Внешнее магнитное поле позволяет сжимать струю плазмы, а также управлять ею (отклонять, фокусировать).

Большая степень ионизации обуславливает высокую температуру газоразрядной плазмы которая может достигать 5000˚С и выше. Свойство плазмы можно изменять путем применения различных газов (азота, карбона, водорода, гелия и др.).

Основным методом получения плазмы для технологических целей является пропускание струи сжатого газа через пламя электрической дуги. Современные плазменные горелки делят на горелки прямого действия (с внешней дугою) и косвенного действия (с внутренней дугой).

В качестве рабочего газа наиболее часто используют аргон, который ионизируется. Напряжение зажигания и рабочее напряжение при этом не большие и электрическая дуга получается стабильной и инертной. При использовании в качестве рабочего газа гелия скорость истечения при t=10000…15000˚С приблизительно равна звуковой. Плазменная грелка рассматриваемого типа потребляет мощность 50кВт и создает концентрацию мощности плотностью 3мВт/дм 2 .

Обычно промышленные технологии состоят из нескольких частей, которые называются производственными технологиями . Например, на электростанциях получают электрическую энергию. Для этого используют технологии производства электроэнергии. С помощью линий электропередачи электроэнергия передаётся потребителям. При этом используют технологии передачи электроэнергии. Затем электроэнергия может использоваться для освещения и обогрева помещений. Здесь применяются технологии использования электроэнергии. Таким образом, промышленные энергетические технологии состоят из следующих производственных технологий: производства, передачи и использования электроэнергии.

Основные понятия и термины:

промышленные технологии, производственные технологии, технологии металлургии, машиностроительные технологии, энергетические технологии, биотехнологии, технологии производства продуктов питания, космические технологии; электрофизические и электрохимические методы: электроэрозионные, лучевые, ультразвуковые, электрохимические, плазменная обработка.

? Вопросы и задания

1. Какие промышленные технологии вам известны?

2. Что включают в себя технологии металлургии?

3. Чем отличаются промышленные технологии от производственных технологий? Приведите примеры.

Найдите в Интернете примеры использования биотехнологий и проанализируйте их влияние на окружающую среду.

Поиск информации в Интернете о современных технологиях обработки материалов: ультразвуковая резка и ультразвуковая сварка; лазерное легирование, лазерная сварка, лазерная гравировка; плазменная наплавка и сварка, плазменное бурение горных пород .

Найдите в Интернете информацию о предприятиях вашего региона и профессиях людей, которые на них работают. Составьте таблицу.

Таблица. Предприятия моего региона

Читайте также: