Значение генетики в современном мире реферат

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Предмет и задачи генетики

Методы генетических исследований

Основные этапы развития генетики

Список используемой литературы

Введение

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость. В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусогенетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНКматрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека. Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Предмет и задачи генетики

Генетика — наука о наследственности и изменчивости. Наследственность обычно определяют как способность организмов вопроизводить себе подобное, как свойство родительских особей передавать свои признаки и свойства потомству. Этим термином определяют также сходство родственных особей между собой. Ч. Дарвин отмечал, что потомки, как правило, не являются точной копией родительских особей, так как наряду с наследственностью им присуща изменчивость, которая проявляется в различиях отдельных органов, признаков или свойств, или комплекса их у потомков по сравнению с родителями и родственными особями.

Задачей генетики является изучение передачи наследственности от родителей потомкам. Преемственность между поколениями осуществляется путем полового, бесполого или вегетативного размножения. При половом размножении возникновение нового поколения происходит в результате слияния материнской и отцовской половых клеток, поэтому потомки несут признаки обеих родительских форм. Половые клетки составляют ничтожно малую долю многоклеточного организма. Они содержат наследственную информацию — совокупность генов — единиц наследственности. Наследственная информация определяет четкий план онтогенеза, в процессе которого развиваются и формируются специфические для данной особи свойства и признаки.

Больше внимание в генетике уделяется изучению изменчивости— способности организмов изменяться под действием наследственных и ненаследственных факторов. Различают наследственную (генотипическую) изменчивость и ненаследственную, возникающую под влиянием внешней среды и проявляющуюся в виде модификаций.

Современное изучение наследственности и изменчивости ведется на разных уровнях организации живой материи — молекулярном, клеточном, организменном и популяционном; при этом используют различные методы исследований.

Методы генетических исследований

Современная генетика изучает явления наследственности и изменчивости, опираясь на достижения различных отраслей, биологии — биохимии, биофизики, цитологии, эмбриологии, микробиологии, зоологии, ботаники, растениеводства и животноводства. Генетические исследования значительно обогатили теоретические области биологии, а также зоотехнию, ветеринарию, племенное дело и разведение сельскохозяйственных животных, селекцию и семеноводство растений, медицину.

Основными объектами генетических исследований на молекулярном уровне являются молекулы нуклеиновых кислот—ДНК и РНК, обеспечивающие сохранение, передачу и реализацию наследственной информации. Изучение нуклеиновых кислот вирусов, бактерий, грибов, клеток растений и животных, культивируемых вне организма (in vitro), позволяет установить закономерности действия генов в процессе жизнедеятельности клетки и организма.

Раздел генетики, изучающий явления наследственности на клеточном уровне, получил название цитогенегики. Клетка является элементарной системой, содержащей в полном объеме генетическую программу индивидуального развития особи. Основными объектами исследований с помощью цитологических методов являются клетки растений и животных как а организме (in vivo), так и вне организма, а также вирусы и бактерии. В последние годы проводятся исследования соматических клеток, размножаемых вне организма. Особое внимание уделяется исследованию хромосом и некоторых других органоидов клетки, содержащих ДНК, — митохондрий, пластид, плазмид, а также рибосом, на которых осуществляется синтез полипептидных цепей — первичных молекул белка.

Гибридологический метод впервые был разработан и применен Г. Менделем в 1856—1863 гг. для изучения наследования признаков и с тех пор является основным методом генетических исследований. Он включает систему скрещиваний заранее подобранных родительских особей, различающихся по одному, двум или трем альтернативным признакам, наследование которых' изучается. Проводится тщательный анализ гибридов первого, второго, третьего, а иногда и последующих поколений по степени и характеру проявления изучаемых признаков. Этот метод имеет важное значение в селекции растений и животных. Он включает и так называемый рекомбинационный метод, который основан на явлении кроссинговера — обмена идентичными участками в хроматидах гомологических хромосом в профазе I мейоза. Этот метод широко используют для составления генетических карт, а также для создания рекомбинантных молекул ДНК, содержащих генетические системы различных организмов.

Моносомный метод позволяет установить, в какой хромосоме локализованы соответствующие гены, а в сочетании с рекомбинационным методом —определить место локализации генов в хромосоме.

Генеалогический метод — один из вариантов гибридологического. Его применяют при изучении наследования признаков по анализу родословных с учетом их проявления у животных родственных групп в нескольких поколениях. Этот метод используют при изучении наследственности у человека и животных, малоплодие которых имеет видовую обусловленность.

Близнецовый метод применяют при изучении влияния определенных факторов внешней среды и их взаимодействия с генотипом особи, а также для выявления относительной роли генотипической и модификационной изменчивости в общей изменчивости признака. Близнецами называют потомков, родившихся в одном помете одноплодных домашних животных (крупный рогатый скот, лошади и др.).

Различают два типа близнецов — идентичные (однояйцовые), имеющие одинаковый генотип, и неидентичные (разнояйцовые), возникшие из раздельно оплодотворенных двух или более яйцеклеток.

Мутационный метод (мутагенез) позволяет установить характер влияния мутагенных факторов на генетический аппарат клетки, ДНК, хромосомы, на изменения признаков или свойств. Мутагенез используют в селекции сельскохозяйственных растений, в микробиологии для создания новых штаммов бактерий. Он нашел применение в селекции тутового шелкопряда.

Популяционностатистический метод используют при изучении явлений наследственности в популяциях. Этот метод дает возможность установить частоту доминантных и рецессивных аллелей, определяющих тот или иной признак, частоту доминантных и рецессивных гомозигот и гетерозигот, динамику генетической структуры популяций под влиянием мутаций, изоляции и отбора. Метод является теоретической основой современной селекции животных.

Феногенетический метод позволяет установить степень влияния генов и условий среды на развитие изучаемых свойств и признаков в онтогенезе. Изменение в кормлении и содержании животных влияет на характер проявления наследственно обусловленных признаков и свойств.

Составной частью каждого метода является статистический анализ — биометрический метод. Он представляет собой ряд математических приемов, позволяющих определить степень достоверности полученных данных, установить вероятность различий между показателями опытных и контрольных групп животных. Составной частью биометрии являются закон регрессии и статистический закон наследуемости, установленные Ф. Гальтоном.

В генетике широко используют метод моделирования с помощью ЭВМ для изучения наследования количественных признаков в популяциях, для оценки селекционных методов — массового отбора, отбора животных по селекционным индексам. Особенно широкое применение данный метод нашел в области генетической инженерии и молекулярной генетики.

Основные этапы развития генетики

К началу XX в. в растениеводстве и животноводстве был накоплен экспериментальный материал о наследовании потомками признаков родительских форм. Особенно ценные данные были получены во второй половине XVIII в. И. Кёльрейтером, который изучал полученные им гибриды у 54 видов растений и установил ряд закономерностей в наследовании признаков: равное влияние на признак отцовской и материнской форм, возврат признака у гибрида к одной из исходных родительских форм. Он впервые обратил внимание на дискретный характер наследования признаков, установил наличие пола у растений. Важное значение имели работы О. Сажре и Ш. Нодена во Франции, Т. Найта в Англии, А. Т. Болотова и К. Ф. Рулье в России, а также многих других ученых и практиков, которые наблюдали и описывали характер наследования признаков у растений и животных при внутривидовом и межвидовом скрещиваниях.

В 1900 г. Г. де Фриз (1848—1935) в Голландии, К. Корренс (1864—1933) в Германии и Э. Чермак "(1871 — 1962) в Австрии независимо друг от друга установили, что полученные ими результаты по наследованию признаков у растительных гибридов полностью согласуются с данными Г. Менделя, который за 35 лет до них сформулировал правила наследственности. Г. де Фриз предложил установленные Г. Менделем правила называть законами наследования признаков.

Цитологические исследования Т. Бовери (1862—1915) показали наличие параллелизма в поведении хромосом в мейозе и при оплодотворении с наследованием признаков у гибридов, что послужило предпосылкой для развития хромосомной теории наследственности, основоположником которой является Т. Г. Морган (1861 —1945), который вместе с А. Стертевантом (1892—1970) и К Бриджесом (1889—1938) установил, что наследственные факторы — гены — локализованы в хромосомах клеточного ядра. Этими учеными был разработан метод составления генетических карт, доказан хромосомный Механизм определения пола. Хромосомная теория наследственности была крупнейшим достижением генетики и сыграла ведущую роль в ее дальнейшем развитии, становлении молекулярной биологии.

Важное значение для развития генетики имели работы по получению и изучению индуцированных мутаций. О возможности спонтанного изменения признака или свойства у отдельных особей писал Ч. Дарвин. В 1902 г. Г. де Фриз создал и опубликовал основные теоретические положения мутационной теории. В 1925 г. Г. А. Надсон и Г. С. Филиппов в Ленинграде наблюдали мутационные изменения у дрожжевых и плесневых грибов под действием ионизирующей радиации. В 1927 г. в США Г. Меллером (1890—1967) были получены мутации у плодовой мушки (drosophila melanogaster) в результате воздействия рентгеновских лучей. Эти работы послужили началом широкого круга исследований по изучению характера мутационной изменчивости, разработке методов их получения, проверке и поискам факторов, вызывающих мутации. Большой вклад в развитие мутагенеза и его прикладное использование внесли советские генетики Н. П. Дубинин, В. В. Сахаров, М. Е. Лобашов, С. М. Гершензон, И. А. Рапопорт. В растениеводстве успешно разрабатывается методика получения геномных мутаций, обусловленных изменением числа хромосом в клетках растений, — полиплоидия. А. Р. Жебрак, Л. П. Бреславец получили полиплоидные формы у растений. Г. Д. Карпеченко экспериментально показал возможность создания новых видов растений методом аллополиплоидии. В. А. Рыбин осуществил ресинтез (воссоздание) существующего вида растений —культурной сливы.

В развитие генетики популяций и разработку генетических основ эволюционной теории большой вклад внесли русские ученые С. С. Четвериков (1880—1959), И. И. Шмальгаузен (1884— 1963), Н. П. Дубинин. Для разработки генетических методов селекции животных важное значение имели работы М. Ф. Иванова, А. С. Серебровского, С. Г. Давыдова и др.

С 1944 г. начались интенсивные исследования явлений наследственности и изменчивости на молекулярном уровне. В 1944 г. американский генетик О. Звери с сотрудниками показал, что ведущая роль в сохранении и передаче наследственной информации принадлежит ДНК. Это открытие послужило началом развития молекулярной генетики. Важное значение для развития молекулярной генетики имели успехи в области биохимии нуклеиновых кислот, проводимые В. А. Энгельгардом и его сотрудниками в Институте молекулярной биологии АН СССР, американским биохимиком Э. Чаргаффом и др.

В 1953 г. Ф. Крик и Д. Уотсон разработали модель структурной формулы молекулы ДНК; в 1961—1965 гг. М. Ниренберг и С. Очао расшифровали генетический код. Было установлено, что дезоксирибонуклеиновая кислота содержит наследственную информацию, специфическую для каждого вида и особи, и что гены являются функциональными единицами гигантских молекул ДНК, которая способна самокопироваться и таким образом сохраняться в поколениях. Наследственная информация реализуется в процессе синтеза белка, при этом важную роль играют рибонуклеиновые кислоты — информационная (иРНК), рибосомальная (рРНК) и транспортная (тРНК).

В 1969 г. в США Г. Корана с сотрудниками синтезировал вне организма химическим путем участок молекулы ДНК — ген аланиновой тРНК пекарских дрожжей. С начала 70х годов в лабораториях многих стран мира, в том числе и в СССР, с применением специфического фермента — обратной транскриптазы (ревертазы) была разработана методика синтеза генов вне организма. Синтез и выделение генов, перенос их в клетки бактерий позволяют получать штаммы суперпродуцентов аминокислот, ферментов, биологически активных веществ, гормонов. Это направление развития генетики получило название генетической инженерии.

Значение генетики

Генетика занимает ведущее место в современной биологии и, в свою очередь, опирается на достижения и методы ее отраслей. Один из важнейших задач генетики является разработка методов повышения продуктивности животных и урожайности растений.

В центре внимания современной генетики находиться такой важный ее раздел, как медицинская генетика. Установлено более тысячи различных наследственных заболеваний, и для некоторых из них разработаны методы предотвращения вредного действия генов, их вызывающих. В условиях крупных животноводческих и птицеводческих комплексов особенно велика опасность распространения инфекционных заболеваний, поэтому генетика разрабатывает методы селекции животных на иммунитет. Установленные Г. Менделем и В. Бэтсоном закономерности наследования признаков находят широкое применение пушном звероводстве. Использование гетерозиса в птицеводстве и в мясном животноводстве позволяет повысит продуктивность животных путем получения гибридов от заранее подобранных родительских форм, обладающих высокой комбинационной способностью. Генетика является теоретической основой для совершенствования пород сельскохозяйственных животных, определения потенциальной продуктивности, контролируемой генотипом, разработки методов генетической оценки популяции и отдельных особей по потомству. Важное значение имеет генетика и для растениеводства. Знание законов наследования и изменчивости признаков позволяет интенсифицировать селекционный процесс по созданию сортов устойчивых к неблагоприятным условиям произрастания вредителям и болезням. В селекции растений успешно используют гибридизацию, мутагенез, полиплоидию. Широкие возможности для создания новых форм растений открывают генетическая инженерия, гибридизация соматических клеток, культуры клеток и тканей. В последние годы для повышения урожайности широко применяют различные макро и микроудобрения, ядохимикаты, гербициды. Многие из них накапливаются в растениях и, попадая в организм животного или человека, воздействуют на генотип родительских форм и потомков.

Заключение

Генетика сравнительно молодая наука. Но перед ней стоят очень серьезные для человека проблемы. Так генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека: короткопалость, мышечная атрофия и другие. С помощью новейших цитологических методов, цитогенетических в частности, производят широкие исследования генетических причин различного рода заболеваний, благодаря чему существует новый раздел медицины медицинская цитогенетика.

Разделы генетики, связанные с изучением действия мутагенов на клетку (такие как радиационная генетика), имеют прямое отношение к профилактической медицине.

Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетика. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок.

Список используемой литературы

ИнгеВечтомов С. Г. Введение в молекулярную генетику. — М,: Высшая школа, 1983.

Левонтин Р. К. Генетические основы эволюции. — М.: Мир, 1978.

Мухаметгалиев Ф. М, Актуальные проблемы частной генетики сельскохозяйственных животных. — АлмаАта, Наука, 1985.

Никоро 3. С, Стакан Г. А., Харитонова 3. К, Васильева Л. А., Гинзбург Э. X.,

Ригер Р., Михаэлис А. Генетический и цитогенетический словарь. — М.: Колос, 1967.

Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. — М.: Мир, 1984.

Современная медицина находится на стадии преобразования, обусловленного слиянием двух основных направлений технологического прогресса. Речь идёт о значительных достижениях в области информационных технологий, с одной стороны, и в быстро развивающейся генетике — с другой. Возможным итогом этого слияния может стать появление в недалёком будущем нового вида медицины — индивидуализированной медицины, целью которой будет персональный подход к каждому пациенту.

В настоящее время для оценки той или иной патологии, а также для выбора наиболее подходящей методики лечения врачи изучают семейный анамнез больного и проводят генетические исследования. Определение причины заболевания на молекулярном уровне позволяет сделать правильное заключение при неоднозначной симптоматике. Кроме того, некоторые патологии, например артериальная гипертензия (повышенное артериальное давление), имеют различный патогенез, а следовательно, необходимы и разные подходы к лечению.

Благодаря точному определению причины заболевания врачи назначают больному индивидуальную терапию наиболее подходящими препаратами, это помогает избежать возникновения нежелательных или побочных эффектов. Данное направление медицины до недавнего времени развивалось не так быстро, как ожидали, однако сейчас в некоторых областях отмечен значительный прогресс.

Фармакогенетика изучает характерную реакцию организма на введение тех или иных биохимических веществ. Различия в геноме каждого человека могут приводить к гиперчувствительности или, наоборот, недостаточной эффективности стандартной дозы препарата. В этом случае генетические исследования помогают врачу выбрать правильную дозировку, а благодаря открытиям в области генетики в других отраслях, стало возможным появление новых видов лекарственных средств.

Так, в фармакогеномике для производства препаратов используют генную инженерию. Например, человеческие гены, кодирующие инсулин или интерферон, встраивают в геном микроорганизмов, полевых культур или сельскохозяйственных животных, в результате чего они начинают производить белки человека.

В организациях, занимающихся исследованием заболеваний человека, моделируют нарушения у животных путём делеции определённых генов. При помощи данной методики можно создать модели множества заболеваний, таких, как, например, муковисцидоз или нейрофиброматоз (НФ, болезнь Реклингхаузена).

генетика в медицине

Несмотря на то что генетика в основном занимается проблемами передачи из поколения в поколение генов, отвечающих за наследственные заболевания, она также охватывает и многие другие вопросы. Именно поэтому в в статьях на сайте будут представлены основы клеточной и молекулярной биологии и биологии развития, изучение которых необходимо для понимания последующего материала.

Клетка. Каждая клетка человека содержит полный набор пар генов его организма, экспрессия которых контролируется на молекулярном уровне на каждой стадии её развития. В зависимости от локализации в организме клетки во время эмбриональной стадии развития под действием определённых факторов приобретают различные свойства путём экспрессии различных комбинаций из 20 000—25 000 пар генов. Тем не менее большинство клеток имеют сходное строение и состав.

Генетический материал. Катализаторы большинства биохимических реакций в организме человека — ферменты, последовательность аминокислот которых зависит от генов. Ген — материальный носитель, кодирующий наследственную информацию и входящий в состав длинной молекулы, называемой ДНК (дезоксирибоклеиновая кислота). Молекула ДНК имеет форму суперрученной спирали, которая может быть в растущих тканях сплетена (отрицательное суперскручивание) или свёрнута (положительное суперскручивание).

ДНК упакована в 23 пары гомологичных хромосом. При этом у нормальной женщины две из них — это большие X-хромосомы. Нормальный мужчина имеет также 46 хромосом, но вместо X у него присутствует более мелкая Y-xpoмосома. Она несёт в себе небольшое количество наследственной информации, в том числе гены, обусловливающие развитие мужского пола.

Генотип и фенотип. Генотип — этот термин генетики используют для обозначения всей генетической информации, передаваемой человеку по наследству. Фенотип — совокупность всех анатомических, физиологических и психологических признаков, распознаваемых у человека.

Практически любой аспект фенотипа зависит и от генетической составляющей, и от воздействия окружающей среды. Данное правило необходимо помнить при определении возможной причины заболевания.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Хибученко Светлана Павловна

В реферате по биологии дано определение генетики, этапы развития этой науки, значение для жизни человека.

ВложениеРазмер
lysenko_anna.docx 24.55 КБ

Предварительный просмотр:

Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных – блестящих по своему замыслу и тончайших по исполнению – экспериментов в области молекулярной генетики современная биология обогатилась двумя фундаментальными открытиями, которые уже нашли широкое отражение в генетике человека, а частично и выполнены на клетках человека. Это показывает неразрывную связь успехов генетики человека с успехами современной биологии, которая все больше и больше становится связана с генетикой.

Первое – это возможность работать с изолированными генами. Она получена благодаря выделению гена в чистом виде и синтезу его. Значение этого открытия трудно переоценить. Важно подчеркнуть, что для синтеза гена применяют разные методы, т.е. уже имеется выбор, когда речь пойдет о таком сложном механизме как человек.

Второе достижение – это доказательство включения чужеродной информации в геном, а также функционирования его в клетках высших животных и человека. Материалы для этого открытия накапливались из разных экспериментальных подходов. Прежде всего, это многочисленные исследования в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице. Кроме того, стимулированные идеей генетической инженерии опыты с профаговой трансдукцией подтвердили возможность функционирования генов простых организмов в клетках млекопитающих, включая клетки человека.

Без преувеличения можно сказать, что, наряду с молекулярной генетикой, генетика человека относится к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Но рассмотрим отдельно историю развития генетики.

Основные этапы развития генетики.

Истоки генетики, как и всякой науки, следует искать в практике. Генетика возникла в связи с разведением домашних животных и возделыванием растений, а также с развитием медицины. С тех пор как человек стал применять скрещивание животных и растений, он столкнулся с тем фактом, что свойства и признаки потомства зависят от свойств избранных для скрещивания родительских особей. Отбирая и скрещивая лучших потомков, человек из поколения в поколение создавал родственные группы – линии, а затем породы и сорта с характерными для них наследственными свойствами.

Хотя эти наблюдения и сопоставления еще не могли стать базой для формирования науки, однако бурное развитие животноводства и племенного дела, а также растениеводства и семеноводства во второй половине XIX века породило повышенный интерес к анализу явления наследственности.

Развитию науки о наследственности и изменчивости особенно сильно способствовало учение Ч. Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов. Сам Дарвин приложил немало усилий для изучения наследственности и изменчивости. Он собрал огромное количество фактов, сделал на их основе целый ряд правильных выводов, однако ему не удалось установить закономерности наследственности. Его современники, так называемые гибридизаторы, скрещивавшие различные формы и искавшие степень сходства и различия между родителями и потомками, также не смогли установить общие закономерности наследования.

Одновременно с изучением митоза соматической клетки шло исследование развития половых клеток и механизма оплодотворения у животных и растений. О. Гертвиг в 1876 г. впервые у иглокожих устанавливает слияние ядра сперматозоида с ядром яйцеклетки. Н.Н. Горожанкин в 1880 г. и Е. Страсбургер в 1884 г. устанавливает то же самое для растений: первый – для голосеменных, второй – для покрытосеменных.

В те же Ван-Бенеденом (1883 г.) и другими выясняется кардинальный факт, что в процессе развития половые клетки, в отличие от соматических, претерпивают редукцию числа хромосом ровно вдвое, а при оплодотворении – слиянии женского и мужского ядра – восстанавливается нормальное число хромосом, постоянное для каждого вида. Тем самым было показано, что для каждого вида характерно определенное число хромосом.

Итак, перечисленные условия способствовали возникновению генетики как отдельной биологической дисциплины – дисциплины с собственными предметом и методами исследования.

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;

отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.

Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно – мутационно.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики – радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней – это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

В своем реферате я рассмотрю такие вопросы, как законы наследования, генную инженерию и биотехнологии.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здесь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. ГЕНЕТИКА ПОЛА

Пол — совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

1.1. Генетические механизмы формирования пола

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая — Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) — гаплоидные. Самки развиваются из оплодотворенных яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина — одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина — Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) — одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A — бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

1.2. Наследование признаков, сцепленных с полом

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красно­глазые самцы и самки. При скрещива­нии этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой сам­кой из F1. В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y — хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери — признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой) .

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Х а Х а ) с мужчиной дальтоником (Х а y) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

Другим примером наследования сцепленного с полом, может послужить рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе — гемофилию. Это заболевание появляется почти исключительно только у мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего свертывание крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны следующие генотипы и фенотипы:

Читайте также: