Земной магнетизм и его элементы реферат

Обновлено: 04.07.2024

Земля обладает магнитным полем, наглядно проявляющимся в воздействии на магнитную стрелку. Свободно подвешенная в пространстве, она в любом месте устанавливается в направлении магнитных силовых линий, сходящихся в магнитных полюсах.

Магнитные полюса Земли не совпадают с географическими и медленно изменяют свое местоположение. В настоящий период они располагаются на севере Канады и в Антарктиде. Силовые линии, идущие от одного полюса к другому, называются магнитными меридианами. Они не совпадают с географическими по направлению, и магнитная стрелка компаса не указывает строго направление север-юг. Угол между магнитным и географическим меридианами называют магнитным склонением. Оно бывает восточным (положительным) и западным (отрицательным). При восточном склонении стрелка отклоняется к востоку от географического меридиана, при западном — к западу от него.

Свободно подвешенная магнитная стрелка сохраняет горизонтальное положение только на линии магнитного экватора. Он не совпадает с географическим и отступает от него к югу в Западном полушарии и к северу в Восточном. К северу от магнитного экватора северный конец магнитной стрелки опускается, причем тем больше, чем меньше расстояние до магнитного полюса. На магнитном полюсе Северного полушария стрелка становится вертикально, северным концом вниз. К югу от магнитного экватора вниз наклоняется, наоборот, южный конец стрелки. Угол, образованный магнитной стрелкой с горизонтальной плоскостью, называется магнитным наклонением. Оно может быть северным и южным. Магнитное наклонение изменяется от 0° на магнитном экваторе до 90° на магнитных полюсах. Магнитное склонение и наклонение характеризуют направления магнитных силовых линий в любом пункте в данный момент.

Различают постоянное и переменное магнитные поля Земли. Постоянное обусловлено магнетизмом самой планеты. Представление о состоянии постоянного магнитного поля Земли дают магнитные карты. Они сохраняют точность только в течение нескольких лет, так как магнитное склонение и магнитное наклонение непрерывно, хоть и очень медленно, изменяются. Обычно магнитные карты составляются один раз в пять лет.

Магнитные аномалии — отклонение значений магнитного склонения и наклонения от их среднего значения для данного места. Они могут охватывать огромные площади, тогда их называют региональными, или быть небольшими, и тогда их называют локальными. Примером региональной магнитной аномалии является Восточно-Сибирская. Здесь обнаружено западное склонение вместо восточного. Магнитное поле этой аномалии очень медленно затухает с высотой. По данным искусственного спутника Земли влияние Магнитной аномалии на высоте уменьшается очень незначительно. Примером локальной может являться Курская магнитная аномалия, создающая напряжение магнитного поля в 5 раз больше среднего напряжения магнитного поля Земли.

Большинство аномалий объясняется залеганием горных пород, содержащих железные руды.

Магнитные бури — особенно сильные возмущения магнитного поля, проявляющиеся в быстром отклонении магнитной стрелки от нормального положения. Магнитные бури вызываются вспышками на Солнце и сопровождающим их проникновением к Земле и в ее атмосферу электрически заряженных частиц. 23 февраля 1956 года на Солнце произошел взрыв. Он продолжался несколько минут, а на Земле разразилась магнитная буря, в результате которой была на 2 часа нарушена работа радиостанций, вышел из строя на некоторое время трансатлантический телефонный кабель. Результатом магнитных бурь являются полярные сияния.

Магнитное поле Земли простирается вверх до высоты примерно 90 тыс. км. До высоты 44 тыс. км величина магнитного поля Земли убывает. В слое от 44 тыс. км до 80 тыс. км магнитное поле неустойчиво, в нем постоянно происходят резкие колебания. Выше 80 тыс. км интенсивность магнитного поля быстро падает.

Магнитное поле Земли либо отклоняет, либо захватывает заряженные частицы, летящие от Солнца или образующиеся при воздействии космических лучей на атомы или молекулы воздуха. Заряженные частицы, попавшие в магнитное поле Земли, образуют радиационные пояса. Всю область околоземного пространства, в которой находятся заряженные частицы, захваченные магнитным полем Земли, называют магнитосферой.

Распределение магнитного поля по земной поверхности постоянно меняется. Оно медленно смещается к западу. В начале XIX века магнитный меридиан нулевого склонения проходил близ Москвы, в начале XX века он переместился к Санкт-Петербургу, а теперь находится у западных границ Украины. Меняется положение и магнитных полюсов.

Магнетизм имеет большое практическое значение. При помощи магнитной стрелки определяют направления по сторонам горизонта. Для этого всегда необходимо в показание компаса вводить поправку на магнитное склонение. Связь магнитных элементов с геологическими структурами служит основанием для магнитных методов разведки полезных ископаемых.

, т. е. силой, которая действует на единицу положительного магнетизма, и направлением этой силы. Вектор Т
направлен по касательной к силовой линии. Поэтому если в некоторой точке А поместить свободно подвешенную магнитную стрелку, то ее ось расположится в направлении вектора Т. При этом магнитная стрелка будет наклонена по отношению к плоскости горизонта и отклонена
в сторону от плоскости истинного меридиана.

Вертикальный угол между осью свободно подвешенной магнитной стрелки и горизонтальной плоскостью называется магнитным наклопением I. На магнитных полюсах наклонение максимальное и равно 90°, по мере удаления от полюсов оно уменьшается, например в Мурманске 77°, в Одессе 62° и т. д., пока не достигнет 0°. Совокупность точек на земной поверхности, где магнитное наклонение равно 0, называется магнитным экватором. Магнитный экватор — это неправильная кривая, пересекающая земной экватор в двух точках.

Вертикальная плоскость, проходящая через ось свободно подвешенной магнитной стрелки, называется плоскостью магнитного меридиана. На пересечении с плоскостью истинного горизонта эта плоскость образует линию магнитного меридиана, или просто магнитный меридиан NM —SM.

В общем случае плоскость магнитного меридиана не совпадает с плоскостью истинного меридиана. Угол, на который плоскость магнитного меридиана отклоняется от плоскости истинного меридиана в данной точке земной поверхности, называется магнитным склонением d.

Величина магнитного склонения в разных точках земной поверхности различна. В большинстве мест мирового судоходства оно колеблется от 0 до 25°, но в высоких широтах, в местах, близких к магнитным полюсам, оно может достигать нескольких десятков градусов, а между одноименными магнитными и географическими полюсами 180°.


Полную силу земного магнетизма Т можно разложить на горизонтальную Н и вертикальную Z составляющие (рис) Горизонтальная составляющая Н устанавливает магнитную стрелку в плоскости магнитного меридиана и удерживает ее в этом положении. Из формул видно, что на магнитном экваторе, где наклонение I = 0, горизонтальная составляющая имеет максимальную величину, т. е. Н — Т, а вертикальная Z = 0. Поэтому условия для работы магнитного компаса на экваторе и вблизи него наиболее благоприятны. На магнитных полюсах, где I= 90°, Н = 0, a Z = Т, магнитный компас не работает.

Величины Т, I , d, Н и Z называются элементами земного магнетизма, из них важнейшим для навигации является магнитное склонение d.

Содержание работы

Содержание
Введение 3
1 Механизм возникновения магнитного поля Земли 4
2 Составляющие магнитного поля 6
2.1 Внутреннее магнитное поле 6
2.1.1 Энергия геодинамо 7
2.1.2 Переполяризация 8
2.2 Внешнее магнитное поле 9
3 Магнитные бури 11
Заключение 13
Библиографический список 14

Содержимое работы - 1 файл

82-01_topt.doc

Министерство образования и науки Российской Федерации

Магнитное поле Земли

студент гр. 82-01

Большинство планет Солнечной системы в той или иной степени обладают магнитными полями. По убыванию дипольного магнитного момента на первом месте Юпитер и Сатурн, а за ними следуют Земля, Меркурий и Марс.

К настоящему времени наука о земном магнетизме разделилась на две части. Одна изучает возникновение, основные черты и изменение магнитного поля, генерируемого процессами, происходящими внутри тела Земли, другая — относительно быстрые, но небольшие вариации поля, вызванные внешними причинами — процессами, происходящими в верхней атмосфере Земли и ее магнитосфере.

Специальный раздел геофизики, изучающий происхождение и природу магнитного поля Земли называется геомагнетизмом.

Геомагнетизм рассматривает проблемы возникновения и эволюции основной, постоянной составляющей геомагнитного поля, природа переменной, составляющей примерно 1% от основного поля, а так же структура магнитосферы – самых верхних намагниченных плазменных слоев земной атмосферы, взаимодействующих с солнечным ветром и защищающих Землю от космического проникающего излучения.

Актуальность данной темы заключается в изменении закономерностей вариаций геомагнитного поля, поскольку они обусловлены внешними воздействиями, связанными в первую очередь с солнечной активностью.

Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.

В сегодняшнее время нет единой точки зрения на механизм возникновения магнитного поля планет, хотя почти общепризнанной является гипотеза магнитного гидродинамо, основанная на признании существования токопроводящего жидкого внешнего ядра. Тепловая конвекция, то есть перемешивание вещества во внешнем ядре, способствует образованию кольцевых электрических токов. Скорость перемещения вещества в верхней части жидкого ядра будет несколько меньше, а нижних слоев – больше относительно мантии в первом случае и твердого ядра – во втором. Подобные медленные течения вызывают формирование кольцеобразных (тороидальных) замкнутых по форме электрических полей, не выходящих за пределы ядра. Благодаря взаимодействию тороидальных электрических полей с конвективными течениями во внешнем ядре возникает суммарное магнитное поле дипольного характера, ось которого примерно совпадает с осью вращения Земли. Для “запуска” подобного процесса необходимо начальное, хотя бы очень слабое, магнитное поле, которое может генерироваться гиромагнитным эффектом, когда вращающееся тело намагничивается в направлении оси его вращения.

Рисунок 1 – Влияние солнечного ветра на магнитное поле Земли

Не последнюю роль играет и солнечный ветер – поток заряжённых частиц, в основном протонов и электронов, идущих от Солнца. Для Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток.

Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц (электронов), т.е. от Земли к Солнцу. Частицы образующие солнечный ветер, обладающие массой и зарядом, увлекаются верхними слоями атмосферы в сторону вращения Земли. В 1958 году был открыт радиационный пояс Земли. Это огромная зона в космосе, охватывающая Землю в области экватора. В радиационном поясе основными носителями зарядов являются электроны. Их плотность на 2 – 3 порядка превышает плотность других носителей зарядов. И таким образом существует электрический ток вызванный направленным круговым движением частиц солнечного ветра, увлекаемых круговым движением Земли, порождающий электромагнитное “вихревое” поле.

Следует отметить, что магнитный поток, вызванный током солнечного ветра, пронизывает и вращающийся вместе с Землей поток раскаленной лавы внутри нее. В результате этого взаимодействия в ней наводится электродвижущая сила, под действием которой течет ток, который так же создает магнитное поле. Вследствие этого магнитное поле Земли является результирующим полем от взаимодействия тока ионосферы и тока лавы.

Реально существующая картина магнитного поля Земли зависит не только от конфигурации токового слоя, но и от магнитных свойств земной коры, а так же от относительного расположения магнитных аномалий. Здесь можно провести аналогию с контуром с током при наличии ферромагнитного сердечника и без него. Известно, что ферромагнитный сердечник не только меняет конфигурацию магнитного поля, но и значительно усиливает его.

Достоверно установлено что магнитное поле Земли реагирует на солнечную активность, однако если связывать возникновение магнитного поля планет только с токовыми слоями в жидком ядре, взаимодействующими с солнечным ветром, то можно сделать заключение, что планеты солнечной системы, имеющие одинаковое направление вращения, должны иметь одинаковое направление магнитных полей. Однако, например, Юпитер опровергает это утверждение.

При взаимодействии солнечного ветра с возбужденным магнитным полем Земли, на Землю действует вращающий момент, направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце. Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения.

Магнитное поле Земли (геомагнитное поле) можно разделить на следующие три основные части – основное (внутреннее) магнитное поле Земли, включая мировые аномалии, магнитные поля локальных областей внешних оболочек, переменное (внешнее) магнитное поле Земли.

2.1 Внутреннее магнитное поле

Внутреннее (основное) магнитное поле испытывает медленные изменения во времени (вековые вариации) с периодами от 10 до 10 000 лет, сосредоточенными в интервалах 10–20, 60–100, 600–1200 и 8000 лет. Последний связан с изменением дипольного магнитного момента в 1,5–2 раза.

Магнитные силовые линии магнитного поля Земли проще за ее пределами, чем внутри ядра. На поверхности Земли большая часть линий магнитного поля выходит изнутри у Южного полюса и входит внутрь около Северного.

Источник колебаний магнитного поля спрятан в центре Земли. Наша планета, подобно другим телам Солнечной системы, создает свое магнитное поле с помощью внутреннего генератора, принцип работы которого такой же, как и обычного электрического, преобразующего кинетическую энергию своих движущихся частиц в электромагнитное поле. В электрогенераторе движение происходит в витках катушки, а внутри планеты или звезды – в проводящей жидкой субстанции. Огромная масса расплавленного железа объемом в 5 раз больше Луны циркулирует в сердцевине Земли, образуя так называемое геодинамо.

За последние десять лет ученые разработали новые подходы к исследованию работы геодинамо и его магнитных свойств. Спутники передают четкие моментальные фотоснимки геомагнитного поля на поверхности Земли, а современные методы компьютерного моделирования и созданные в лабораториях физические модели помогают интерпретировать данные орбитальных наблюдений. Проведенные эксперименты натолкнули ученых на новое объяснение того, как происходила переполяризация в прошлом и как она может начаться в будущем.

Рисунок 2 – Внутренне строение Земли

Во внутреннем строении Земли выделяется расплавленное внешнее ядро, где сложная турбулентная конвекция генерирует геомагнитное поле.

2.1.1 Энергия геодинамо

К 40-м гг. прошлого столетия физики признавали три необходимых условия образования магнитного поля планеты, и последующие научные построения исходили из данных положений. Первое условие – большой объем электропроводящей жидкой массы, насыщенной железом, образующей внешнее ядро Земли. Под ним расположено внутреннее ядро Земли, состоящее почти из чистого железа, а над ним – 2900 км твердых пород плотной мантии и тонкой земной коры, образующей континенты и ложе океана. Давление на ядро, создаваемое земной корой и мантией, в 2 млн. раз выше, чем на поверхности Земли. Температура ядра также крайне высока – около 5000 о по Цельсию, как и температура поверхности Солнца.

Вышеописанные параметры экстремальной среды предопределяют второе требование к работе геодинамо: необходимость источника энергии для приведения в движение жидкой массы. Внутренняя энергия отчасти термального, отчасти химического происхождения создает внутри ядра условия выталкивания. Ядро больше разогревается внизу, чем наверху. (Высокие температуры “замурованы” внутри него со времен образования Земли.) Это означает, что более разогретая, менее плотная металлическая составляющая ядра стремится вверх. Когда жидкая масса достигает верхних слоев, она теряет часть своего тепла, отдавая его вышележащей мантии. Затем жидкое железо остывает, становясь плотнее, чем окружающая масса, и опускается. Процесс перемещения тепла путем поднятия и опускания жидкой массы получил название тепловой конвекции.

Третье необходимое условие поддержания магнитного поля – вращение Земли. Возникающая при этом сила Кориолиса отклоняет движение поднимающейся жидкой массы внутри Земли так же, как она поворачивает океанические течения и тропические циклоны, вихри перемещения которых видны на космических снимках. В центре Земли сила Кориолиса закручивает поднимающуюся жидкую массу в штопор или спираль, подобно оторвавшейся пружине.

Земля обладает насыщенной железом жидкой массой, сосредоточенной в ее центре, энергией, достаточной для поддержания конвекции, и силой Кориолиса, закручивающей конвекционные потоки. Данный фактор крайне важен для поддержания работы геодинамо на протяжении миллионов лет. Но нужны новые знания, чтобы ответить на вопрос о том, как образуется магнитное поле и почему время от времени полюса меняются местами.

2.1.2 Переполяризация

Ученые давно задавались вопросом, почему магнитные полюса Земли время от времени меняются местами. Последние исследования вихревых перемещений расплавленных масс внутри Земли позволяют понять, как происходит переполяризация.

Магнитное поле, значительно интенсивнее и сложнее поля ядра, внутри которого и образуются магнитные колебания, было обнаружено на границе мантии и ядра. Возникающие в сердцевине электротоки препятствуют непосредственным измерениям его магнитного поля.

Важно, что большая часть геомагнитного поля образуется только в четырех обширных областях на границе ядра и мантии. Хотя геодинамо продуцирует очень сильное магнитное поле, только 1% его энергии распространяется за пределами ядра. Общая конфигурация магнитного поля, измеренного на поверхности, носит название диполя, который большую часть времени ориентирован по земной оси вращения. Как и в поле линейного магнита, основной геомагнитный поток направлен от центра Земли в Южном полушарии и к центру – в Северном. (Стрелка компаса указывает на северный географический полюс, поскольку рядом находится южный магнитный полюс диполя.) Космические наблюдения показали, что магнитный поток имеет неравномерное глобальное распределение, наибольшая напряженность прослеживается на Антарктическом побережье, под Северной Америкой и Сибирью.

В отдельных случаях таинственная неустойчивость может объясняться некоторым хаотическим изменением структуры магнитного потока, которое лишь случайно приводит к переполяризации. Однако частота смены полярности, проявляющаяся все более устойчиво за последние 120 млн. лет, говорит о возможности внешнего регулирования. Одной из причин его может быть перепад температуры в нижнем слое мантии, и вследствие этого – изменение в характере излияний ядра.

По данным космических измерений на больших расстояниях магнитное поле Земли (магнитосфера) простирается за пределы планеты на несколько земных радиусов, причем на освещенной Солнцем стороне Земли оно значительно сжато.

Схема магнитного поля Земли и его границы (по Дж. Брандту и П. Ходжу)

На расстоянии 10 земных радиусов близ линии, соединяющей Солнце и Землю, регулярное магнитное поле Земли переходит в нерегулярное, или хаотическое, поле. Граница между регулярным и хаотическим полем называется магнитопаузой. Она, по-видимому, стабильна относительно потока солнечного ветра. Хаотическое поле представляет собой переходную область между магнитопаузой и невозмущенным межпланетным полем, расположенным на расстоянии около 14 земных радиусов (также близ линии Солнце — Земля). Напряженность магнитного поля Земли изменяется обратно пропорционально кубу расстояния.

С захватом магнитным полем Земли заряженных частиц (электронов и протонов) связано наличие двух радиационных поясов, обнаруженных с помощью счетчика Гейгера во время многочисленных зондирований, выполненных на космических кораблях и спутниках.

Схема внутреннего и внешнего радиационных поясов и движение захваченых частиц (по Дж.Брандту и П.Ходжу)

В связи с дипольным характером геомагнитного ноля радиационные пояса имеют вид рогов полумесяца (точнее, тороидальную форму вследствие дрейфа частиц по долготе, обусловленного неоднородностью магнитного поля). Внутренний радиационный пояс, по-видимому, стабилен во времени, внешний подвержен сильным изменениям, в частности во время магнитных бурь.

Нагляднее всего магнитное поле Земли проявляется своим действием на магнитную стрелку, которая в любой точке земной поверхности устанавливается в определенном направлении (на этом основано устройство компаса) при различных склонениях и наклонениях.

Склонение — угол отклонения магнитной стрелки от географического меридиана данного места. Склонение может быть восточным и западным, причем величина его меняется в разных районах. Линии, соединяющие на картах точки с одинаковым склонением, называются изогонами. Наклонение — угол наклона магнитной стрелки к горизонту. В северном полушарии вниз опущен северный конец стрелки, в южном — южный. Линии, соединяющие точки одинакового наклонения, называются изоклинами. Изоклина, на которой наклонение равно нулю, называется магнитным экватором. Магнитный экватор пересекает географический экватор на 169° в. д. и на 23° з. д. и отступает от него к югу в западном полушарии и к северу — в восточном. По направлению к северу и к югу наклонение увеличивается и достигает 90° в точках, называемых магнитными полюсами. В магнитных полюсах сходятся и все изогоны.

Магнитные полюса меняют свое положение из года в год. В их положении отмечаются также небольшие периодические суточные колебания. В 1970 г. положение Северного полюса определялось 78° 31' с. ш. и 70в01' з. д., а Южного — 78°31' ю. ш. и 109°59' в. д. Точно так же вековые, годичные и суточные колебания отмечаются и в магнитном склонении, причем вековые колебания достигают 30°. Кроме склонения и наклонения магнитное поле Земли характеризуется напряженностью, различной в разных участках и меняющейся во времени. Линии, соединяющие точки равной напряженности, называются изодинамами.

Напряженность магнитного поля увеличивается от магнитного экватора (0,4 э) (Эрстед (э) единица измерения напряженности магнитного поля. Это напряженность магнитного поля на расстоянии 2 см от бесконечно длинного прямолинейного проводника, по которому протекает ток силой в одну абсолютную электромагнитную единицу тока)к магнитным полюсам (0,7 э). Горизонтальная составляющая магнитного поля Земли H достигает наибольшей величины на магнитном экваторе (0,4 э) и убывает до нуля на магнитных полюсах. Вертикальная составляющая Z меняется от 0,7 э на магнитных полюсах до нуля на магнитном экваторе. Такое распределение элементов магнитного поля сближает его с полем однородно намагниченного шара, точнее, с полем магнитного диполя, расположенного в центре Земли, ось которого отклонена от оси вращения Земли на 11,5°.

Однако наблюдаемое магнитное поле Земли заметно отличается от дипольного наличием наложенных на него внешнего и недипольного полей. Внешнее поле связано с движением электрических зарядов в ионосфере и меняется в результате атмосферных приливов и солнечной деятельности (солнечных пятен). Среднеалгебраическая интенсивность его очень мала, хотя во время магнитных бурь может составлять несколько процентов от общего суммарного магнитного поля. Недипольная компонента определяется

при вычитании из наблюдаемого поля дипольной и внешней компонент. Недипольное поле состоит из неравномерно распределенных участков высокой и слабой интенсивности размером от 25 до 100°. Эти участки изменяются в размерах, и современные скорости их изменения показывают, что средний период жизни каждого из них достигает 100 лет. Недипольные элементы перемещаются по поверхности Земли к западу со скоростью 0,5° географической долготы в год.

Неустойчивое положение магнитных полюсов определяется влиянием неоднородного, быстро меняющегося недипольного поля: на магнитных полюсах недипольная горизонтальная составляющая полностью уничтожает горизонтальную составляющую дипольного поля. Точки на поверхности Земли, на которые направлен диполь, называются геомагнитными полюсами. Современные координаты северного геомагнитного полюса — 78,5° с. ш. и 69° з. д. Его положение не изменилось за период, для которого имеются измерения, тогда как положение магнитного полюса менялось относительно быстро, соответственно с изменениями недипольной составляющей.

Отклонения наблюдаемого распределения элементов земного магнетизма от среднего для данной местности называются магнитными аномалиями. По размерам аномалии делятся на региональные и местные. Региональные аномалии распространяются на огромные регионы, и действительные причины их возникновения не выяснены. Местные аномалии распространяются на области от нескольких квадратных метров до нескольких десятков тысяч квадратных километров и вызываются обычно залежами магнитных пород и руд. Крупнейшая в мире местная магнитная аномалия охватывает Курскую область и прилегающие районы.

Схема Курской магнитной аномалии (заштрихованы прощади проявления магнитной аномалии)

Схема Курской магнитной аномалии (заштрихованы прощади проявления магнитной аномалии)

На Курской аномалии известно несколько местных магнитных полюсов — участков, в которых магнитное наклонение равно 90°, и склонение равно нулю (стрелка компаса останавливается на любом азимуте). Значения магнитного склонения меняются от 0 до 180°, а наклонения — от 40 до 90°. Курская аномалия вызвана наличием .на некоторой глубине залежей железистых кварцитов.

Таким образом, магнитные аномалии определяются различными магнитными свойствами горных пород, в различной степени намагничивающихся в магнитном поле Земли, и, следовательно, ориентировка их намагниченности должна быть параллельна этому полю. Оказалось, однако, что горные породы часто обладают остаточной намагниченностью, которая далеко не всегда параллельна современному магнитному полю Земли и бывает сильнее современной индуцированной намагниченности.

В слабом магнитном поле Земли (0,5 э) остаточная намагниченность появляется при температуре Кюри в процессе застывания магмы и охлаждения раскаленных горных пород. Такая намагниченность называется термоостаточной. Она ориентирована параллельно силовым линиям магнитного поля Земли, существовавшего во время застывания намагниченной горной породы. Главная часть естественной остаточной намагниченности изверженных горных пород является термоостаточной намагниченностью.

При выпадении осадков ранее намагниченные ферромагнитные частицы поворачиваются в направлении магнитного поля Земли и сохраняют эту ориентировку после уплотнения осадка и превращения его в осадочную породу; т. е. и в осадочных породах остаточная намагниченность параллельна магнитному полю Земли, существовавшему во время их образования. Таким образом, направление остаточной намагниченности горных пород соответствует направлению магнитного поля Земли в момент их образования, и, зная возраст намагниченных пород, можно восстановить положение магнитного меридиана и полюсов для этого времени.

Происхождение магнитного поля. Гипотезы, связывающие магнитное поле Земли с ее остаточной намагниченностью, встречают серьезные возражения:

1) геологические процессы в земной коре и верхней мантии протекают медленно и с ними трудно увязать большую скорость изменения недиполыюго поля и его перемещения в западном направлении со скоростями до 20 км/год;

2) для обеспечения современной интенсивности магнитного поля Земли недостаточно ферромагнитного материала, температура которого ниже точки Кюри (температура земных недр на глубине более 25 км в подавляющем большинстве случаев, вероятно, выше 750° С, и, следовательно, только внешняя оболочка планеты может обладать остаточной намагниченностью).

Поэтому в настоящее время широким признанием пользуется теория происхождения земного магнетизма, предложенная Эльзассером — Френкелем (1956 г.), согласно которой жидкое ядро во вращающейся Земле действует как самовозбуждающаяся динамо-машина. Быстрое изменение недипольного поля объясняется как результат вихревых движений жидкости у границы ядра и мантии, а перемещение его в западном направлении связывают с меньшей угловой скоростью внешней зоны ядра по сравнению с мантией. Динамометрия была успешно применена для объяснения свойств магнитных полей Солнца и некоторых звезд, была предсказана также корреляция между магнитным полем Солнца и осью его вращения. В после нее время она нашла подтверждение в отсутствии магнитного поля у медленно вращающихся планет — Венеры и Луны.

Изучение магнитных аномалий имеет большое практическое значение. Магнитометрические методы в настоящее время широко применяются в практике поисков и разведки магнитных железных руд, бокситов, полиметаллических сульфидных руд, если в них присутствуют ферромагнитные минералы, и других полезных ископаемых. Магнитометрические методы с успехом применяются также при геологической съемке для выяснения некоторых структур, подземного рельефа и др. Это наиболее дешевый и быстрый из всех геофизических методов разведки и поисков.

Читайте также: