Модели защиты информации в кс реферат

Обновлено: 05.07.2024

Персональные компьютеры, системы управления и сети на их основе быстро входят во все области человеческой деятельности. Согласно статистическим данным, более 80% информации компаний несут финансовые убытки из-за нарушения целостности и конфиденциальности используемых данных.

Кроме информации, составляющей государственную или коммерческую тайну, существует информация, представляющая собой интеллектуальную собственность. Стоимость такой информации в мире составляет несколько триллионов долларов в год. Ее несанкционированное копирование, также снижает доходы компаний и авторов, занятых ее разработкой.

Усложнение методов и средств организации машинной обработки, повсеместное использование глобальной сети Интернет приводит к тому, что информация становится все более уязвимой. Этому способствуют такие факторы, как постоянно возрастающие объемы обрабатываемых данных, накопление и хранение данных в ограниченных местах, постоянное расширение круга пользователей, имеющих доступ к ресурсам, программам и данным, недостаточный уровень защиты аппаратных и программных средств компьютеров и коммуникационных систем и т.п.

Учитывая эти факты, защита информации в процессе ее сбора, хранения, обработки и передачи приобретает исключительно важное значение.

Основные понятия информационной безопасности

Компьютерная система (КС) – организационно-техническая система, представляющую совокупность следующих взаимосвязанных компонентов:

технические средства обработки и передачи данных;

методы и алгоритмы обработки в виде соответствующего ПО;

данные – информация на различных носителях и находящаяся в процессе обработки;

конечные пользователи – персонал и пользователи, использующие КС с целью удовлетворения информационных потребностей;

объект – любой элемент КС, доступ к которому может быть произвольно ограничен;

субъект – любая сущность, способная инициировать выполнение операций над объектом.

Система защиты информации – это совокупность мер, программно-технических средств, правовых и морально-этических норм, направленных на противодействие

угрозам нарушителей с целью сведения до минимума возможного ущерба пользователям и владельцам системы.

Идентификация – получение от субъекта доступа к сведениям (имя, учетный номер и т.д.), позволяющим выделить его из множества субъектов.

Аутентификация – получение от субъекта сведений (пароль, биометрические данные и т.д.), подтверждающих, что идентифицируемый субъект является тем, за кого себя выдает.

Несанкционированный доступ (НСД) – доступ с нарушением правил разграничения доступа субъекта к информации, с использованием штатных средств (программного или аппаратного обеспечения), предоставляемых КС.

Пароль – комбинация символов, известная только ее владельцу.

Стойкость – это минимальный объем зашифрованного текста, который можно вскрыть статистическим анализом.

Анализ угроз информационной безопасности

Для успешного противодействия угрозам и атакам КС, а также выбора способов и средств защиты, политики безопасности и анализа рисков, необходимо классифицировать существующие угрозы информационной безопасности.

Классификация угроз может быть проведена по ряду базовых признаков:

по природе возникновения;

по степени преднамеренности;

по степени зависимости от активности КС

по степени воздействия на КС;

по способу доступа к ресурсам КС;

по текущему месту расположения информации в КС.

Необходимо отметить, что абсолютно надежных систем защиты не существует. Уровень системы защиты – это компромисс между понесенными убытками от потери конфиденциальности информации, с одной стороны, и убытками от усложнения КС и увеличения доступа к ресурсам от введения систем защиты, с другой стороны.

Способы и средства нарушения конфиденциальности информации

Основные методы реализации угроз информационной безопасности

К основным направлениям реализации злоумышленником информационных угроз на локальной, изолированной или включенной в сеть КС можно отнести следующие:

непосредственное обращение к объектам доступа (злоумышленник пытается получить доступ к объектам);

создание программных и технических средств, выполняющих обращение к объектам доступа;

модификация средств защиты, позволяющая реализовать угрозы информационной безопасности;

внедрение в технические средства программных или технических механизмов, нарушающих структуру и функции КС.

Получение доступа к информации обычно осуществляется злоумышленником в несколько этапов. На первом этапе происходит получение доступа к программным средствам, а на втором этапе – решаются задачи внедрения программных средств с целью хищения программ и данных.

Основы противодействия нарушению конфиденциальности информации

Требования безопасности определяют набор средств защиты КС на всех этапах ее существования: от разработки спецификации на проектирование программных средств до их списания. НСД может быть предотвращен или существенно затруднен при организации следующего комплекса мероприятий:

идентификация и аутентификация пользователей;

мониторинг несанкционированных действий – аудит;

разграничение доступа к КС;

криптографические методы сокрытия информации;

защита КС при работе в сети.

Организация надежной защиты КС невозможна, с помощью только аппаратно-программных средств. Очень важным является административный контроль работы КС.

Основные задачи администратора по поддержанию средств защиты заключаются в следующем:

постоянный контроль корректности функционирования КС и ее защиты;

регулярный просмотр журналов регистрации событий;

организация и поддержание адекватной политики безопасности;

инструктирование пользователей ОС об изменениях в системе защиты, правильного выбора паролей и т.д;

регулярное создание и обновление резервных копий программ и данных;

постоянный контроль изменений конфигурационных данных.

Рассмотрим подробнее наиболее часто используемые методы защиты и принципы их действия.

Методы разграничения доступа

При организации доступа субъектов к объектам выполняются следующие действия:

идентификация и аутентификация субъекта доступа;

проверка прав доступа субъекта к объекту;

ведение журнала учета действий субъекта.

Идентификация и аутентификация пользователей

При входе в КС и при получении доступа к данным, субъект должен быть идентифицирован и аутентифицирован. Эти две операции обычно выполняются вместе, т.е пользователь сначала сообщает системе сведения, позволяющие выделить его из множества субъектов, а затем сообщает секретные сведения, подтверждающие, что он то, за кого себя выдает. Для аутентификации субъекта чаще всего используют:

съемные носители информации;

Методы мониторинга несанкционированных действий

Политика безопасности предполагает контроль за работой КС и ее компонентов, который заключается в фиксировании и последующем анализе событий в специальных журналах – журналах аудита. Периодически журнал рассматривается администратором ОС, или аудитором, которые анализируют сведения, накопленные в нем.

Для обеспечения надежной защиты ОС 1 в журнале должны отражаться следующие события:

попытки входа/выхода пользователей из системы;

попытки изменения списка пользователей;

попытки изменения политики безопасности, в том числе и политики аудита.

Криптографические методы защиты данных

Основные принципы криптографии

Криптографические методы являются наиболее эффективными методами защиты информации в КС 2 . При передаче же по протяженным линиям связи, они являются единственным надежным способом защиты от несанкционированного доступа к ней.

Важнейшим показателем надежности криптографического закрытия информации является его стойкость.

На рис. 1 показана схема основных методов криптографического закрытия информации. Некоторые из этих методов рассмотрены ниже.

Также, на рис. 2 показан процесс шифрования криптографическим методом.

Рис. 2. Процесс шифрования криптографическим методом.

Рис. 1. Классификация основных методов криптографического закрытия

Шифрование заменой (подстановка)

Наиболее простой метод шифрования. При шифровании заменой (подстановкой) символы шифруемого текста заменяются символами того же или другого алфавита с заранее установленным правилом замены. В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита одинаково на всем протяжении текста. Часто шифры простой замены называют шифрами одноалфавитной подстановки.

Такой шифр имеет низкую стойкость, поэтому этот метод используют крайне редко.

Шифрование методом перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов.

При разработке средств, методов и мероприятий обеспечения ИБ необходимо учитывать большое количество различных факторов: квалификация нарушителя, обученность персонала, тип носителей информации, предполагаемые угрозы, ценность информации, техническая оснащенность объекта защиты информации, вид каналов связи, требуемый класс защищенности информации и т.д.

Для учета и анализа всех этих факторов используютмоделирование систем защиты. Целями моделирования являются поиск оптимальных решений по обеспечению ИБ информационной системы, оценка эффективности использования различных механизмов защиты, определение свойств системы защиты, установление взаимосвязей между ее характеристиками и показателями.

Моделирование системы ЗИ заключается в построении некоторого ее образа, адекватного (с точностью до целей моделирования) исследуемой системе, и получении с помощью построенной модели необходимых характеристик реальной системы. Таким образом, в самом общем случае весь процесс моделирования можно разделить на две составляющие: построение модели и реализацию модели в целях получения необходимых характеристик системы. Рассмотрим некоторые известные модели системы ЗИ.

Модель элементарной (одноуровневой) защиты. В простейшем случае, показанном на рис. 2.2, предмет защиты помещается в некоторую замкнутую оболочку, называемую преградой. В качестве примера элементарной защиты может быть названа криптографическая защита информации, предполагающая шифрование всей информации, находящейся в системе.

Прочность защиты зависит от свойств преграды и определяется способностью преграды противостоять попыткам преодоления ее нарушителем. При оценке прочности защиты используется свойство привлекательности информации, которое измеряется ее стоимостью. При этом считается, что прочность созданной преграды достаточна, если стоимость ожидаемых затрат на ее преодоление потенциальным нарушителем превышает стоимость защищаемой информации.


Рис. 2.2. Модель элементарной защиты информации

1 – предмет защиты; 2 – преграда; 3 – прочность преграды

Другим критерием оценки эффективности защиты может служить временная характеристика. Известно, что со временем информация устаревает и теряет свою ценность. Поэтому за критерий достаточной защищенности можно принять превышение затрат времени на преодоление преграды нарушителем (tн) времени жизни (tж) информации, т.е. tн > tж.

За временной критерий достаточной защищенности можно принять также превышение затрат времени на преодоление преграды нарушителем времени обнаружения и блокировки его доступа (tобн) при отсутствии путей скрытного обхода преграды информации, т.е. tн > tобн.

Таким образом, прочность защитной преграды является достаточной, если ожидаемое время преодоления ее нарушителем больше времени жизни предмета защиты или больше времени обнаружения и блокировки его доступа при отсутствии путей скрытного обхода этой преграды.

Обычно об элементарной системе защиты информации речь идет в том случае, когда замкнутую преграду удается построить с помощью одного механизма (средства). Но так происходит не всегда.

Рассмотрим наиболее характерную для вычислительной системы ситуацию, связанную с построением модели многозвенной защиты. Например, система контроля вскрытия аппаратуры и система опознания и разграничения доступа, контролирующие доступ к периметру вычислительной системы, на первый взгляд, образуют замкнутый защитный контур, но доступ к средствам отображения и документирования, побочному электромагнитному излучению и наводкам (ПЭМИН), носителям информации и другим возможным каналам НСД к информации не перекрывают и, следовательно, названные системы не образуют замкнутый контур. Таким образом, в замкнутый контур защиты в качестве его звеньев войдут ещё система контроля доступа в помещения, средства защиты от ПЭМИН, шифрование и т.д.


1

Рис. 2.3. Модель многозвенной защиты информации: 1,2,5 – звенья защитного контура;

3 – предмет защиты; 4 – прочность преграды

Модель многоуровневой защиты. Еще одной моделью является модель многоуровневой защиты информации, показанная на рис. 2.4. В этой модели, для того чтобы добраться до закрытой информации, нарушитель должен преодолеть несколько уровней защиты. Этими уровнями могут быть:

— охрана по периметру территории объекта;

— охрана по периметру здания;

—защита аппаратными средствами (включая экранирование электромагнитных излучений);

— защита программными средствами;

—защита криптографическими средствами.

Важно подчеркнуть, что в данном случае различные преграды не только образуют замкнутые контуры, но и дублируют друг друга по целям защиты, применяя различные методы и средства защиты. При этом рекомендуется устанавливать не менее четырех уровней защиты.

В качестве обобщенной модели защиты информации приведем модель вычислительной системы с безопасной обработкой информации (рис.2.5).


информация

Рис. 2.4 Модель многоуровневой защиты информации


Рис. 2.5. Модель вычислительной системы с безопасной обработкой информации

В данной модели для каждой потенциальной угрозы информации предусмотрены соответствующие механизмы защиты.

Отметим, что выбор показателей прочности защиты и оценки информационной безопасности в каждом конкретном случае является сложной исследовательской задачей и в постановочном плане относится к области принятия решения. Для одних моделей приемлем показатель в виде стоимости ожидаемых затрат на преодоление потенциальным нарушителем системы защиты. Для других моделей эффективность защиты удобнее оценивать затратами времени на преодоление преграды нарушителем. Для третьих – целесообразно использовать некоторый интегральный показатель безопасности информации.

Отметим также, что при данном подходе состав средств обеспечения информационной безопасности подбирается под разработанную модель защиты.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Для предотвращения несанкционированного доступа к вашим компьютерам необходимы средства идентификации и разграничения доступа к информации.

Информационная безопасность и технические меры защиты

Информация является результатом отражения движения объектов материального мира в системах живой природы.

Важным событием последнего десятилетия в области технической защиты информации является появление и развитие концепции аппаратной защиты.

Основные идеи аппаратной защиты следующие:

Необходимость защиты информационных технологий была признана совсем недавно.

В процессе информационного взаимодействия на разных его этапах люди (операторы, пользователи) заняты и используются средства информатизации — технические (ПК, ЛВС) и программные (ОС, ПП). Информация создается людьми, затем трансформируется в данные и представляется в автоматизированных системах в виде электронных документов, которые объединяются в информационные ресурсы. Данные между компьютерами передаются по каналам связи. Во время работы автоматизированной системы данные преобразуются в соответствии с используемой информационной технологией.

Меры технической защиты могут быть дифференцированы соответствующим образом:

  1. аутентификация участников информационного взаимодействия;
  2. защита технических средств от несанкционированного доступа;
  3. разграничение доступа к документам, ресурсам ПК и сети;
  4. защита электронных документов;
  5. защита данных в каналах связи;
  6. защита информационных технологий;
  7. дифференциация доступа к потокам данных.

В следующем разделе рассматриваются виды мер по выявлению и разграничению информации, относящейся к нашей теме.

Методы идентификации и разграничения информации

Идентификация/аутентификация (ИА) участников информационного взаимодействия должна осуществляться на аппаратном уровне до этапа загрузки операционной системы. Базы данных ИА должны храниться в энергонезависимой памяти ЛВС, организованной таким образом, чтобы доступ к ним с помощью ПК был невозможен, т.е. энергонезависимая память должна размещаться вне адресного пространства ПК. Программное обеспечение блока управления должно храниться в памяти блока управления и быть защищено от несанкционированного изменения. Целостность программного обеспечения контроллера должна быть гарантирована технологией производства контроллера LPG. Идентификация производится с помощью отчужденных носителей.

Современные операционные системы все чаще содержат встроенные средства разграничения доступа. Как правило, эти инструменты используют функции конкретной файловой системы (ФС) и основаны на атрибутах, которые тесно связаны с одним из уровней API операционной системы. Это неизбежно приводит к проблемам, по крайней мере, следующим.

Привязка к свойствам файловой системы

Современные операционные системы обычно используют не одну, а несколько ФС — как новые, так и устаревшие. В этом случае, как правило, работает на новой ТС, встроенной в операционную систему, а на старой — может не работать, так как встроенный разъединитель доступа использует существенные отличия новой ТС. Этот факт обычно явно не упоминается в сертификате, что может ввести пользователя в заблуждение. И на самом деле, представим себе, что на компьютере с новой операционной системой используется программное обеспечение, разработанное для предыдущей версии, которое фокусируется на особенностях предыдущей ФС. Пользователь имеет право верить, что установленные механизмы безопасности, сертифицированные и специально разработанные для используемой операционной системы, выполняют свои функции, когда на самом деле они отключены. В реальной жизни такие случаи могут встречаться довольно часто — зачем переписывать задание приложения после смены операционной системы? Кроме того, она должна обеспечить совместимость со старой FS и быть включена в новую операционную систему.

Привязка к API операционной системы

Обычно операционные системы меняются очень быстро — раз в полтора года. Возможно, что они будут меняться еще чаще. Некоторые из этих изменений связаны с изменениями, включая API — например, переход с Win9x на WinNT. Если атрибуты разграничения доступа отражают состав API — при переходе на современную версию операционной системы, настройки безопасности придется переустанавливать, персонал будет проходить переподготовку и т.д. и т.п.

Таким образом, можно сформулировать общее требование — подсистема разграничения доступа должна быть наложена на операционную систему и при этом независима от файловой системы. Конечно, структура атрибутов должна быть достаточной для описания политики безопасности, и описание не должно быть в таких терминах, как API операционной системы, а также в терминах, где обычно работают администраторы безопасности.

Теперь рассмотрим конкретный комплекс мероприятий на программно-аппаратном уровне, направленных на обеспечение информационной безопасности информационных систем.

Здесь можно назначить следующие группы:

  • универсальные инструменты для ОС;
  • Брандмауэры.

Борьба с угрозами, присущими сетевой среде, с помощью универсальных операционных систем невозможна. Универсальная операционная система — это огромная программа, которая, помимо очевидных недостатков, вероятно, содержит некоторые возможности, которые могут быть использованы для получения незаконных привилегий. Современные технологии программирования не позволяют сделать такие большие программы безопасными. Кроме того, администратор, имеющий дело со сложной системой, далеко не всегда в состоянии учесть все последствия внесенных изменений (а также врач, который не знает всех побочных эффектов рекомендуемых препаратов). Наконец, в универсальной многопользовательской системе дыры в безопасности постоянно создаются самими пользователями (слабые и/или редко меняющиеся пароли, плохо настроенные права доступа, необслуживаемый терминал и т.д.).

Как упоминалось выше, единственным перспективным направлением является разработка специальных средств защиты, которые в силу своей простоты позволяют проводить формальную или неформальную проверку. Брандмауэр как раз и является таким инструментом, который позволяет осуществлять дальнейшую декомпозицию в связи с работой различных сетевых протоколов.

Брандмауэр — это полупроницаемая мембрана, расположенная между защищенной (внутренней) сетью и внешней средой (внешними сетями или другими сегментами корпоративной сети), которая контролирует все информационные потоки, входящие и выходящие из внутренней сети (Рисунок 1). Управление информационными потоками заключается в их фильтрации, т.е. избирательном прохождении экрана, возможно, с некоторыми проведенными преобразованиями и уведомлением отправителя о том, что его данные в паспорте будут отклонены. Фильтрация основана на наборе предустановленных на экране правил, которые представляют собой выражение сетевых аспектов политики безопасности организации.

Рекомендуется разделять случаи, когда экран устанавливается на границе внешней (обычно публичной) сети или на границе между сегментами корпоративной сети. Соответственно, мы поговорим о внешних и внутренних брандмауэрах.

При общении с внешними сетями обычно используется только семейство протоколов TCP/IP. Поэтому внешний брандмауэр должен учитывать особые функции этих протоколов. Для внутренних брандмауэров ситуация более сложная; здесь, помимо TCP/IP, следует учитывать, по крайней мере, протоколы SPX/IPX, используемые в сетях Novell NetWare. Другими словами: Внутренние экраны часто должны быть многопротокольными. Ситуации, когда корпоративная сеть содержит только один внешний канал, являются скорее исключением, чем правилом. Напротив, типичная ситуация, когда корпоративная сеть состоит из нескольких географически рассредоточенных сегментов, каждый из которых подключен к публичной сети (Рисунок 2). В этом случае каждое соединение должно быть защищено отдельным экраном. Точнее, можно предположить, что внешний корпоративный брандмауэр составлен и что он должен решить проблему скоординированного управления (управления и аудита) всеми компонентами.

Семиуровневая референсная модель ISO/OSI является основой для любого рассмотрения сетевых технологий. Также полезно классифицировать брандмауэры в соответствии с тем, осуществляется ли фильтрация на уровне соединения, сети, транспорта или приложения. Соответственно, можно сделать ссылку на экранирующие концентраторы (уровень 2), маршрутизаторы (уровень 3), транспортное экранирование (уровень 4) и прикладное экранирование (уровень 7). Существуют также сложные экраны, которые анализируют информацию на нескольких слоях.

В этой статье мы не будем рассматривать экранирующие концентраторы, так как они концептуально очень сильно отличаются от экранирующих маршрутизаторов.

Таким образом, возможности брандмауэра напрямую определяются тем, какую информацию можно использовать в правилах фильтрации и насколько мощными могут быть наборы правил. В целом, чем выше уровень в модели ISO/OSI, на котором работает экран, тем больше информации доступно на экране и тем тоньше и надежнее можно настроить экран. В то же время, фильтрация на каждом из вышеупомянутых уровней имеет свои преимущества, такие как низкая стоимость, высокая эффективность или прозрачность для пользователей. По этой причине, как и по некоторым другим причинам, в большинстве случаев используются смешанные конфигурации, сочетающие различные типы экранов. Наиболее распространенной является комбинация экранирующих маршрутизаторов и экрана приложений.

Помимо выразительности и допустимого количества правил, качество брандмауэра определяется двумя другими очень важными характеристиками — удобством использования и самозащитой. С точки зрения удобства использования, четкий интерфейс при настройке правил фильтрации и возможность централизованного управления сложными конфигурациями имеют первостепенное значение. В последнем аспекте, с другой стороны, было бы желательно предусмотреть средства для централизованной загрузки правил фильтрации и проверки набора правил на непротиворечивость. Также важным является централизованный сбор и анализ регистрационной информации и получение сигналов о попытках совершения действий, запрещенных политикой безопасности.

Собственная защита брандмауэра обеспечивается теми же средствами, что и защита универсальных систем. При выполнении централизованного управления все равно необходимо обеспечить защиту информации от пассивного и активного перехвата сети, то есть обеспечить ее (информации) целостность и конфиденциальность.

Вид экранирования (фильтрации) как защитного механизма очень глубокий. Помимо блокирования потоков данных, нарушающих политики безопасности, брандмауэр также может скрывать информацию о защищаемой сети, что затрудняет действия потенциальных злоумышленников. Например, окно приложения может действовать от имени субъектов внутренней сети, создавая впечатление, что только брандмауэр взаимодействует (рисунок 4). Такой подход скрывает топологию внутренней сети от внешних пользователей, что значительно усложняет задачу злоумышленника.

Заключение

В области защиты компьютерной информации дилемма безопасности сформулирована следующим образом: Необходимо выбирать между безопасностью системы и открытостью. Однако правильнее говорить о равновесии, чем о выборе, поскольку система, не обладающая свойством открытости, не может быть использована.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Общими моделями систем и процессов защиты информации названы такие, которые позволяют определять (оценивать) общие характеристики указанных систем и процессов в отличие от моделей локальных и частных, которые обеспечивают определение (оценки) некоторых локальных или частных характеристик систем или процессов. Основное назначение общих моделей состоит в создании предпосылок для объективной оценки общего состояния АСОД с точки зрения меры уязвимости или уровня защищенности информации в ней. Необходимость в таких оценках обычно возникает при анализе общей ситуации с целью выработки стратегических решений при организации защиты информации.

Системную классификацию общих моделей в настоящее время произвести практически невозможно, так как ввиду малого числа таких моделей для этого нет достаточных данных. Поэтому классификацию рассматриваемых моделей здесь представим простым перечнем и их краткой характеристикой, имея в виду, что их перечень является далеко не случайным, он отражает современное представление о реальной потребности в общих моделях.

В указанный перечень включены следующие модели:

1. Общая модель процесса защиты информации. Данная модель в самом общем виде и для самого общего объекта защиты должна отражать процесс защиты информации как процесс взаимодействия дестабилизирующих факторов, воздействующих на информацию, и средств защиты информации, препятствующих действию их факторов. Итогом взаимодействия будет тот или иной уровень защищенности информации;

2. Обобщенная модель системы защиты информации. Являясь дальнейшим развитием общей модели процесса защиты, обобщенная модель системы защиты должна отображать основные процессы, осуществляемые в ней с целью рационализации процессов защиты. Указанные процессы в самом общем виде могут быть представлены как процессы распределения и использования ресурсов, выделяемых на защиту информации;

3. Модель общей оценки угроз информации. Основной направленностью этой модели является оценка не просто угроз информации как таковых, а еще и оценка тех потерь, которые могут иметь месть при проявлении различных угроз. Модели данного направления важны еще тем, что именно на них в наибольшей степени были выявлены те условия, при которых такие оценки будут адекватны реальным процессам защиты информации;

4. Модели анализа систем разграничения доступа к ресурсам АСОД. Модели этого класса предназначены для обеспечения решения задач анализа и синтеза систем (механизмов) разграничения доступа к различным видам ресурсов АСОД и прежде всего – к массивам данных или полям ЗУ. Выделение этих моделей в самостоятельный класс общих моделей обусловлено тем, что механизмы разграничения доступа относятся к числу наиболее существенных компонентов систем защиты информации от эффективности функционирования которых в значительной мере зависит общая эффективность защиты информации в АСОД. В то же время по степени унифицированности рассматриваемые модели могут быть отнесены к разряду общих.

Кроме рассмотренных выше, в список общих моделей включена унифицированная схема статистической модели, хотя, вообще говоря, ее общность носит не функциональный, а методический характер. Но поскольку рассматриваемая там схема модели носит всеобщий универсальный характер и позволяет имитировать практически все механизмы и процессы защиты информации, она отнесена к разряду общих моделей.

В самом общем виде модель процесса защиты может быть представлена так, показано на рисунке 1. В соответствии с данной моделью обработка информации на объекте осуществляется в условиях воздействия на информацию угроз (дестабилизирующих факторов). Для противодействия угрозам информации могут использоваться специальные средства защиты, оказывающие нейтрализующее воздействие на дестабилизирующие факторы.

В общем случае на объект защиты в любом его состоянии имеется потенциальная опасность воздействия некоторой совокупности дестабилизирующих факторов.


Рис. 1. Общая модель процесса защиты информации

При этом характер и уровень воздействия одних факторов не зависит от характера и уровня воздействия других. Однако могут быть и взамозависимые факторы, характер и уровень воздействия которых существенно зависит от влияния других. Точно так же и средства защиты могут быть независимыми с точки зрения эффективности защиты, так и взамозависимыми. Таким образом, при разработке моделей процессов защиты информации надо учитывать не только воздействие дестабилизирующих факторов и средств защиты, но также и взаимное воздействие факторов и средств друг на друга.

С учетом обозначений, приведенных на рисунке 1, можно вывести такие зависимости.




Рассмотренная выше модель привлекательна своей простотой. Для определения показателей защищенности информации достаточно знать вероятностные характеристики дестабилизирующего воздействия на информацию различных факторов и эффективности функционирования средств защиты. Получение таких характеристик, хотя и сопряжено с преодолением значительных трудностей, тем не менее не является неразрешимой задачей. Однако помимо того существенного недостатка данной модели, который был отмечен выше (игнорирование) взаимодействия дестабилизирующих факторов и взаимовлияния средств защиты) в ней отсутствует также учет возможного ущерба от взаимодействия различных факторов, влияния проявления различных дестабилизирующих факторов на функционирование АСОД и некоторых других. Поэтому еще раз отметим, что данной моделью и моделями, подобными ей, надо пользоваться лишь для общих оценок при определении степени того внимания, которое должно быть уделено проблеме защиты информации.

Обобщенная модель системы защиты информации

Обобщенная модель системы защиты является следующей ступенью в развитии общей модели. Главным ее назначением является выбор основных ориентиров (принятие стратегических решений) при разработке перспективных планов построения систем защиты после того, как ее построение признано целесообразным. В соответствии с этим в рассматриваемой модели должны быть отображены те процессы, которые должны осуществляться в системе защиты. А поскольку центральным решением стратегического характера является оценка объема ресурсов, необходимых для обеспечения требуемого уровня защиты, и оптимальное их распределение, то в рассматриваемой модели определяющими должны быть именно процессы распределения ресурсов. Основой для ее построения являются общие цеди (задачи) защиты информации и условия, в которых осуществляется защита информации.

Цели защиты информации в самом общем виде могут быть сформулированы как построение оптимальных систем защиты информации и организации оптимального их функционирования. При этом понятие оптимальности интерпретируется в соответствии с общими постановками оптимизированных задач: при заданных ресурсах достигнуть максимального результата или обеспечить достижение заданного результата при минимальном расходовании ресурсов. Таким образом, в любом случае речь идет о наиболее рациональном использовании ресурсов, выделяемых или необходимых для защиты информации.

Условия, в которых осуществляется защита информации, могут быть представлены следующим образом. Защищенность информации определяется некоторыми показателями, которые в свою очередь определяются некоторыми параметрами системы и внешней среды. Всю совокупность параметров, определяющих значение показателей защищенности информации, в самом общем случае можно разделить на три вида: 1) управляемые параметры, т. е. такие, значения которых полностью формируются системой защиты информации; 2) параметры, недоступные для такого однозначного и прямого управления, как параметры, первого вида, но на которые система защиты может оказывать некоторое воздействие; 3) параметры внешней среды, на которые система защиты информации никаким образом воздействовать не может.

Тогда модель процесса защиты информации в самом общем виде представлена на рис. 2, на котором приняты следующие обозначения: K> – множество показателей защищенности (уязвимости) информации; c) > – множество параметров внешней среды, оказывающих влияние на функционирование АСОД; R (c) > – множество ресурсов АСОД, участвующих в обработке защищаемой информации; – множество внутренних параметров АСОД и системы защиты информации, которыми можно управлять непосредственно в процессе обработки защищаемых данных; в) > – множество внутренних параметров АСОД, не поддающихся непосредственному управлению, но поддающихся воздействию (например, в процессе реорганизации или совершенствования компонентов системы); у) > и y.т) > – множества средств и ресурсов текущего управления; в) > и в) > – множества средств и ресурсов управления о) > множества общих ресурсов управления.


Рис. 2 Общая модель процессов защиты информации

Тогда модель процесса защиты информации в самом общем виде представлена на рис. 2, на котором приняты следующие обозначения:



Нетрудно видеть, что возможны следующие модификации общей модели:

1) блоки 1, 2 и 3 – модель функционирования АСОД при отсутствии управления защитой информации; такая модель позволяет лишь определять значения показателей защищенности информации, т. е. решать задачи анализа;

2) блоки 1, 2, 3, 4а – модель текущего управления защитой информации; основу которого составляет оптимизация использования средств защиты, непосредственно включенных в состав АСОД. Такое управление может быть оперативно-диспетчерским и календарно-плановым;

3) 1, 2, 3, 4а, 5а и 6а – модель управления ресурсами, выделенными на защиту информации. Дополнительно к предыдущим задачам такая модель позволяет оптимизировать процесс формирования средств для текущего управления защитой информации;

4) блоки 1, 2, 3, 4б, и 5б – модель управления средствами воздействия на параметры, не допускающие текущего управления, но поддающиеся воздействию;

5) 1, 2, 3, 4б, 5б и 6б – модель управления ресурсами, выделенными на развитие АСОД;

6) все блоки – полная модель защиты. Дополнительно ко всем возможностям, рассмотренным выше, позволяет оптимизировать использование всех ресурсов, выделенных на защиту информации.

Таким образом, приведенная модель позволяет решать все задачи моделирования систем и процессов защиты информации. Однако, чтобы воспользоваться этой общей моделью, должны быть известны функциональные зависимости значений показателей защищенности от всех обозначенных на рис. 2 параметров и зависимость самих параметров от размеров ресурсов, вкладываемых в отображаемые ими процессы. Как известно, в настоящее время оба названные условия, вообще говоря, отсутствуют, что существенно ограничивает возможности практического использования рассмотренной модели. Для расширения этих возможностей в программе работ по защите информации должны быть предусмотрены (и притом в качестве приоритетных) работы по формированию и обоснованию необходимых функциональных зависимостей и сбору (определению) необходимых для их реализации.

Сказанное однако не означает, что рассматриваемой общей моделью нельзя пользоваться уже в настоящее время. В самом деле, поскольку и название выше функциональные зависимости и необходимые для их реализации данные в значительной мере могут формироваться целенаправленной деятельностью людей, поэтому опытные специалисты, варьируя как видами зависимостей, так и значениями необходимых величин, на этой основе могут получать с помощью модели весьма важные результаты.

Для реализации процессов, определяемых общей моделью защиты информации, и создаются системы защиты, процессами функционирования которых собственно и обеспечивается защита. Следовательно, общую модель защиты информации надо трансформировать в модель их функционирования, т. е. функциональную модель. Основой для построения названных моделей, естественно, должны служить основные положения рассмотренной в унифицированной концепции защиты информации в современных АСОД.

Для обоснования структура модели организационного построения системы защиты существенно важным является то обстоятельство, что защита информации в современных АСОД должна быть непрерывным и управляемым процессом. В соответствии с этим должны быть механизмы, с помощью которых осуществляется непосредственная защита информации в АСОД, и механизмы управления этими механизмами. Далее, поскольку есть системы управления, то должны быть системы создания систем защиты, которые в соответствии с современными концепциями управления (см., например [16]) должны быть внешними и более высокого уровня иерархии относительно создаваемых ими систем. Тогда обобщающую модель организационного построения системы защиты информации можно представить так, как показано на рис. 3. В соответствии с рис. 3 обобщенная ее функциональная модель представлена таблицей 1.


Рис. 3. Обобщенная модель организационного построения СЗИ

Таблица 1. Обобщенная функциональная модель СЗИ в АСОД


Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Вопрос 1. Место информационной безопасности в системе национальной безопасности России: понятие, структура и содержание

Вопрос 1. Место информационной безопасности в системе национальной безопасности России: понятие, структура и содержание Информатизация социально-политической, экономической и военной деятельности страны и, как следствие, бурное развитие информационных систем

Вопрос 2. Основные руководящие документы, регламентирующие вопросы информационной безопасности

Вопрос 2. Основные руководящие документы, регламентирующие вопросы информационной безопасности Рассматривая Концепцию национальной безопасности России, утвержденную Указом Президента РФ от 17.12.97 № 1300 (в ред. от 10.01.2000), которая отражает названную «Окинавскую хартию

Вопрос 3. Современные угрозы информационной безопасности в России

Вопрос 3. Современные угрозы информационной безопасности в России Согласно Закону о безопасности под угрозой безопасности понимается совокупность условий и факторов, создающих опасность жизненно важным интересам личности, общества и государства. Концепция

Вопрос 2. Модель и методика корпоративной системы защиты информации

Вопрос 1. Особенности информационной безопасности банков

Вопрос 1. Особенности информационной безопасности банков Со времени своего появления банки неизменно вызывали преступный интерес. И этот интерес был связан не только с хранением в кредитных организациях денежных средств, но и с тем, что в банках сосредотачивалась важная

Вопрос 1. Состояние вопросов обеспечения информационной безопасности

Вопрос 1. Состояние вопросов обеспечения информационной безопасности В настоящее время вопросы ИБ в вузах стали принимать все более актуальное значение. Следует вспомнить, что проблема компьютерных правонарушений зародилась именно в вузах (например, вирус Морриса). По

Глава 1 ОСНОВНЫЕ ПОНЯТИЯ И ИСТОРИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Глава 1 ОСНОВНЫЕ ПОНЯТИЯ И ИСТОРИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Информационные процессы пронизывают все акты функционирования живой материи. Информация пронизывает все поры жизни людей и общества. Академик А. И.

Глава 2 ПРОБЛЕМЫ И УГРОЗЫ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Глава 2 ПРОБЛЕМЫ И УГРОЗЫ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Национальная безопасность Российской Федерации существенным образом зависит от обеспечения информационной безопасности, и в ходе технического прогресса эта зависимость будет возрастать. Доктрина информационной

2.1. Основные проблемы информационной безопасности и пути их решения

2.1. Основные проблемы информационной безопасности и пути их решения Нынешнее состояние информационной безопасности России – это состояние нового, только оформляющегося с учетом веления времени государственно-общественного института. Многое на пути его становления

2.2. Вилы и источники угроз информационной безопасности

2.2. Вилы и источники угроз информационной безопасности Угрозы информационной безопасности – это использование различных видов информации против того или иного социального (экономического, военного, научно-технического и т. д.) объекта с целью изменения его

2.3. Место информационной безопасности в системе национальной безопасности России

2.3. Место информационной безопасности в системе национальной безопасности России В современном мире информационная безопасность становится жизненно необходимым условием обеспечения интересов человека, общества и государства и важнейшим, стержневым, звеном всей

Глава 3 ОСНОВНЫЕ НАПРАВЛЕНИЯ ОБЕСПЕЧЕНИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Глава 3 ОСНОВНЫЕ НАПРАВЛЕНИЯ ОБЕСПЕЧЕНИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Информационная сфера, являясь системообразующим фактором жизни общества, активно влияет на состояние политической, экономической, оборонной и других составляющих безопасности Российской

Глава 4 ПРАВОВОЕ И ОРГАНИЗАЦИОННОЕ ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Глава 4 ПРАВОВОЕ И ОРГАНИЗАЦИОННОЕ ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Реализация гарантий конституционных прав и свобод человека и гражданина, касающихся деятельности в информационной сфере, является важнейшей задачей государства в области информационной

4.1. Конституция РФ и Доктрина информационной безопасности РФ о правовом обеспечении информационной сферы

4.1. Конституция РФ и Доктрина информационной безопасности РФ о правовом обеспечении информационной сферы Проблема правового регулирования отношений в сфере обеспечения информационной безопасности является для России одной из важнейших. От ее решения во многом зависит

4.2. Федеральное законодательство в сфере информационной безопасности

4.2. Федеральное законодательство в сфере информационной безопасности Последовательное развитие законодательства в сфере информационной безопасности определяется необходимостью комплексного подхода к формированию и разработке единой концепции ее правового

Читайте также: