Защита от инфракрасного и ультрафиолетового излучения реферат

Обновлено: 05.07.2024

Инфракрасное излучение генерируется любым нагретым телом, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Нагретые тела, имеющие температуру выше 100oС, являются источникомкоротковолнового инфракрасного излучения.
По длине волны инфракрасное излучение подразделяют на следующие области:
• область А – 760-1500 нм,
• область В – 1500-3000 нм,
• область С – более 3000 нм.

Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение (область А), которое проникает в ткани человека на глубину в несколько сантиметров. Инфракрасныелучи длинноволнового диапазона задерживаются в поверхностных слоях кожи.
Количественной характеристикой излучения является интенсивность теплового облучения, которую можно определить как энергию, излучаемую с единицы площади в единицу времени (ккал/(м2· ч) или Вт/м2).
Источником ИК-излучения могут быть открытое пламя, расплавленный и нагретый металл, стекло, нагретые поверхностиоборудования, источники искусственного освещения и др.

Воздействие инфракрасного излучения на человека.
Воздействие инфракрасного излучения может быть общим и локальным. При длинноволновом излучении повышается температура поверхности тела, а при коротковолновом - изменяется температура лёгких, головного мозга, почек и некоторых других органов человека.
Значительное изменение общей температуры тела(1,5-2oС) происходит при облучении инфракрасными лучами большой интенсивности. Воздействуя на мозговую ткань, коротковолновое излучение вызывает "солнечный удар". Человек при этом ощущает головную боль, головокружение, учащение пульса и дыхания, потемнение в глазах, нарушение координации движений, возможна потеря сознания. При интенсивном облучении головы происходит отёк оболочек и тканей мозга,проявляются симптомы менингита и энцефалита.
При воздействии на глаза наибольшую опасность представляет коротковолновое излучение. Возможное последствие воздействия инфракрасного излучения на глаза - появление инфракрасной катаракты.

Источники инфракрасного излучения.
В производственных условиях выделение тепла возможно от:
• плавильных, нагревательных печей и другихтермических устройств;
• остывания нагретых или расплавленных металлов;
• перехода в тепло механической энергии, затрачиваемой на привод основного технологического оборудования;
• перехода электрической энергии в тепловую и т.п.

Около 60% тепловой энергии распространяется в окружающей среде путём инфракрасного излучения. Лучистая энергия, проходя почти без потерь пространство,снова превращается в тепловую. Тепловое излучение не оказывает непосредственного воздействия на окружающий воздух, свободно пронизывая его.
Производственные источники лучистой теплоты по характеру излучения можно разделить на четыре группы:
• с температурой излучающей поверхности до 500oС (наружная поверхность печей и др.); их спектр содержит инфракрасные лучи с длиной волны 1,9-3,7мкм;
• с температурой поверхности от 500 до 1300oС (открытое пламя, расплавленный чугун и др.); их спектр содержит преимущественно инфракрасные лучи с длиной волны 1,9-3,7 мкм;
• с температурой от 1300 до 1800oС (расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких с длиной волны 1,2-1,9 мкм, так и видимые большой яркости;
• стемпературой выше 1800oС (пламя электродуговых печей, сварочных аппаратов и др.); их спектр излучения содержит, наряду с инфракрасными и видимыми, ультрафиолетовые лучи.

Защита от инфракрасного излучения.
Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем:
• Снижение интенсивности.

Трубчанинова Марина Станиславовна

преподаватель общепрофессиональных дисциплин Трубчанинова М.С.

  1. Требования к производственному освещению
  2. Меры защиты от действия инфракрасного излучения
  3. Требования к искусственному производственному освещению
  4. Средства защиты от ультрафиолетовых излучений
  5. Источники и литература

Требования к производственному освещению

Общие сведения. Недостаточное освещение на производстве не только увеличивает количество брака и ошибок, в том числе сопровождающихся несчастными случаями, но и повышает утомляемость, снижает производительность труда, вызывает заболевание органов зрения. Достаточное, но неправильное освещение деталей или рабочих поверхностей также неблагоприятно для самочувствия человека и производительности труда.

Большое значение имеет цвет стен, потолка, оборудования и его деталей. Психологами установлено, что, например, желтый цвет стен создает у человека ощущение большей теплоты, чем соответствует температура в помещении, а голубой — большей прохлады, зеленый успокаивает, а красный, розовый, малиновый цвета в некоторой степени возбуждают. Эти качества цветов позволяют рационально выбирать окраску стен с учетом условий работы (например, голубые стены в горячем цехе), а также станков, другого оборудования. Цвет используется и как элемент сигнализации. Например, движущиеся тележки и детали грузоподъемных машин (крюк, стрела) для предупреждения окружающих об опасности окрашивают чередующимися контрастными желто-черными полосами.

Эти же цвета используют на некоторых плакатах и знаках безопасности.

Из светотехнических величин важнейшее значение для гигиенического нормирования, расчета и контроля производственного освещения имеют световой поток, освещенность рабочих поверхностей и коэффициент естественной освещенности.

Освещенность Е характеризует поверхностную плотность светового потока Ф, падающего на поверхность, к ее площади S : Е = Ф / S.

За единицу освещенности принят люкс (лк) — освещенность поверхности площадью 1 м2, по которой равномерно распределен световой поток 1 лм. Освещенность поверхности земли в лунную ночь составляет приблизительно 0,2 лк, а в солнечный полдень — до 100000 л к.

Освещение может быть естественным (солнечным светом), ис-кусственным (электрическими или керосиновыми лампами) и совмещенным (естественное и искусственное). Абсолютным значением освещенности пользуются лишь при нормировании и контроле искусственного освещения; естественное освещение какой-либо точки в помещении характеризуется коэффициентом естественной освещенности е (%), который представляет собой отношение освещенности этой точки к освещенности наружной точки, находящейся на горизонтальной плоскости и освещенной рассеянным светом полностью открытого небосвода.

Гигиеническое нормирование освещения. Для помещений с боковым естественным освещением используют нормированное минимальное значение коэффициента естественной освещенности на рабочих местах, наиболее удаленных от окон, а для помещений с верхним освещением (через фонари в крыше) или с комбинированным — среднее значение. Нормы установлены для восьми разрядов производственных помещений по условиям зрительной работы.

Деление территории РФ на пояса светового климата указано на карте в СанПиН 11.4 — 79. Там же указаны для каждого пояса зоны устойчивого и неустойчивого снежного покрова зимой. Для поясов I, II, IV и V нормативный коэффициент естественной освещенности находят путем умножения коэффициента е из табл. 6 на коэффициенты светового климата тк = 0,8. 1,2 и солнечности климата Ск = 0,7. 1, которые берут из таблицы в том же СНиП с учетом географической широты и ориентации окон по сторонам горизонта. Если местность относится к зоне устойчивого снежного покрова, полученное значение е для разрядов зрительной работы I . VII умножают на коэффициент 0,8, учитывающий улучшение условий освещения.

Нормы искусственного освещения для производственных помещений даны на наименьшую допустимую освещенность рабочих поверхностей в зависимости от восьми разрядов работы, как и для естественного освещения, с учетом контраста объекта различения с фоном (малый, средний, большой) и степени темноты фона (светлый, средний, темный). Причем для общего освещения и комбинированного с местным нормы различны: например, освещение светильниками на потолке плюс на станках и на столах.

Во избежание слепящего действия применяют светильники с рассеивателями света (матовое стекло, полупрозрачная решетка), с затенителями и специальной арматурой (глубокоизлучатель и др.) и подвешивают на определенной высоте для каждого типа светильника.

Меры защиты от действия инфракрасного излучения

Основным путём оздоровления труда в горячих цехах, где ИКИ-основной компонент микроклимата, является изменение технологических процессов в направлении ограничения источников тепловыделений и уменьшении времени контакта работающих c ними. Дистанционное управление процессом увеличивает расстояние между рабочим и источником тепла и излучения, что снижает интенсивность влияющей на человека радиации. Важное значение имеют теплоизоляция поверхности оборудования: устройство защитных экранов, покрытыми теплоизоляционными материалами, ограждающих рабочих от лучистого и конвенционного тепла, водяные и воздушные завесы; укрытие поверхности нагревательных печей полыми экранами c циркулирующей в них проточной водой снижает температуру воздуха на рабочем месте и полностью устраняет ИКИ.

По действующим санитарным нормам температура нагретых поверхностей оборудования и ограждений на рабочих местах не должна превышать 45С. Наиболее распространённый и эффективный способ защиты от излучения — экранирование источников излучений. Экраны применяют как для экранирования источников излучении, так и для защиты рабочих мест от инфракрасного излучения.

По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплопроводящие. Это деление условно, так как любой экран обладает способностью отражать, поглощать или отводить тепло.

Полупрозрачные экраны. К полупрозрачным экранам относятся металлические сетки c размером ячейки 3-3,5мм, цепные завесы, армированное стальной сеткой стекло. Коэффициент эффективности цепных завес зависит от толщины цепей. C целью повышения эффективности защитных свойств применяют завесы водяной плёнкой и устраивают двойные экраны. Армированное стекло применяют при тех же интенсивностях облучения, что и цепные завесы, и имеют такой же коэффициент эффективности. Увеличение эффективности достигается орошением водяной плёнки и устройством двойного экрана.

Прозрачные экраны. Для прозрачных экранов используют силикатное, кварцевое или органическое стекло, тонкие металлические плёнки на стекле, воду в слое или дисперсном состоянии.

Прозрачные теплопоглощающие экраны изготовляют из различных стёкол (силикатных, кварцевых, органических), бесцветных или окрашенных. Для повышения эффективности применяются двойное остекление c вентилируемой воздушной прослойкой.

Органическое стекло применяют для защиты лица от теплового облучения в виде налобовых щитков. Эффективность стёкол зависит от спектра излучения, т.е. стекло обладает узкополосными свойствами. B последнее время одним из методов предупреждения влияния лучистой энергии является охлаждение стен, пола и потолка и применение специальных экранов на рабочих местах .

Требования к искусственному производственному освещению

Источниками света при искусственном освещении являются газоразрядные лампы и лампы накаливания.

Газоразрядные лампы предпочтительнее для применения в системах искусственного освещения. Они имеют высокую световую отдачу и большой срок службы. Световой поток от газоразрядных ламп по спектральному составу близок к естественному и поэтому более благоприятен для зрения. Однако газоразрядные лампы имеют существенные недостатки, к числу которых относится пульсация светового потока. При рассмотрении быстро движущихся или вращающихся деталей в пульсирующем световом потоке возникает стробоскопический эффект, который проявляется в искажении зрительного восприятия объектов. Это явление ведёт к увеличению опасности производственного травматизма и делает невозможным выполнение некоторых производственных операций.

B системах производственного освещения применяют люминесцентные газоразрядные лампы, имеющие форму цилиндрической стеклянной трубки. Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует УФИ излучение газового электрического разряда в видимый свет. Различают несколько типов ламп: дневного света, дневного света c улучшенной цветопередачей, холодного белого, тёплого белого и белого света.

Применяются для освещения производственных помещений также лампы накаливания, в которых свечение возникает путём нагревания нити накала до высоких температур. Они просты и надёжны в эксплуатации. Недостатками являются низкая световая отдача, ограниченный срок службы (до 1000ч), преобладание излучения в жёлто-красной части спектра, что искажает цветовое восприятие.

Эксплуатация осветительных установок. Важной характеристикой светильника является коэффициент полезного действия - отношение светового потока светильника к световому потоку лампы, помещённой в светильник.

По конструкционному исполнению светильники делятся: на открытые, защищённые закрытые, пыленепроницаемые, влагозащищённые, взрывозащищённые и взрывобезопасные. То распределению светового потока в пространстве светильники бывают прямого, преимущественно прямого, рассеянного и отражённого света.

Основным прибором для измерения освещённости является фотоэлектрический люксметр (Ю-1 б, Ю-117 и др.). Для создания благоприятного светового климата в производственных помещениях важное значение имеет не только правильное проектирование системы освещения, но и цветовое оформление.

Основные правила цветового оформления производственных помещений заключается в следующем: в любом производственном помещении должно быть светло, стены и потолки должны быть окрашены в светлые тона при относительно небольшой насыщенности и высоким коэффициенте отражения. Освещение и цветовое оформление производственных помещений при правильном решении и дачном сочетании оказывает благоприятное влияние на настроение и работоспособность человека, рост производительности труда и снижении числа и тяжести производственных травм.

Методы расчета общего искусственного освещения рабочих помещений. Метод светового потока (коэффициента использования) применяется при равномерном расположении светильников и при нормированной горизонтальной освещенности. С помощью этого метода рассчитывают среднюю освещенность поверхности. При этом наиболее целесообразно рассчитывать освещение для помещений со светлым потолком и стенами, особенно при рассеянном и отраженном свете.

Для расчета общего равномерного и локализованного освещения помещений и открытых пространств, а также местного освещения при любом расположении освещаемых поверхностей применяется точечный метод .

Расчет по удельной мощности основан на анализе большого количества светотехнических расчетов, выполненных по методу коэффициента использования светового потока.

Метод применяется при расчете общего равномерного освещения, особенно для помещений большой площади.

Ультрафиолетовое излучение — это электромагнитные волны с длиной волны от 0,0136 до 0,4 мкм. Различают три участка спектра ультрафиолетового (УФ) излучения, имеющих различную биологическую активность. Ультрафиолетовое излучение с длиной волны 0,4. 0,315 мкм имеет слабое биологическое воздействие. УФ-лучи в диапазоне 0,3154. 0,28 мкм оказывают сильное воздействие на кожу и обладают противорахитичным действием. УФ-излучения с длиной волны 0,28. 0,2 мкм обладают бактерицидным действием.

Избыток и недостаток этого вида излучения представляет опасность для организма человека. Воздействие на кожу больших доз УФ-излучений вызывает кожные заболевания — дерматиты. Пораженный участок имеет отечность, ощущается жжение, зуд. При воздействии повышенных доз УФ-излучения на центральную нервную систему характерны следующие симптомы заболеваний: головная боль, тошнота, головокружение, повышенная температура тела, повышенная утомляемость, нервное возбуждение и т.д.

Оценка УФ-облучения производится по величине эритемной дозы. За единицу эритемной дозы принят 1 эр, равный 1 Вт мощности УФ-излучения с длиной волны 0,297 мкм. Для профилактики достаточна приблизительно десятая часть эритемной дозы (60. 90 мкэрмин/см2).

Источниками УФ-излучений являются: электрическая дуга, автогенная сварка, плазменная резка и напыление, лазерные установки, газоразрядные лампы, ртутно-кварцевые лампы, радиолампы, ртутные выпрямители и др.

Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства: экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием — дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты и мази).

Для экранирования рабочих мест применяют ширмы, щитки, или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения.

К СИЗ от ультрафиолетовых излучений относятся: термозащитная спецодежда; рукавицы; спецобувь; защитные каски; защитные очки и щитки со светофильтрами.

Измерение интенсивности и спектра УФ-излучений производится с помощью УФ-дозиметров и инфракрасных спектрометров ИКС-10, ИКС-12, ИКС-14.

Для инфракрасного излучения характерны электромагнитные волны с длиной волны в пределах 0,76. 420 мкм. Оно генерируется любым нагретым телом, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Нагретые тела, имеющие температуру выше 100 °С, являются источниками коротковолнового инфракрасного излучения (0,7. 9 мкм). С уменьшением температуры нагретого тела (50. 100 °С) инфракрасное излучение характеризуется в основном длинноволновым спектром.

Источником инфракрасных излучений в производственных условиях являются: открытое пламя; расплавленный и нагретый металл, материалы; нагретые поверхности стен, оборудования; источники искусственного освещения, различные виды сварки и др.

В зависимости от длины волны изменяется проникающая способность инфракрасного излучения. Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение (0,76. 1,4 мкм); инфракрасные лучи длинноволнового диапазона задерживаются в поверхностных слоях кожи.

При воздействии на глаза наибольшую опасность представляет коротковолновое излучение. Возможное последствие — появление инфракрасной катаракты.

Потенциальная опасность облучения оценивается по величине плотности потока энергии инфракрасного излучения. Эту же величину используют для нормирования допустимой облученности на рабочих местах, которая не должна превышать 350 Вт/м. При этом ограничивается температура нагретых поверхностей. Если температура источника тепла не превышает 373 К (100°С), то поверхность оборудования должна иметь температуру не более 308 К (35 °С), а при температуре источника выше 373 К (100°С) — не более 318 К (45°С).

Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем: снижение интенсивности источника, защитное экранирование источника или рабочего места, использование СИЗ, лечебно-профилактические мероприятия.

Снижение интенсивности инфракрасного излучения источника достигается выбором технологического оборудования, обеспечивающего минимальные излучения; заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, с помощью которой обеспечивается минимум нагретых поверхностей.

Наиболее распространенные средства защиты от инфракрасного излучения, классифицируемые ГОСТ 12.4.123—83: оградительные, герметизирующие, теплоизолирующие, средства вентиляции, а также средства автоматического контроля и сигнализации.

Примером оградительных устройств являются конструкции, состоящие из одной или нескольких полированных отражающих пластин, охлаждаемых естественным или принудительным способом.

Локализация (герметизация) источников инфракрасного излучения осуществляется с помощью экранов из металлического листа; укрывающего набора труб, по которым под напором движется вода; сварных заслонок, футерованных огнеупорными материалами (асбест, вермикулитовые или перлитовые плиты и др.).

Средства индивидуальной защиты предназначаются для защиты глаз, лица и тела.

Для защиты глаз и лица используются очки со светофильтрами и щитки.

Защита поверхности тела от переоблучения инфракрасными электромагнитными волнами осуществляется с помощью спецодежды, вид которой зависит от специфики выполняемых работ (для сварщика при высокой температуре окружающего воздуха — из полульняной пропитанной парусины; при нормальных метеоусловиях или пониженной температуре окружающей среды — из льняной пропитанной парусины).

Лечебно-профилактические мероприятия предусматривают организацию рационального режима труда и отдыха и организацию регулярных периодических медосмотров.

Длительность и частота перерывов определяется с учетом интенсивности излучения и тяжести работ. Отдых происходит в специально оборудованных местах, где обеспечиваются благоприятные метеорологические условия. Регламентируется также длительность разового облучения.

Как уже сказано, при осуществлении сварочных работ, газовой и плазменной резке, в процессе работы у металлургических, стекловаренных и нагревательных печей, у прокатных станов, ковочных прессов, а также в условиях интенсивной солнечной радиации необходимо использовать средства защиты глаз.

В качестве экранов используются стеклянные светофильтры: круглые и прямоугольные — для защитных очков, прямоугольные — для щитков. Светофильтры изготавливают из темного (ТС) и синего (СС) стекла.

Тип светофильтра, который необходимо применять в конкретных условиях работы, определяется в зависимости от свойств пропускания и оптической плотности светофильтра для различных участков спектра электромагнитных волн. Учитывая, что практически оценка фактических условий облучения электромагнитными волнами является трудоемким процессом, рекомендуется выбор марки светофильтра производить на основе оценки косвенных показателей (например, силы тока, расхода ацетилена, кислорода и др.).

Для электрогазосварочных и вспомогательных работ рекомендуется использование светофильтров из темного стекла, марка которого определяется в зависимости от условий работ. Так, для работ на открытых площадках при интенсивной солнечной радиации рекомендованы светофильтры В-1. Эти светофильтры и светофильтры В-2 необходимо использовать при вспомогательных электросварочных работах в помещении. Светофильтры В-3 и Г-1 необходимо применять при газовой сварке и для вспомогательных работ на открытых площадках при электросварке. Для газосварщиков рекомендованы светофильтры Г-2 и Г-3, которые используются соответственно при сварке и резке средней и большой мощности.

Светофильтры Э-1, Э-2, Э-3, Э-4, Э-5 должны использоваться электросварщиками при силе тока 30. 75 А, 75. 200 А, 200. 400 А, 400. 500 А и свыше 500 А соответственно.

Дуговые методы электросварки также характеризуются различными спектром и интенсивностью электромагнитного излучения, зависящими от используемых материалов и режима сварки.

В работе рекомендуются для различных условий дуговой сварки светофильтры С-1, С-2,Е, С-13.

Для производства работ с помощью газовой сварки и кислородной резки рекомендуются светофильтры из темного стекла, марка которых будет зависеть от расхода ацетилена и кислорода. Например, при расходе ацетилена или кислорода, соответственно 70. 200 л/ч и 900. 2000 л/ч рекомендуется светофильтр С-2. В других случаях применяются светофильтры марок С-1, С-3, С-4.

Для прокатных, плавильных и других подобных работ рекомендуются следующие светофильтры из темного и синего стекла: СМ, М — для работ у плавильных печей при температуре наблюдаемой поверхности 1500°С и 1500. 1800°С соответственно; НКП, Д-1 — для работ у нагревательных печей, кузнечных горнов, прокатных станов; П-1, П-2, П-3 — для работ у плавильных печей (кроме доменных) при температуре наблюдаемых поверхностей до 1200°С, 1200. 1500°С соответственно.

Работа у доменных печей должна производиться с использованием светофильтров Д-2 и Д-3.

Основные мероприятия по снижению опасности воздействия инфракрасного излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защита временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Для защиты человека отИК - излучения применяют несколько способов.

Защита расстоянием.Этот способ состоит в том, что при удалении от источника излучения плотность потока энергии уменьшается пропорционально расстоянию до него.

Защита временем.Предусматривает ограничение пребывания человека в зоне
ИК-излучения.

Теплоизоляция источника излученияпредусматривает применение конструкторских и технологических решений, направленных на теплоизоляцию излучаемой поверхности материалами, которые снижают температуру поверхности излучения.

Экранирование источника излучениязаключается в использовании непрозрачных или полупрозрачных экранов, которые могут быть отражающими или теплопоглощающими.

Индивидуальные способы защиты:спецобувь, спецодежда, которая выдерживает высокие температуры и защищает отИК - излучений. Для защиты глаз используются специальные очки со стеклами желто-зеленого или синего цвета.

Технические защитные средства подразделяются на ограждающие, теплоотражающие, теплоотводящие и теплоизолирующие экраны; герметизацию оборудования; средства вентиляции; средства автоматического дистанционного управления и контроля; сигнализацию.

Использование средств индивидуальной защиты (использование для эащиты глаз и лица щитков и очков со светофильтрами, защита поверхности тела спецодеждой из льняной и полульняной пропитанной парусины).

Лечебно-профилактические мероприятия (организация рационального режима труда и отдыха, организация периодических медосмотров и др.).

К основным методам защиты от ультрафиолетового излучения относят экраны, средства индивидуальной защиты (одежда, очки), защитные кремы.

Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием);- дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты и мази). Для экранирования рабочих мест применяют ширмы, щитки, или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения. К СИЗ от ультрафиолетовых излучений относятся: термозащитная одежда, рукавицы, спецобувь, защитные каски, защитные очки и каски со светофильтрами.

Читайте также: