Вписанные и описанные окружности реферат

Обновлено: 04.07.2024

1.Основные теоремы об описанной и вписанной окружности……….

2. Правильные многоугольники………………………………………..

2.1. Теорема об окружности, описанной около правильного многоугольника.

2.2. Теорема об окружности, вписанной в правильный многоугольник………

2.3.Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности………………………………………

2.4. Решение задач с применением формул для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности…………………………………………………………………………

2.5. Площади правильных многоугольников………………………………….

3. Построение правильных многоугольников…………………………

3.1. Способы построения правильных многоугольников………………………

3.2. На сколько равных частей можно делить окружность с помощью циркуля и линейки?……………………………………………………………….

4.1. 0 вписанных углах. Гиппократ Хиосский…………………………………..

4.2. 0 правильных многоугольник……………………………………………….

1.Геометрия. Учебник для 7 9 кл. ср.школы. / Л.С. Атанасян и др., М. : Просвещение, 1990.

М. : Просвещение, 1982.

6. Сборник конкурсных задач по математике для поступающих во втузы.

Под ред. М.И. Сканави. Учебное пособие, 1994.

  1. Основные теоремы об описанной и вписанной окружности.

Окружность называется описанной около многоугольника, если все вершины

многоугольника лежат на этой окружности, а многоугольник

называется вписанным в эту окружность.

Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются этой окружности, а многоугольник называется

описанным около этой окружности.

ТЕОРЕМА: В любой треугольник можно вписать окружность.

Доказательство.

Рассмотрим произвольный треугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОL, и ОМ соответственно к сторонам АВ, ВС и СА. Так как точка О равноудалена от сторон треугольника АВС, то ОК = ОL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны треугольника АВС касаются этой окружности в точках К, L и М, так как они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.

Замечание. 1) Отметим, что в треугольник можно вписать только одну окружность. В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

2) В отличие от треугольника не во всякий четырехугольник можно вписать окружность. Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, не являющийся квадратом. Ясно, что в такой прямоугольник можно “поместить” окружность, касающуюся трех его сторон, но нельзя “поместить” окружность так, чтобы она касалась всех четырех его сторон, т. е. нельзя вписать окружность.

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

ТЕОРЕМА: Около любого треугольника можно описать окружность.

Вписанная, описанная окружности, взаимное расположение прямой и окружности, площади фигур, свойства прямоугольного треугольника. Задачи с окружностью, описанной около треугольника, вписанной в треугольник, описанной и вписанной около четырехугольника.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.06.2009
Размер файла 72,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 5

Реферат по геометрии

Содержание

2. Теоретическая часть:

2.1 Вписанная окружность

2.2 Описанная окружность

2.3 Взаимное расположение прямой и окружности

2.4 Площади фигур

2.5 Свойства прямоугольного треугольника

3. Практическая часть:

3.1 Задачи с окружностью, описанной около треугольника

3.2 Задачи с окружностью, вписанной в треугольник

3.3 Задачи с окружностью, описанной около четырехугольника

3.4 Задачи с окружностью, вписанной в четырехугольник

1. Введение

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы.

Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.

ь Систематизировать знания по этой теме

ь Подготовиться к решению задач повышенной сложности ЕГЭ

2.Теоретическая часть

2.1 Вписанная окружность

Определение: если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник - описанным около этой окружности.

Теорема: в любой треугольник можно вписать окружность, и притом только одну.

Центр окружности, вписанной в треугольник, находится на пересечении биссектрис треугольника.

Свойство: в любом описанном четырехугольнике суммы противоположных сторон равны.

Признак: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

2.2 Описанная окружность

Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник - вписанным в эту окружность.

Теорема: около любого треугольника можно описать окружность, и притом только одну.

Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

Свойство: в любом вписанном четырехугольнике сумма противоположных углов равна 180?.

Признак: если сумма противоположных углов четырехугольника равна 180?, то около него можно описать окружность.

2.3 Взаимное расположение прямой и окружности:

AB - касательная, если OH = r

AB + OH (OH - радиус, проведенный в точку касания H)

Свойство отрезков касательных, проведенных из одной точки:

Свойство хорд: если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM • MB = CM • MD.

Медиана

Медиана (от лат. mediana -- средняя), отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Теорема: сумма углов треугольника равна 180°

Основное тригонометрическое тождество: sin 2 A + cos 2 A = 1

Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: a 2 = b 2 + c 2 - 2bc • cos A

2.4 Площади фигур

Площадь параллелограмма

· Площадь параллелограмма равна произведению его основания на высоту:

· Площадь параллелограмма равна произведению двух соседних его сторон ?на синус угла между ними:

Площадь треугольника

ь Площадь треугольника равна половине произведения двух его сторон на синус угла между ними:

ь Площадь треугольника равна половине произведения его основания на высоту:

ь Площадь прямоугольного треугольника равна половине произведения его катетов:

ь Если высоты двух треугольников равны, то их площади относятся как основания.

ь Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы:

Площадь трапеции

Площадь трапеции равна произведению полусуммы её оснований на высоту:

Теорема: отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

2.5 Прямоугольный треугольник

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой:

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы:

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c 2 = a 2 + b 2

3. Практическая часть

3.1 Задачи с окружностью, описанной около треугольника

Задача 1: Около равнобедренного треугольника с основанием AC и углом при основании 75? описана окружность с центром O. Найдите ее радиус, если площадь треугольника BOC равна 16.

Дано: ? ABC - равнобедренный, AC - основание, ? ACB = 75?,

площадь ? BOC равна 16

Найти: радиус описанной окружности

1. Проведем медианы AF, CE, BH

2. ? ABC - равнобедренный, BH - медиана, следовательно, BH - высота, а значит ? HBC - прямоугольный

3. ? HBC = 90? - ? ACB, ? HBC = 90? - 75? = 15?

4. BO = OC = R, следовательно, ? BOC - равнобедренный, значит ?HBC = ?ECB = 15?

5. ? COB = 180? - (? HBC + ?ECB), ? COB = 180? - (15? + 15?) = 150?

Задача 2: треугольник BMP с углом B, равным 45?, вписан в окружность радиуса 6. Найдите длину медианы BK, если BK пересекает окружность в точке C и CK = 3.

? MOP = 2 • 45? = 90?, следовательно, ? MOP - прямоугольный

2. MP 2 = OM 2 + OP 2

MP 2 = 6 2 + 6 2 = 36 + 36 = 36 • 2

3. MK = KP = 0,5 • MP

4. MK • KP = BK • KC

3.2 Задачи с окружностью, вписанной в треугольник

Задача 4: радиус окружности, вписанной в прямоугольный треугольник, равен 2 м, а радиус описанной окружности равен 5 м. Найдите больший катет треугольника.

2. Пусть AM = AK = x, MC = CL = y

По теореме Пифагора:

(x + 2) 2 + (y + 2) 2 = (x + y) 2

(x + 2) 2 + (10 - x + 2) 2 = (x + 10 - x) 2

(x + 2) 2 + (12 - x) 2 = 100

x 2 + 4x + 4 +144 - 24x + x 2 = 100

2x 2 - 20x + 148 = 100

2x 2 - 20x + 48 = 0

x 2 - 10x + 24 = 0

3. Так как нужно найти больший катет, то берем y = 6

Задача 5: окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках K и A. Точка K делит сторону этого треугольника на отрезки 15 и 10, считая от основания. Найдите длину отрезка KA.

Дано: ? BCD - равнобедренный, K є BC, A є DC, BK = 15, KC = 10

1. CD = CB = BK + KC, CD = CB = 15 + 10 = 25

2. CK = CA = 10 (отрезки касательных, проведенные из одной точки), CB = CD, следовательно AD = CD - CA, AD = 25 - 10 = 15

3. BE = BK = 15, DE = DA = 15 (отрезки касательных, проведенные из одной точки), следовательно BD = 15 + 15 = 30

4. ? CKA ~ ? CBD (?C - общий, CK : CB = CA : CD), следовательно KA : BD = CA : CD, KA : 30 = 10 : 25, KA = 10 • 30 : 25 = 12

4. Заключение

Список литературы

Подобные документы

Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.

реферат [298,7 K], добавлен 16.06.2009

Вписанная и описанная окружности в треугольниках и четырехугольниках, их определение и построение. Теорема Пифагора. Определение площади треугольника, трапеции и параллелограмма. Решение типовых задач по изложенным темам с применением полученных знаний.

реферат [187,3 K], добавлен 28.05.2009

Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.

курсовая работа [330,3 K], добавлен 13.05.2015

Элементы геометрии треугольника: изогональное и изотомическое сопряжение, замечательные точки и линии. Коники, связанные с треугольником: свойства конических сечений; коники, описанные около треугольника и вписанные в него; применение к решению задач.

курсовая работа [1,3 M], добавлен 17.06.2012

Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.

презентация [536,1 K], добавлен 16.04.2012

Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.

контрольная работа [1,2 M], добавлен 13.12.2012

Ознакомление с формулами длины окружности, площади круга (частью плоскости, ограниченной окружностью) и исходящими из них формулами расчета радиуса, диаметра. Получение навыков применения формул, закрепление полученных знаний в ходе выполнения упражнений.


Определение: если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.

Теорема: в любой треугольник можно вписать окружность, и притом только одну.

Центр окружности, вписанной в треугольник, находится на пересечении биссектрис треугольника.

Свойство: в любом описанном четырехугольнике суммы противоположных сторон равны.

Признак: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.


Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность.

Теорема: около любого треугольника можно описать окружность, и притом только одну.

Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

Свойство: в любом вписанном четырехугольнике сумма противоположных углов равна 180˚.

Признак: если сумма противоположных углов четырехугольника равна 180˚, то около него можно описать окружность.


Взаимное расположение прямой и окружности:

AB – касательная, если OH = r

AB ┴ OH (OH – радиус, проведенный в точку касания H)


Свойство отрезков касательных, проведенных из одной точки:


Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c2 = a2 + b2


Медиана (от лат. mediana — средняя), отрезок, соединяющий вершину треугольника с серединой противоположной стороны.


Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Площадь параллелограмма равна произведению его основания на высоту:


Площадь параллелограмма равна произведению двух соседних его сторон ​на синус угла между ними:



Площадь треугольника равна половине произведения двух его сторон на синус угла между ними:



Площадь треугольника равна половине произведения его основания на высоту:



Площадь прямоугольного треугольника равна половине произведения его катетов:


Если высоты двух треугольников равны, то их площади относятся как основания.


Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы:



Площадь трапеции равна произведению полусуммы её оснований на высоту:



Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой:



Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы:


Задача 1: окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках K и A. Точка K делит сторону этого треугольника на отрезки 15 и 10, считая от основания. Найдите длину отрезка KA.


Дано: ∆ BCD – равнобедренный, K є BC, A є DC, BK = 15, KC = 10

CD = CB = BK + KC, CD = CB = 15 + 10 = 25

CK = CA = 10 (отрезки касательных, проведенные из одной точки), CB = CD, следовательно AD = CD – CA, AD = 25 – 10 = 15

BE = BK = 15, DE = DA = 15 (отрезки касательных, проведенные из одной точки), следовательно BD = 15 + 15 = 30

∆ CKA ~ ∆ CBD (ﮮC – общий, CK : CB = CA : CD), следовательно KA : BD = CA : CD, KA : 30 = 10 : 25, KA = 10 ∙ 30 : 25 = 12

Задача 2: Около равнобедренного треугольника с основанием AC и углом при основании 75˚ описана окружность с центром O. Найдите ее радиус, если площадь треугольника BOC равна 16.

Дано: ∆ ABC – равнобедренный, AC – основание, ﮮ ACB = 75˚,


площадь ∆ BOC равна 16

Найти: радиус описанной окружности

Проведем медианы AF, CE, BH

∆ ABC – равнобедренный, BH – медиана, следовательно, BH – высота, а значит ∆ HBC – прямоугольный

ﮮ HBC = 90˚ - ﮮ ACB, ﮮ HBC = 90˚ - 75˚ = 15˚

BO = OC = R, следовательно, ∆ BOC – равнобедренный, значит ﮮHBC = ﮮECB = 15˚

ﮮ COB = 180˚ - (ﮮ HBC + ﮮECB), ﮮ COB = 180˚ - (15˚ + 15˚) = 150˚

S = ∙ BO ∙ OC ∙ sin ﮮ BOC (теорема о площади треугольника), SBOC = ∙ R ∙ R ∙ sin 150˚ = ∙ R ∙ R ∙ = ∙ R2 ; ∙ R2 = 16; R2 = 16 : = 64; R = = 8

Задача 3: периметр прямоугольного треугольника равен 72 м, а радиус вписанной в него окружности – 6 м. Найдите диаметр описанной окружности.


Дано: ∆ ABC – прямоугольный, P = 72 м, r = 6 м

DO = OF = OE = r = 6 м, следовательно AD = AF = 6 м

FC = EC, BD = BE (отрезки касательных, проведенные из одной точки)

Пусть BD = x, FC = y, тогда AB = x + 6, AC = y + 6, BC = x + y

По теореме Пифагора AB2 + AC2 = BC2


P = AB + BC + AC, P = x + 6 + x + y + y + 6 = 2x + 2y + 12


(x + 6)2 + (y + 6)2 = (x + y)2

x2 + 12x + 36 + y2 + 12y + 36 = x2 + 2xy + y2


x + y = 30

12x – 2xy + 12y + 72 = 0 I: 2


y = 30 – x

6x – xy + 6y + 36 = 0

6x – x(30 – x) + 6(30 – x) + 36 = 0

6x – 30x + x2 + 180 – 6x + 36 = 0

x2 – 30x + 216 = 0

D = (-30)2 – 4 ∙ 1 ∙ 216 = 900 – 864 = 36

x1 = = = 18, x2 = = = 12

y = 30 – x

BC = 18 + 12 = 30 (м)

Ответ: 30 м – диаметр описанной окружности

Задача 4: вся дуга окружности радиуса R разделена на 4 большие и 4 малые части, которые чередуются одна за другой. Большая часть в два раза длиннее малой. Определить площадь восьмиугольника, вершинами которого являются точки деления дуги окружности.


Дано: окружность, разделенная на 4 большие и 4 малые части, радиус = R, большая часть в два раза длиннее малой.


Найти:

Пусть ﮮAOB = 2x, ﮮBOC = x, тогда по условию 8x + 4x = 360°, x = 30°, 2x = 60°, ﮮAOB = 60°, ﮮBOC = 30°





Ответ:


Задача 5: в ромб вписана окружность радиуса R. Найти площадь ромба, если его большая диагональ в 4 раза больше радиуса вписанной окружности.


Дано: ромб, радиус вписанной окружности – R, BD r в 4 раза


Найти:

Пусть OE = R, BD = 4OE = 4R





Ответ:

Задача 6: внутри правильного треугольника со стороной a расположены три равные окружности, каждая из которых касается двух сторон треугольника и двух других окружностей. Найти площадь части треугольника, расположенной вне этих окружностей.


Пусть AB = BC = AC = a.


Обозначим O1E = O1K = ED = r, тогда AD = AE + ED = AE + r = .

AO1 – биссектриса угла A, следовательно, ﮮ O1AE = 30˚ и в прямоугольном ∆AO1E имеем AO1 = 2O1E = 2r и AE ===. Тогда AE + r = == , откуда .

Площадь части треугольника, расположенной вне окружностей, равна площади ∆ ABC без утроенной площади круга:



Ответ:

Задача 7: найдите площадь равнобедренной трапеции, описанной около окружности с радиусом 4, если известно, что боковая сторона трапеции равна 10.


Дано: ABCD – равнобедренная трапеция, r = 4, AB = 10


Найти:

AB = CD = 10 по условию

AB + CD = AD + BC по свойству вписанной окружности

AD + BC = 10 + 10 = 20

FE = 2r = 2 · 4 = 8



Ответ:

Содержание

Содержание:
1. Введение.
2. Теория.
2.1. Вписанные окружности.
2.2. Описанные окружности.
3. Практика. Задачи.
4. Список литературы

Прикрепленные файлы: 1 файл

Содержание.docx

Магнитогорский Государственный Университет

Реферат на тему:

Студентка 4 курса МаГУ

2.1. Вписанные окружности.

2.2. Описанные окружности.

3. Практика. Задачи.

4. Список литературы

Для теории использованы:

1.Геометрия. Учебник для 7 – 9 кл. ср.школы. / Л.С. Атанасян и др.,

М. : Просвещение, 1990.

Для практики использованы:

Математический форум для школьников и абитуриентов.

Цель данной работы:

Систематизировать знания по этой теме

Подготовиться к решению задач, в том числе экзаменационных

2.1. Вписанная окружность

Определение: если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.

В любой треугольник можно вписать окружность.

Рассмотрим произвольный треугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОL, и ОМ соответственно к сторонам АВ, ВС и СА.

Так как точка О равноудалена от сторон треугольника АВС, то ОК = ОL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны треугольника АВС касаются этой окружности в точках К, L и М, так как они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.

1) Отметим, что в треугольник можно вписать только одну окружность. В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

2) В отличие от треугольника не во всякий четырехугольник можно вписать окружность. Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, не являющийся квадратом. Ясно, что в такой прямоугольник можно “поместить” окружность, касающуюся трех его сторон, но нельзя “поместить” окружность так, чтобы она касалась всех четырех его сторон, т. е. нельзя вписать окружность.

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:


Определение: если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник – описанным около этой окружности.

Теорема: в любой треугольник можно вписать окружность, и притом только одну.

Центр окружности, вписанной в треугольник, находится на пересечении биссектрис треугольника.

Свойство: в любом описанном четырехугольнике суммы противоположных сторон равны.

Признак: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.


Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность.

Теорема: около любого треугольника можно описать окружность, и притом только одну.

Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.

Свойство: в любом вписанном четырехугольнике сумма противоположных углов равна 180˚.

Признак: если сумма противоположных углов четырехугольника равна 180˚, то около него можно описать окружность.


Взаимное расположение прямой и окружности:

AB – касательная, если OH = r

AB ┴ OH (OH – радиус, проведенный в точку касания H)


Свойство отрезков касательных, проведенных из одной точки:


Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c2 = a2 + b2


Медиана (от лат. mediana — средняя), отрезок, соединяющий вершину треугольника с серединой противоположной стороны.


Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Площадь параллелограмма равна произведению его основания на высоту:


Площадь параллелограмма равна произведению двух соседних его сторон ​на синус угла между ними:



Площадь треугольника равна половине произведения двух его сторон на синус угла между ними:



Площадь треугольника равна половине произведения его основания на высоту:



Площадь прямоугольного треугольника равна половине произведения его катетов:


Если высоты двух треугольников равны, то их площади относятся как основания.


Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы:



Площадь трапеции равна произведению полусуммы её оснований на высоту:



Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой:



Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы:


Задача 1: окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках K и A. Точка K делит сторону этого треугольника на отрезки 15 и 10, считая от основания. Найдите длину отрезка KA.


Дано: ∆ BCD – равнобедренный, K є BC, A є DC, BK = 15, KC = 10

CD = CB = BK + KC, CD = CB = 15 + 10 = 25

CK = CA = 10 (отрезки касательных, проведенные из одной точки), CB = CD, следовательно AD = CD – CA, AD = 25 – 10 = 15

BE = BK = 15, DE = DA = 15 (отрезки касательных, проведенные из одной точки), следовательно BD = 15 + 15 = 30

∆ CKA ~ ∆ CBD (ﮮC – общий, CK : CB = CA : CD), следовательно KA : BD = CA : CD, KA : 30 = 10 : 25, KA = 10 ∙ 30 : 25 = 12

Задача 2: Около равнобедренного треугольника с основанием AC и углом при основании 75˚ описана окружность с центром O. Найдите ее радиус, если площадь треугольника BOC равна 16.

Дано: ∆ ABC – равнобедренный, AC – основание, ﮮ ACB = 75˚,


площадь ∆ BOC равна 16

Найти: радиус описанной окружности

Проведем медианы AF, CE, BH

∆ ABC – равнобедренный, BH – медиана, следовательно, BH – высота, а значит ∆ HBC – прямоугольный

ﮮ HBC = 90˚ - ﮮ ACB, ﮮ HBC = 90˚ - 75˚ = 15˚

BO = OC = R, следовательно, ∆ BOC – равнобедренный, значит ﮮHBC = ﮮECB = 15˚

ﮮ COB = 180˚ - (ﮮ HBC + ﮮECB), ﮮ COB = 180˚ - (15˚ + 15˚) = 150˚

S = ∙ BO ∙ OC ∙ sin ﮮ BOC (теорема о площади треугольника), SBOC = ∙ R ∙ R ∙ sin 150˚ = ∙ R ∙ R ∙ = ∙ R2 ; ∙ R2 = 16; R2 = 16 : = 64; R = = 8

Задача 3: периметр прямоугольного треугольника равен 72 м, а радиус вписанной в него окружности – 6 м. Найдите диаметр описанной окружности.


Дано: ∆ ABC – прямоугольный, P = 72 м, r = 6 м

DO = OF = OE = r = 6 м, следовательно AD = AF = 6 м

FC = EC, BD = BE (отрезки касательных, проведенные из одной точки)

Пусть BD = x, FC = y, тогда AB = x + 6, AC = y + 6, BC = x + y

По теореме Пифагора AB2 + AC2 = BC2


P = AB + BC + AC, P = x + 6 + x + y + y + 6 = 2x + 2y + 12


(x + 6)2 + (y + 6)2 = (x + y)2

x2 + 12x + 36 + y2 + 12y + 36 = x2 + 2xy + y2


x + y = 30

12x – 2xy + 12y + 72 = 0 I: 2


y = 30 – x

6x – xy + 6y + 36 = 0

6x – x(30 – x) + 6(30 – x) + 36 = 0

6x – 30x + x2 + 180 – 6x + 36 = 0

x2 – 30x + 216 = 0

D = (-30)2 – 4 ∙ 1 ∙ 216 = 900 – 864 = 36

x1 = = = 18, x2 = = = 12

y = 30 – x

BC = 18 + 12 = 30 (м)

Ответ: 30 м – диаметр описанной окружности

Задача 4: вся дуга окружности радиуса R разделена на 4 большие и 4 малые части, которые чередуются одна за другой. Большая часть в два раза длиннее малой. Определить площадь восьмиугольника, вершинами которого являются точки деления дуги окружности.


Дано: окружность, разделенная на 4 большие и 4 малые части, радиус = R, большая часть в два раза длиннее малой.


Найти:

Пусть ﮮAOB = 2x, ﮮBOC = x, тогда по условию 8x + 4x = 360°, x = 30°, 2x = 60°, ﮮAOB = 60°, ﮮBOC = 30°





Ответ:


Задача 5: в ромб вписана окружность радиуса R. Найти площадь ромба, если его большая диагональ в 4 раза больше радиуса вписанной окружности.


Дано: ромб, радиус вписанной окружности – R, BD r в 4 раза


Найти:

Пусть OE = R, BD = 4OE = 4R





Ответ:

Задача 6: внутри правильного треугольника со стороной a расположены три равные окружности, каждая из которых касается двух сторон треугольника и двух других окружностей. Найти площадь части треугольника, расположенной вне этих окружностей.


Пусть AB = BC = AC = a.


Обозначим O1E = O1K = ED = r, тогда AD = AE + ED = AE + r = .

AO1 – биссектриса угла A, следовательно, ﮮ O1AE = 30˚ и в прямоугольном ∆AO1E имеем AO1 = 2O1E = 2r и AE ===. Тогда AE + r = == , откуда .

Площадь части треугольника, расположенной вне окружностей, равна площади ∆ ABC без утроенной площади круга:



Ответ:

Задача 7: найдите площадь равнобедренной трапеции, описанной около окружности с радиусом 4, если известно, что боковая сторона трапеции равна 10.


Дано: ABCD – равнобедренная трапеция, r = 4, AB = 10


Найти:

AB = CD = 10 по условию

AB + CD = AD + BC по свойству вписанной окружности

AD + BC = 10 + 10 = 20

FE = 2r = 2 · 4 = 8



Ответ:

Раздел: Математика
Количество знаков с пробелами: 7937
Количество таблиц: 0
Количество изображений: 7

Читайте также: