Виды акустических материалов реферат

Обновлено: 02.07.2024

Акустические материалы принято подразделять в зависимости от назначения, структуры и свойств на звукопоглощающие и зву­коизоляционные или прокладочные.

Звукопоглощающие материалы

Особенности структуры и свойств.Звукопоглощающие материалы и изделия предназначаются для снижения уровня звукового давления в помещениях жилых, производственных и обще­ственных зданий. Поток звуковой энергии при падении звуковых волн на по­верхность ограждения частично отражается поверхностью ограж­дения, остальная звуковая энергия проходит через ограждение. Коэффициент звукопоглощения равен отношению не­отраженной энергии, поглощенной поверхностью, к падающей энергии в единицу времени. Поглощение звуковой энергии в однородном пористом материале происходит за счет энергетических потерь на вязкое трение, преодо­леваемое воздушным потоком в порах материала, теплообмена между стенками пор и воздухом, релаксационных процессов в материале с неидеальной упругостью скелета. Чем боль­шую пористость имеет материал, чем больше развита поверхность пор и больше пор сообщается между собой, тем больше его звукопо­глощение. Поэтому звукопоглощающие материалы должны обладать большой открытой пористостью преимуще­ственно сообщающегося и разветвленного характера. Желательны размеры пор от 0,01 до 0,1 см. Звукопоглощение на низких частотах происходит в более крупных порах. Увеличение влажности материала резко снижает коэффициент звукопоглощения по всему диапазону частот.

Эффективность звукопоглощающих материалов оценивается по классам в зависимости от величины коэффициента звукопоглощения: свыше 0,8 – первый класс; от 0,8 до 0,4 – второй и от 0,4 до 0,2 включительно – третий. Звукопоглощение материалов зависит от их толщины, располо­жения по отношению к источнику звука и других факторов. Для уси­ления поглощения звуковой энергии материалы дополнительно пер­форируют. Размер и форма отверстий в изделиях, их наклон, глубина, а также процент перфорации, т.е. отношение площади, за­нимаемой отверстиями, к общей площади плиты, влияют на коэффи­циент звукопоглощения. При этом обычно перфорация плит увеличи­вает коэффициент звукопоглощения более чем на 10-12 %.

Основные виды звукопоглощающих материалов и их применение.Самыми эффективными звукопоглощающими материалами, имеющими высокие значения коэффициентов звукопоглощения в широкой полосе частот (от 125 до 8000 Гц), являются минераловатные изделия из супертонкого стекловолокна. Однако их применение допускается при наличии специальных покрытий, обеспечивающих высокую степень защиты от нежелательной эмиссии частиц стекловолокна. При этом для выполнения своих акустических функций такое покрытие должно быть пористым, т.е. негерметичным. Безукоризненно совместить подобные требования удается немногим фирмам-производителям.

Звукоизоляционные материалы

Звукоизоляционные, или, как их часто еще называют, про­кладочные, материалы применяют для звукоизоляции от ударного шума в многослойных конструкциях перекрытий и перего­родок и частично для поглощения воздушного шума. Нормируемыми параметрами звукоизоляции являются индекс изо­ляции воздушного шума ограждающей конструкции и индекс приведенного уровня ударного шума над перекрытием (в децибелах).

Важнейшим свойством, определяющим эффективность изоляционного прокладочного материала, является его жесткость. Жесткость связана с толщиной прослойки и динамическим модулем упругости материала. По величине динамического модуля упругости звукоизоляционные прокладочные материалы делятся на классы: I – до 1 МПа, II – от 1 до 5 МПа, III – от 5 до 15 МПа. По деформативности звукоизоляционные материалы делятся на мягкие (относи­тельное сжатие свыше 15 %) – имеют волокнистую или пористо-губчатую структуру; полужесткие – имеют относительное сжатие от 5 до 10 %; жесткие – до 5 % и твердые – около нуля.

В качестве эффективных звукоизоляционных материалов при­меняют маты и плиты полужесткие минерало- и стекловатные на синтетическом связующем, маты стекловатные прошивные, плиты древесно-волокнистые, пенопласты (полиуретановые и поливинилхлоридные), пористую резину.

ОТДЕЛОЧНЫЕ МАТЕРИАЛЫ

Общие сведения

Материалы, применяемые для отделки строительных конструкций и сооружений, должны защищать их от воздействия окружающей среды; придавать завершающее архитектурное оформление; создавать особые санитарно-гигиенические условия, уменьшающие запыление, загрязнение, увлажнение, защиту от шума и др.; обеспечивать возможность восстановления поверхности отделки. Во всем мире резко увеличивается объем производства отделоч­ных материалов, расширяется ассортимент, повышаются качество и выразительность, столь необходимые современному городу, общест­венным зданиям и жилищу.

Разнообразные отделочные материалы и изделия, применяемые в современном строительстве, классифицируют по технологическому признаку (лакокрасочные материалы, изделия из природного и искусственного камня, керамики, стекла, металлов, лесных материалов, полимеров и др.) и архитектурно-строительным видам (ма­териалы для наружной отделки; внутренней отделки; покрытия полов; специальных целей). Ряд материалов и изделий применяют для отделки как внутренних интерьеров, так и фасадов зданий, предъявляя к ним повышенные экс­плуатационные и эстетические свойства. Среди эксплуатационных свойств важнейшими являются сани­тарно-гигиенические, создающие в помещениях здоровые условия для жизни, работы и отдыха, а также огнестойкие, токсикологические, радиационные характеристики, удовлетворяющие соответ­ствующим нормам. Условиями высокого эстетического качества являются подчинение отделки законам красоты, гармонии, художественного вкуса, образная передача цветового тона, чистоты, насы­щенности цвета, цветового рисунока, структурно-текстурных особен­ностей материала.

Решающее влияние на техническую и экономическую эффективность отделочных материалов оказывают фактический срок службы, эксплуатационные расходы на текущие и капитальные ремонты, а также общий срок службы с учетом морального старения.

Лакокрасочные материалы

Лакокрасочными материалами называют вязкожидкие составы, наносимые на поверхность конструкции тонким слоем, который через определенное время отвердевает и образует пленку, прочно сцепляющуюся с основанием. В настоящее время эти материалы являются наиболее распространенными среди отделочных.

Лакокрасочные материалы обычно совмещают функции отделки и защиты поверхности строительных конструкций из металла, железобетона, дерева, кирпича и других материалов от воздействия среды. К лакокрасочным материалам относятся: 1) грунтовки и шпатлевки для подготовки поверхности к окраске; 2) красочные составы (краски), образующие покрытия нужного цвета; 3) лаки, создающие пленку, отличающуюся блеском; 4) компоненты грунтовок, красок, лаков – связующие вещества, пигменты, растворители и разжижители (разбавители), пластификаторы, отвердители и другие специальные добавки.

Общая характеристика лакокрасочных материалов.По основному составу лакокрасочные материалы – это композиты, состоящие из матричного связующего (пленкообразующего) вещества и наполнителя (в том числе пигмента). Краски(красочные составы)бывают масляные, эмалевые, водные (водоразбавляемые) и др. Растворитель и разбавитель позволяют получить жидко-вязкую консистенцию состава, в том числе без дополнительного расхода свя­зующего. Этими компонентами соответственно являются органические растворите­ли и вода (в водных и вододисперсионных красочных составах). Полимерное связующее и органический растворитель образуют лак, а лак с пигментом составляют эмаль (эмалевую краску).

Красочные материалы и покрытия различают преиму­щественно по химическому и эксплуатационному признакам (табл.4). В осно­ву обозначения материалов положены вид, природа пленкообразующего вещества и их назначение. Обозначение красочных составов имеет буквенные и цифровые индексы. Буквы обозначают принадлежность материала к той или иной группе по роду пленкообразующего, например, алкидноакриловые – АС, глифталевые – ГФ, кремнийорганические – КО, мочевинные (карбамидные) – МИ, перхлорвиниловые – ХВ, полиак­риловые – АК, полиамидные – ПА, поливинилацетатные – ВА, силикат­ные – ЖС, эпоксидные – ЭП и т.д. В табл. 4 приведена классификация красоч­ных материалов по группам эксплуатации покрытий.

Таблица 4. Классификация красочных материалов

по группам эксплуатации

Наименование материала по назначению Группа эксплуа­тации Условия эксплуатации
Атмосферостойкие Покрытия, стойкие к различным климати­ческим воздействиям, эксплуатируемые на открытой площадке
Ограниченно атмосферостойкие Покрытия, эксплуатируемые под навесом и внутри неотапливаемых помещений
Консервационные Покрытия, применяемые для временной защиты окрашиваемой поверхности
Водостойкие Покрытия, стойкие к воздействиям воды и ее паров
Специальные Покрытия, обладающие специфическими свойствами: стойкостью к рентгеновскому излучению; светящиеся

Пример обозначения. Эмаль ХВ-16 – перхлорвиниловая эмаль (ХВ) для атмосферостойких покрытий 1, регистрационный номер 6.

Красочные составы по своей консистенции могут быть жидкими, вязкими, пастообразными. Каждому способу нанесения краски соответствует оптимальная вяз­кость, при которой не возникают дефекты поверхности покрытий. Для определения вязкости красок применяют вискозиметры. Жизнеспособность красочных составов определяется временем, в течение которого вязкость системы после сме­шения компонентов практически не изменяется. Технологичность нанесения красочного материала зависит от времени высыхания связующего, в течение которого жидкий лако­красочный состав, нанесенный тонким слоем, затвердевает и превра­щается в пленку.

Основные компоненты красочных составов.В качестве сырья в производстве красок и лаков применяют плен­кообразующие вещества, наполнители, пластификаторы, рас­творители, сиккативы, а также вспомогательные материалы (стаби­лизаторы, диспергаторы и т.д.).

Пленкообразующие вещества или связующие служат для сцеп­ления между собой частиц пигмента и создания тонкой пленки лакокрасочного покрытия, прочно держащейся на окрашенной поверхности. От свойств связующего зависят технологические и эксплуа­тационные свойства, а главное долговечность красочного покрытия. В масляных красках в качестве связующего используют олифы; в нитролаках – производные целлюлозы; в клеевых красках – клеи и т.д.

Пигменты – это сухие красящие порошки, являющиеся также на­полнителями системы, нерастворимые в воде, масле и других раство­рителях. По происхождению пигменты клас­сифицируют на природные (минеральные) и синтетические (минеральные и органические). Природные пигменты получают путем измельчения, обогащения, термической обработки минерального сырья (охра, умбра, сурик железный и др.). Синтетические неорганические (титановые, литопоновые и цинковые белила, сурик свинцовый, оксид хрома и т.д.) и органические (фталоцианиновые красители и др.) пигменты получают в результате сложных химических реакций и технологических процессов.

В отделочные составы для их удешевления, повы­шения декоративных и защитных свойств добавляют тонкоизмельченные наполнители: тальк, диатомит, молотый песок, слюду и осо­бенно часто мел и известняки. Расширяется применение в качестве наполнителей ор­ганических полимерных порошков: полиэтилена, полипропилена, поливинилхлорида и др.

Масляные краски представляют собой смесь пигмента и связующего вещества (олифы), тщательно протертых в специальных машинах-краскотерках до получения однородной смеси. Олифа способна "высыхать", отвердевая за счет окисления кислородом воздуха. Ус­коряют этот процесс сиккативы ("сикко" в переводе "сушить", "высушивать").

Олифы делят на четыре вида: а) натуральные (получаемые при переработке растительных масел); б) полунатуральные или уплотненные (олифа-оксоль – раствор оксидированного растительного масла и сиккативов в уайт-спирите); в) комбинированные – продукты полимеризации и обезвоживания высыхающих или полувысыхающих масел; г) синтетические (сланцевая, олифа этиноль).

К масляным краскам для экономии пигмента допускается добавка наполнителей (тальк, сернокислый барий, барит). Различают густотертые и готовые к применению масляные краски. Густотертые краски производят в виде паст и доводят до рабочей вязкости добавлением олифы.

Лаки представляют собой растворы пленкообразующих синте­тических или натуральных смол в органических растворителях, образующие после высыхания твердую прозрачную однородную пленку. В строи­тельстве в основном применяют масляно-смоляные, нитроцеллюлозные, битумные и другие лаки.

Недостатком лаков и эмалей является наличие в них органи­ческого растворителя, а следовательно, токсичность, взрыво- и пожароопасность, вследствие чего окраска должна производиться в специ­альных герметических окрасочных камерах, снабженных вентиляци­онным устройством. Эти материалы в своем большинстве содержат до 50 % лету­чих органических растворителей, что создает серьезный источник экологической опасности.

Эмали (эмалевые краски) получают в результате перетирания сухих пигментов с лаками.

Алкидные (глифталевые и пентафталевые) эмали выпускают готовыми к употреблению, а при загустевании к ним добавляют скипидар или уайт-спирит. Эти эмали обладают определенной твердостью, атмосферостойкостью, спо­собностью высыхать при обычной температуре не более чем за 1-2 суток. Они применяются для окраски металла, прошпаклеванных штукатурных поверхностей и т.д.

Применяют также нитроэмалевые краски на основе нитролаков. Нитроэмалевые краски отличаются быстрым высыханием – 15-45 минут.

Летучесмоляные (перхлорвиниловые) краски представляют собой суспензию пигментов в перхлорвиниловой смоле, растворенной в органических растворителях. Их применяют для наружных работ по штукатурке, бетону, камню, кирпичу и дереву.

Водоразбавляемые краски. В малярных работах широко применяют водоразбавляемые краски в виде готовых форм – водоэмульсионные или вододисперсионные, полимерцементные, силикатные – и приготовляемые на месте работ – клеевые, известковые, цементные и др. Вододисперсионные краски состоят из двух несмешивающихся жидкостей, при этом частицы одной – глобулы – распределены в другой – дисперсионной или внешней фазе, эмульгатора, препят­ствующего слипанию глобул, пигмента и специальных добавок. Вода, являясь внешней фазой, отсасывается пористым основанием подлож­ки, на которую нанесена краска, и частично испаряется. При этом происходит распад эмульсии, слипание глобул и образование красочного покрытия. После отверждения покрытие становится водостойким, воздухопро­ницаемым. При этом вододисперсионные краски не токсичны и техно­логичны, так как могут легко разбавляться водой до требуемой вязко­сти. К вододисперсионным относятся поливинилацетатные (на основе ПВА-дисперсии) краски, обладающие определенной водостойкостью, достаточ­ной адгезией к бетону, штукатурке, дереву, а также стиролбутадиеновые (на основе латекса СКС-5) и акрилатные краски, отличающиеся водостойкостью, повышенной атмосферостойкостью и долговечностью и применяемые для отделки фасадов зданий, влажных помещений.

Порошковые краскипредставляют мелкодисперсную сухую смесь, состоящую их твердых полимеров, наполнителей, пигментов и спе­циальных добавок. Покрытия нано­сятся на защищаемую поверхность различными методами с разогре­вом красочного состава до рабочей вязкости и переходом в капельно-жидкое состояние. Последующая монолитизация – слияние частиц краски и их отверждение – приводит к образованию химически стойкого покрытия в широком интервале температур эксплуатации.

Краски на неорганических вяжущих и клеевые краски.В качестве свя­зующего известковых красок применяется гашеная известь. Срок службы таких покрытий на воздухе низок. В качестве связующего цементных красок применяют белый или цвет­ной цементы. Для повышения водоудерживающей способности со­става в него вводят известь-пушонку и хлористый кальций. Цемент­ные краски применяют для наружных работ. Силикатные краски представляют суспензию пигментов и активных наполнителей (диа­томита или трепела) в водном растворе силиката калия. Краска отно­сительно водостойка. Силикатными красками окрашивают фасады зданий, а также деревянные конструкции для защиты от возгорания. Казеиновые и клеевые краски представляют собой сус­пензии пигментов и наполнителей в водных или водно-щелочных растворах клея или казеина. Клеевые составы не водостойки, их применяют для внутренней отделки помещений. Для повышения прочности и водостойкости покрытий в клеевые составы вводят олифу.

Акустическими называются материалы, способные уменьшать, энергию звуковой волны, снижать уровень громкости внутреннего или внешнего звука.
Звук — это восприятие ухом упругих механических колебаний и волн, возникающих в среде под влиянием принудительных воздействий.

Содержание работы

Введение 3
1. Классификация акустических материалов 5
2. Звукоизоляционные материалы 9
3. Звукопоглощающие материалы 11
4. Заключение 13
Список используемой литературы 14

Содержимое работы - 1 файл

акустические материалы.doc

  1. Классификация акустических материалов 5
  2. Звукоизоляционные материалы 9
  3. Звукопоглощающие материалы 11
  4. Заключение 13

Список используемой литературы 14

Звук — это восприятие ухом упругих механических колебаний и волн, возникающих в среде под влиянием принудительных воздействий.

Человеческое ухо воспринимает звук лишь при его силе не ниже некоторой минимальной величины, называемой порогом слышимости. Порог слышимости различен для низких, средних и высоких частот. Наиболее чувствительно человеческое ухо к колебаниям с частотами в области 1000. 3000 Гц, когда порог слышимости достигает интенсивности звука.

За реальный уровень громкости полагают величину, пропорциональную логарифму отношения силы данного звука к силе звука на нулевом уровне, выражаемую в белах (Б) или децибелах (дБ). Например, шопот— 10 дБ, тихий разговор — 40 дБ, улица с нормальным движением— 60, а с шумным — 70 дБ, грузовой автомобиль — 90 дБ, авиационный мотор— 120 дБ, болевой порог— 140 дБ. Э

Для большинства зданий задача акустики, акустического благоустройства заключается в снижении уровней внешних шумов до допустимого при относительном режиме тишины в помещениях производственных, учебных, жилых, культурно-бытовых и других зданий. Для зданий общественного назначения важно также обеспечить в основных помещениях хорошую слышимость и разборчивость, а в музыкальных помещениях — еще и естественность звучания инструментов и голоса. Решение этих задач осуществляется комплексом конструктивных, планировочных и предупредительных мероприятий. Главным из них служит правильное назначение строительных материалов в конструкциях, особенно в ограждающих (стены, перегородки), междуэтажных перекрытиях и кровельных покрытиях. Выбор материалов основан на их различной способности к задержанию (поглощению) звуковой волны, которая может распространяться как в воздухе, так и в твердых телах и жидкостях. Скорость звука в воздухе приблизительно равна 340 м/с, в воде— 1450 м/с, а в твердых телах еще выше: в кирпичной кладке — 2000 м/с, бетоне — 4000 м/с, металле — свыше 5000 м/с. На пути воздушного переноса звука устанавливаются преграды из звукопоглощающих материалов и конструкций. Сложнее преграды установить на пути материального (ударного), переноса звука, например при устройстве междуэтажных перекрытий. Чаще всего воздушные и ударные переносы шумов совмещаются, особенно в современных зданиях, выполняемых из сборного железобетона, обладающего малым звукопоглощением, и имеющих щели, неплотности и отверстия, а при тонких конструкциях — способные еще и к изгибным колебаниям. С увеличением массы ограждения улучшается поглощение звука, так как массивное ограждение труднее перевести в изгибное колебание под влиянием волнового звукового давления. Но с увеличением массы ограждения прирост звуковой изоляции происходит медленно. Так, например, если при массе перегородки 100 кг звукоизоляция составляет 40 дБ, то при массе 200 кг —44 дБ, при 300 кг —48 дБ. Для дальнейшего снижения шума потребуется устраивать либо очень тяжелые однородные ограждения, либо заменять их ограждениями из двух стенок со сплошными воздушными прослойками (без жестких связей между стенками), переходить к слоистым конструкциям.

Для борьбы с шумом и переносом звука используют звукопоглощающие (активно поглощающие звук) и звукоизоляционные (снижающие уровень шума) материалы. Ниже рассмотрены основные разновидности этих материалов. Они могут быть отделочными и прокладочными.

Отделочные материалы частично поглощают звук внутри помещений, например промышленных цехов или технических устройств, например вентиляционных воздуховодов. Отделочные звукопоглощающие материалы также оптимизируют условия слышимости в помещениях, например в зрительных залах, лекционных аудиториях, радиовещательных студиях. Большая или меньшая часть звуковых волн обычно отражается от конструкций, выполненных из отделочных звукопоглощающих материалов. В результате в помещении сохраняется звучание даже после прекращения действия источника звука. Такое явление называется реверберацией.

Прокладочные материалы используют под упругими полами междуэтажных перекрытий, предохраняя тем самым помещения от распространения материального (ударного) переноса звука. Нередко эти материалы комбинируют с отделочными.

Акустические материалы и изделия по назначению подразделяются на:

  • звукопоглощающие, предназначенные для внутренней облицовки помещений и устройств с целью создания в них требуемого звукопоглощения
  • звукоизоляционные материалы, предназначенные для изоляции от структурного (ударного) шума
  • звукоизоляционные материалы, предназначенные для изоляции от воздушных масс

Звуковая энергия, падающая на ограждение, частично отражается от него, частично поглощается, переходя в тепловую и частично переходит через него. Материалы, обладающие способностью в основном поглощать звуковую энергию, называются звукопоглощающими.

Звуковое поле, создаваемое каким-либо источником шума в помещении, слагается от наложения прямых и отражённых от ограждения звуковых волн. Отражение значительно увеличивает интенсивность звука и изменяет характер его звучания в худшую сторону. Звукопоглощающие материалы, снижая энергию отражённых звуковых волн, благоприятно изменяют характеристику звукового поля.

Эти материалы должны быть высокопористыми. Если в теплоизоляционных материалах желательно иметь замкнутые поры, то в звукоизоляционных - сообщающиеся и возможно меньшие по размеру. Такие требования к строению звукоизоляционных материалов вызваны тем, что при прохождении звуковой волны через толщу материала она приводит воздух, заключённый в его порах, в колебательное движение, мелкие поры создают большее сопротивление потоку воздуха, чем крупные. Движение воздуха в них тормозится, и в результате трения часть механической энергии превращается в тепловую.

На звукопоглощающие свойства материалов оказывает влияние и их упругость. В изделиях с гибким деформирующимся каркасом имеют место дополнительные потери звуковой энергии вследствие активного сопротивления материала вынужденным колебаниям под действием падающих звуковых волн.

В ряде случаев облицовка поверхности строительных конструкций осуществляется перфорированными листами из сравнительно плотных материалов (гипсокартон, асбестоцемент, металлические, пластмассовые листы и др.), которые обеспечивают изделиям, наряду со звукопоглощением, повышенную механическую прочность и декоративность.

Звукопоглощающее свойство материала характеризуется коэффициентом поглощения, который представляет собой отношение поглощённой звуковой энергии ко всей энергии, падающей на материал. За единицу звукопоглощения условно принимают звукопоглощение 1 м 2 открытого окна. К звукопоглощающим материалам относят те, которые имеют коэффициент звукопоглощения не менее 0,4 при частоте 1000 гц ("Защита от шума" СНиП II - 12 - 77). Коэффициент звукопоглощения определяется в так называемой акустической трубе и подсчитывается по формуле:

где А(зв) - коэффициент звукопоглощения; Е(погл) - поглощённая звуковая волна; Е(пад) - падающая звуковая волна; E(отр) - отраженная звуковая волна; Е(рас) - звуковая волна, рассеянная в материале; Е(прош) - звуковая волна, прошедшая через материал.

Е(погл) = Е(рас) + Е(прош).

Уровень шума зависит от времени реверберации (времени звучания отражённого сигнала). Например, в помещении объёмом 100 куб.м с жёсткими поверхностями, время реверберации может составить от 5 до 8 секунд. Если поверхность покрыта хорошо поглощающим акустическим материалом, время реверберации составляет менее 1 секунды, т.е. как в хорошо меблированной жилой комнате. Снижение времени реверберации до вышеупомянутого уровня увеличивает звуковой комфорт помещений, создаёт оптимальную рабочую атмосферу в лекционном или спортивном зале, офисе, кинотеатре, студии и т.п.

Коэффициент звукопоглощения некоторых материалов

Наименование Коэффициент звукопоглащения при 1000Гц
Открытое окно 1
Акустические материалы:
Акустические минераловатные плиты 0,7-0,9
Акустический фибролит 0,45-0,50
Акустические древесноволокнитсые плиты 0,40-0,80
Акустические перфорированные листы 0,4-0,9
Теплоизоляционные материалы, используемые для звукопоглощения:
Минеральные плиты 0,25-0,4
Пеностекло с сообщающимися порами 0,3-0,5
Пеноасбест 0,6-0,8
Деревянная стена 0,06-0,1
Кирпичная стена 0,032
Бетонная стена 0,015

Звукоизоляционные материалы, предназначенные для защиты от ударного шума, представляют собой пористые прокладочные материалы с малым модулем упругости. Их звукоизоляционная способность от ударного шума обусловлена тем, что скорость распространения звука в них значительно меньше, чем в плотных материалах с высоким модулем упругости. Так, скорость распространения звуковых волн стали составляет 5050, в железобетоне - 4100, в древесине - 1500, в пробке - 50, а в поризованной резине - 30 метров в секунду.

Упругие прокладки укладываются между несущей плитой перекрытия и чистым полом.

Значения модулей упругости некоторых звукоизоляционных прокладок

Наименования Средняя плотность кг/м 3 Модуль упругости
Статический, Мпа Динамический, Мпа
Стекловолокнистые и минераловатные плиты и маты на синтетической связке 30-150 0,02-0,05 0,25-0,45
Мягкие древесноволокнитсые плиты 200 0,3 1,4
Вспученный вермикулит в полиэтиеновых матах 150 0,15 1,8
Листы пенополиуритана 50 0,05 0,25
Листы пеноплиэтилена 30 0,03 0,20

Такие конструкции полов называются "плавающими". Для устранения передачи ударного звука необходимо конструкцию пола отделять от стен по периметру помещения упругими прокладками.

Звукоизоляционные материалы, предназначенные для изоляции от воздушного шума.
Уменьшение уровня воздушного шума осуществляется устройством стен, перегородок, перекрытий. Звукоизоляционная способность ограждений пропорциональна логарифму массы конструкции. Поэтому массивные конструкции обладают большей звукоизоляционной способностью от воздушного шума, чем лёгкие. Поскольку устройство тяжёлых ограждений экономически нецелесообразно, надлежащую звукоизоляцию обеспечивают устройством двух- или трёхслойных ограждений, часто с воздушными зазорами, которые рекомендуется наполнять пористыми звукопоглощающими материалами. Желательно, чтобы конструктивные слои имели различную жёсткость и герметичность, так как последние повышают степень звукоизоляции.

Кроме классификации по назначению, акустические материалы подразделяются и по другим признакам, имеющим много общего с теплоизоляционными материалами.

По внешнему виду (форме) акустические материалы бывают

  • сыпучие
  • штучные (плиточные, рулонные, маты)


По строению и виду пористости их делят на три группы:

  • материалы с волокнистым каркасом (минераловатные, асбестовые, фибролит, древесноволокнистые, древесностружечные, войлок)
  • ячеистые материалы, полученные способом вспучивания или пеновым способом (ячеистые бетоны, пеностекло)
  • смешанной структуры, например, акустические штукатурки, изготавливаемые с применением пористых заполнителей (вспученный перлит, вспученный вермикулит).

К звукопоглощающим материалам предъявляют повышенные по сравнению с теплоизоляционными материалами требования по механической прочности и декоративности, поскольку их применяют для облицовки стен внутри помещения. Так же, как и теплоизоляционные, они должны обладать:

  • низким водопоглощением
  • малой гигроскопичностью
  • быть огне- и биостойкими

Другой характеристикой звукоизоляционного материала является деформативность — способность материала сжиматься под определенной нагрузкой.

Звукоизоляционными акустическими материалами служат: полужесткие минераловатные и стекловатные маты и плиты на синтетической связке древесно-волокнистые изоляционные и асбестоцементные изоляционные плиты (последние используют в местах опирания конструктивных элементов перекрытий на стены зданий).

Акустические строительные материалы призваны поглощать звуковую волну и внешние звуковые эффекты. Шумоизоляция - важная составляющая комфорта и уюта в доме. Акустические материалы применяются в производственных, учебных, общественных и жилых помещениях, а также везде, где присутствует высокий порог слышимости. Правильная планировка конструкций и разумный подход к выбору материалов является главным условием хорошей производительности. Материалы имеют разное предназначение и возможности. Акустические материалы являются препятствием на пути звуковой волны, что является идеальным решением для устройства межквартирных перегородок.

Файлы: 1 файл

Denis_tsoy_referat_stroymat.doc

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Уральский федеральный университет имени первого Президента

Акустические строительные материалы

270800 000000 019

ассистент _______________________ И.В. Фомина

гр. МТ-211601 ________________________ Д.В. Цой

Акустические строительные материалы призваны поглощать звуковую волну и внешние звуковые эффекты. Шумоизоляция - важная составляющая комфорта и уюта в доме. Акустические материалы применяются в производственных, учебных, общественных и жилых помещениях, а также везде, где присутствует высокий порог слышимости. Правильная планировка конструкций и разумный подход к выбору материалов является главным условием хорошей производительности. Материалы имеют разное предназначение и возможности. Акустические материалы являются препятствием на пути звуковой волны, что является идеальным решением для устройства межквартирных перегородок. Намного сложнее установить звукоизоляцию при устройстве междуэтажных перекрытий. Для этого требуется устанавливать либо очень тяжелые ограждения, либо двухслойные стенки с воздушными прослойками. Различают звукопоглощающие и звукоизоляционные акустические материалы. Первые поглощают звук, а вторые снижают уровень шума. Акустические материалы изготавливаются в виде матов, плит, блоков, ваты или сыпучих веществ (керамзит, вспученный перлит).

В данном реферате, показывается, насколько разнообразны виды акустических строительных материалов, какое применение, строение, использование, в быту и в повседневной жизни имеют акустические строительные материалы. Также показывается важность использования различных акустических строительных материалов, в той или иной ситуации, описаны параметры, по которым можно ориентироваться при выборе акустических материалов, их особенности, различия в составе, различные качественные и другие характеристики.

1 КЛАССИФИКАЦИЯ АКУСТИЧЕСКИХ СТРОЙМАТЕРИАЛОВ

1.1 Классификация по функциональному назначению

Звукопоглощающие материалы предназначены для применения в конструкциях звукопоглощающих облицовок внутренних помещений и для отдельных звукопоглотителей для снижения звукового давления в помещениях производственных и общественных зданий. Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.). Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75 % по объёму). Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн. Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые). Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3 % по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м 3 , которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250-1000 Гц) от 0,7 до 0,85. К полужёстким материалам относятся минераловатные или стекловолокнистые плиты с объёмной массой от 80 до 130 кг/м 3 при содержании синтетического связующего от 10 до 15 % по массе, а также древесноволокнистые плиты с объёмной массой 180-300 кг/м 3 [3]. Поверхность плит покрывается пористой краской или плёнкой. Коэффициент звукопоглощения полужёстких материалов на средних частотах составляет 0,65-0,75. В эту же группу входят звукопоглощающие плиты из пористых пластмасс, имеющие ячеистое строение (пенополиуретан, полистирольный пенопласт и др.).

Звукоизоляционные материалы применяются в качестве прокладок (прослоек) в многослойных ограждающих конструкциях для улучшения изоляции ограждений от ударного и воздушного звуков. Звукоизоляционные прокладочные материалы применяются в виде рулонов или плит в конструкциях междуэтажных перекрытий, во внутренних стенах и перегородках, а также как виброизоляционные прокладки под машины и оборудование. Характеризуются малым значением динамического модуля упругости, как правило, не превышающим 1,2 Мн/м 2 (12 кгс/см 2 ), при нагрузке 20 Мн/м 2 (200 кгс/см 2 ). Упругие свойства скелета материала и наличие воздуха, заключённого в его порах, обусловливают гашение энергии удара и вибрации, что способствует снижению структурного и ударного шума. Различают звукоизоляционные прокладочные материалы, изготовляемые из волокон органического или минерального происхождения (древесноволокнистые плиты, минераловатные и стекловолокнистые рулоны и плиты толщиной от 10 до 40 мм, объёмная масса 30-20 кг/м 3 ), а также из эластичных газонаполненных пластмасс (латексы синтетических каучуков, пенополиуретан, пенополивинилхлорид), выпускаемых в виде плит толщиной от 5 до 30 мм; объёмная масса эластичного пенополиуретана 40-70 кг/м 3 , пенополивинилхлор ида 70-270 кг/м 3 . В ряде случаев для целей звукоизоляции применяются штучные прокладки из литой или губчатой резины.

Вибропоглощающие материалы предназначены для ослабления изгибных колебаний, распространяющихся по жестким конструкциям (преимущественно тонким) для снижения излучаемого ими звука, для поглощения вибрации и вызываемых шумов при работе инженерного и санитарно-технического оборудования. Вибропоглощающие материалы изготавливают как на основе натурального волокна (базальтовая вата, каолиновая вата, вспученный перлит, вспененное стекло, шамот) так и на основе синтетической субстанции (пенополиэстр, пенополиуратен, пенополиэтилен, пенополипропилен). Наиболее долговечна минеральная вата из горных пород, в большинстве случаев - базальтовая. Среди её дополнительных преимуществ выделяют гидрофобность, огнестойкость, паропроницаемость и экологическую безопасность.

Эффективными звукоизоляционными изделиями с волокнистой структурой являются маты и плиты полужесткие минераловатные и стекловатные на синтетическом связующем, маты и рулоны прошивные стекловатные, древесноволокнистые изоляционные плиты, пористая резина, поливинилхлоридные и полиуретановые пенопласты. Изготавливают ленточные и полосовые прокладки длиной от 1000 до 3000 мм и шириной 100, 150, 200 мм, штучные прокладки - длиной и шириной 100, 150, 200 мм. Изделия из волокнистых материалов применяются только в оболочке из водостойкой бумаги, пленки, фольги.

Вибропоглощающими материалами служат некоторые сорта резины и мастики, фольгоизол, листовые пластмассы. Вибропоглощающие материалы наносятся на тонкие металлические поверхности, при этом создается эффективная вибропоглощающая конструкция с высокой энергией на трение.

1.2 Классификация акустических материалов по основным признакам

1 По форме звукопоглощающие материалы и изделия подразделяют на штучные (блоки, плиты); рулонные (маты, полосовые прокладки, холсты); рыхлые и сыпучие (вата минеральная и стеклянная, керамзит, вспученный перлит и другие пористые зернистые материалы).

2 По жесткости звукопоглощающие материалы подразделяют на мягкие, полужесткие, жесткие и твердые.

3 По структурным признакам звукопоглощающие материалы и изделия подразделяют на пористо-зернистые, пористо-волокнистые, пористо-ячеистые (из ячеистого бетона и перлита) и пористо-губчатые (пенопласты, резины).

4 По возгораемости акустические материалы и изделия подразделяют на три группы: сгораемые, трудносгораемые и несгораемые.
2 СВОЙСТВА АКУСТИЧЕСКИХ МАТЕРИАЛОВ

Совокупность многочисленных звуков, быстро меняющихся по частоте и силе, принято называть шумом. Шум в помещениях относится к категории санитарно-гигиенических вредностей, так как длительное его воздействие вредно для здоровья человека и понижает его работоспособность. Различают шумы воздушные и ударные. Воздушный шум возникает и распространяется в воздушной среде. Звуковые волны воздействуют на ограждающие конструкции зданий, приводят их в колебательное движение и тем самым передают звук в соседние помещения, отражаются и частично поглощаются ограждениями. Ударный шум возникает и передается в ограждающих конструкциях при ударных, вибрационных и других воздействиях непосредственно на конструкцию.

Вредное действие шумов стремятся уменьшить путем разработки рациональных планировочных и конструктивных решений зданий, осуществляемых с применением акустических материалов и изделий.

Акустическими называют материалы, способные поглощать звуковую энергию, а также снижать уровень силы и громкости, проходящих через них звуков, возникших как в воздухе, так и в материале ограждения.

Акустические свойства материалов связаны с взаимодействием материалов и звука. Наиболее значимыми акустическими свойствами материала являются звукопроводность, звукопоглощение и звукоизоляция.

Звукопроводность – это свойство материала пропускать через свою толщину звук. Для изоляции помещений от шумов важно, чтобы строительные конструкции имели низкую звукопроводность. Она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые материалы плохо проводят звук.

Звукопоглощение – это свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также частоты звукового тона, измеряемого количеством колебаний в секунду.

Основной акустической характеристикой звукопоглощающих материалов является коэффициент звукопоглощения а равный отношению количества энергии звуковых колебаний, поглощенной материалом или конструкцией, к общему количеству звуковой энергии, падающей на изолируемую поверхность в единицу времени.

Звукопоглощающие материалы отличаются декоративностью и способствуют формированию выразительного и эстетичного вида помещения.

Под звукоизоляцией подразумевают комплекс мероприятий, направленных на снижение интенсивности проникновения звука (шума) до допустимых величин при прохождении его через ограждающие конструкции. Критерием звукоизоляции является разность уровней силы звука до и после прохождения его через ограждающую конструкцию. Разность уровней силы звука в жилых домах для стеновых материалов и материалов междуэтажных перекрытий должна составлять 50 дБ, для перегородок – 40 дБ.

Главное свойство звукоизоляционных материалов - это ослабление ударного шума. Звукоизоляционная способность материала в ограждении оценивается по разности уровней звука с обеих сторон ограждения и выражается в децибелах. Предельные (максимально допустимые) уровни шума устанавливаются в зависимости от назначения помещения и частотной характеристики звука. Нормальное ухо человека воспринимает звуковые колебания частотой 16. 20000 Гц, причем особо чувствительными являются частоты 1500. 3000 Гц. Звукоизоляционная способность ограждения прямо пропорциональна десятичному логарифму его массы. Однако увеличение массы конструкций делает их слишком тяжелыми, громоздкими и дорогими. Гораздо эффективнее конструкции, изготовленные из пористых материалов, или многослойные конструкции, имеющие воздушные прослойки. В этом случае используются упругие свойства воздуха, которые гасят звуковые колебания и прерывают распространение звука. По этой же причине и звукопоглощающие материалы стремятся изготовлять высокопористыми (пористость 40. 90 %), т. е. как и теплоизоляционные материалы. Однако в отличие от теплоизоляционных материалов, где выгодны замкнутые воздушные поры, эффективность звукопоглощающих материалов возрастает при наличии сквозных пор или специально предусмотренной перфорации.

Строительно-эксплуатационные свойства акустических материалов оценивают по механической прочности, деформации при колебаниях температуры и влажности, стойкости при воздействии влаги, высокой температуры, огня, микроорганизмов, соответствию санитарно-гигиеническим нормам и способности сохранять свои свойства в процессе длительной эксплуатации.

3 ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ АКУСТИЧЕСКИХ МАТЕРИАЛОВ

Всем приятно находится в помещении с хорошей акустикой. Но не каждый знает, что же это такое, а тем более как этого достичь. Представив разговор в пустой комнате можно понять, что такое отсутствие акустики, ведь все твердые поверхности, такие как пол, потолок будут отражать возникающие звуки. Мягкая мебель может помочь в улучшении звуковой среды, но ее будет недостаточно при создании идеала. Для обеспечения нужного звучания, без каких – либо помех, необходимо использовать акустические материалы. Подобрать нужный вариант не составит большого труда – на ваш выбор представлен широкий спектр материалов различных видов и цветов. С каждым днем спрос на акустические материалы становится больше, следовательно, растет и ассортимент продукции.

При строительстве жилых, промышленных и офисных помещений для возведения стен, перегородок, плоских и скатных крыш с небольшим углом наклона может применяться строительный материал фибролит. Он производится из древесного или синтетического волокна и цемента, обладает плотностью от 208 до 570 кг на м 3 . Фибролит служит материалом для производства несъёмной опалубки, применяемой для каркасного домостроения. Один из его видов - акустический фибролит используется для создания акустических потолков.

Благодаря высокому коэффициенту звукопоглощения, большое распространение получили материалы из каменной ваты. В виде плит различной толщины они применяются для звукоизоляции помещений всех типов. Среди них есть универсальные материалы для повышения звукоизоляции стен, пола и потолков.

Звук представляет собой механические колебания упругой среды (газообразной, жидкой или твердой) в диапазоне слышимых частот и характеризуется частотой, интенсивностью и звуковым давлением. Скорость распространения звуковых волн зависит от упругих свойств, температуры и плотности среды, в которой они распространяются. Например, скорость распространения звуковых волн в воздухе при температуре 20 °С равна 343 м/с, в стали – 5000 м/с, в бетоне – 4000 м/с.

Шум представляет собой беспорядочное хаотичное смешение (совокупность) звуков различной частоты. По характеру распространения он может быть воздушным, структурным и ударным. Воздушный – это шум, излучаемый непосредственно в воздух, и источник шума не связан с ограждающими конструкциями. Структурный шум создается от механического воздействия (например, при вибрации коммуникаций в зданиях) и распространяется в другие помещения посредством звуковой волны в твердых сопряженных конструкциях, т.е. это звук внутри строительной конструкции. Ударный шум создается от непосредственного контакта предмета о предмет (удары в стену, стук по трубам и др.) и тоже распространяется на большие расстояния.

Уровень шума измеряется в децибелах (дБ). Санитарные нормы в зависимости от частоты звука устанавливают допустимый уровень шума в производственных помещениях 80…85 дБ, административных – 38…71 дБ и больницах – 13…51 дБ. Минимальные требования к звукоизоляции перегородок между квартирами – 54 дБ, для межкомнатных перегородок – 43 дБ. Длительное воздействие шума в 90 дБ и более негативно сказывается на здоровье людей (нервные расстройства, потеря слуха и другие более серьезные последствия).

воздействие звуковых волн на материал ограждения

Рис. 1. Схема воздействия звуковых волн на материал ограждения

При падении звуковой волны на ограждающую поверхность часть звуковой энергии отражается, часть поглощается материалом, а часть проходит через ограждающую конструкцию (рис. 1). Материалы и изделия, способные уменьшать энергию звуковых волн и снижать уровень громкости внутреннего или внешнего звука называют акустическими. Придание им звукоизолирующих свойств основывается на трех основных физических явлениях: отражении воздушных звуковых волн от поверхности ограждения, поглощении звуковых волн материалом ограждения и гашении ударного или воздушного шума за счет деформации элементов конструкции и материалов, из которых она изготовлена. При этом физическая сущность их состоит в том, что падающая на них энергия звуковой волны отражается в значительно большей степени, чем проходит через них.

2. Классификация акустических материалов

Строительные акустические материалы и изделия классифицируют по следующим основным признакам (ГОСТ 23499):

  • функциональному назначению:
  • звукоизоляционныепрокладочные (снижающие уровень шума);
  • звукопоглощающие(активно поглощающие звук). По характеру поглощения звука они подразделяются:
  • на панельные материалы и конструкции, в которых звукопоглощение обусловлено активным сопротивлением системы, совершающей вынужденные колебания под действием звуковой волны (жесткие ДВП, звуконепроницаемые ткани);
  • пористые с твердым скелетом, в которых звук поглощается в результате вязкого трения в порах (пенобетон, пеностекло);
  • пористые с гибким скелетом, в которых кроме резкого трения в порах возникают релаксационные потери, связанные с деформацией нежесткого скелета (каменная вата).

По эффективности звукопоглащения их подразделяют на классы (табл. 1).

Таблица 1. Классы звукопоглощающих материалов (EN ISO 11654, ГОСТ 23499)

  • вибропоглощающие– предназначенные для поглощения вибрации и вызываемых шумов при работе инженерного и санитарно-технического оборудования. В основном они представлены вязкоупругими материалами (обычно на основе битума, вспененного каучука, резины и т.п.), в которых происходят значительные механические потери, обусловленные внутренним трением. Эффективность виброизоляции таких материалов оценивается коэффициентом механических потерь и динамическим модулем упругости;
  • внешнему виду (форме) – штучные (блоки, плиты, листы), рулонные (маты, линолеум, холсты) и сыпучие (песок, керамзит, шлак, перлит и другие пористые заполнители);
  • структуре (ячеистые, волокнистые, зернистые, губчатые и смешанной структуры);
  • сжимаемости (мягкие, полужесткие, жесткие и твердые). Сжимаемость акустических материалов и изделий характеризуется коэффициентом относительного сжатия ε, зависящего от вида и структуры материала или изделия, и определяется экспериментально;
  • пожарной безопасности – на группы по горючести, воспламеняемости, распространению пламени, дымообразующей способности и токсичности.

Кроме того, акустические материалы могут быть отделочными и прокладочными. Отделочные акустические материалы в основной массе поглощают звук внутри помещений и оптимизируют условия слышимости. Однако часть звуковых волн может отражаться от конструкций, и тогда в помещении сохраняется звучание даже после прекращения действия источника звука. Такое явление называется реверберацией. Прокладочные акустические материалы используют в конструкциях перекрытий между этажами, во внутренних перегородках и стенах и в качестве виброизоляционных прокладок под оборудование и машины. Часто такие материалы комбинируют с отделочными.

3. Основные свойства акустических материалов

Основными качественными характеристиками акустических материалов и изделий являются:

  • динамическая жесткость si (Н/м 3 ) (СТБ EN 29052-1, ГОСТ Р 53378) – отношение динамической силы, действующей перпендикулярно к поверхности звукоизоляционного материала или изделия, к динамическому смещению, и отнесенное к площади упругого материала. Динамическое смещение (Δd, м) оценивается изменением толщины слоя упругого материала под действием вынуждающей силы. Динамическая жесткость волокнистых изделий из минеральной ваты должна быть в пределах 20…200 МПа/м при нагрузке на звукоизоляционный слой 2…10 кПа, губчатых изделий (из пенорезины, полиуретана) и зернистых материалов – не более 250 МПа/м;
  • динамический модуль упругости Ed(Н/м 2 ) – физическая величина, характеризующая упругие свойства звукоизоляционных материалов и изделий, определяемая при продольных колебаниях (СТБ 1438, ГОСТ 16297). Чем ниже значение динамического модуля упругости, тем эффективнее звукоизоляционный материал. Динамический модуль упругости звукоизоляционных материалов в зависимости от их вида не должен превышать 5 МПа при удельной нагрузке 0,002 МПа для штучных изделий и 15 МПа – для зернистых засыпок. У большинства звукоизоляционных материалов динамический модуль упругости в несколько раз превышает статический;
  • удельное сопротивление потоку воздуха r (для однородных материалов, Па · с/м 2 ) определяется как отношение удельного сопротивления продуванию потоком воздуха Rsк толщине образца d в направлении потока воздуха (r = Rs/ d) (СТБ EN 29053) и должно составлять 10…100 кПа · с/м 2 ;
  • нормальный коэффициент звукопоглощения αn– измеренный в условиях падения звуковой волны под одним углом (по нормали) к поверхности материала или изделия. Как правило, устанавливает предварительную оценку звукопоглощающих свойств (СТБ 1438);
  • реверберационный коэффициент звукопоглощения αs– измеренный в реверберационной камере при хаотическом падении звука на поверхность звукопоглощающего материала или изделия. В зависимости от частоты звукового сигнала изменяется от 0 до 1 (ГОСТ Р 53376). Явление реверберации возникает при отражении звуков ограждающими поверхностями помещений;
  • коэффициент звукопоглощения (ГОСТ 16297) равен отношению звуковой энергии Епогл, поглощенной материалом (не отраженной), к энергии Епад, падающей на него α = Епогл / Епад.

За единицу звукопоглощения условно принимают звукопоглощение 1 м 2 открытого окна, равное единице (предполагается, что звук, вышедший из комнаты в окно, обратно уже не возвращается). Единицей измерения служит сэбин (по имени американского акустика W. Sabine). Значение коэффициента звукопоглощения может находиться в пределах от 0 (звук полностью отражается в помещение) до 1 (звук полностью поглощается материалом), т.е. чем выше численное значение коэффициента, тем больше звукопоглощение. Звукопоглощающие материалы должны иметь коэффициент звукопоглощения не менее 0,4.

На величину α оказывает влияние уровень и характеристика звука (частота звуковой волны), свойства звукопоглощающего материала (характер и объем пористости), конструктивные особенности устройства звукопоглощающей облицовки ограждения и др. Например, один и тот же материал может хорошо поглощать высокочастотный звук и плохо – низкочастотный. Наилучшие условия для поглощения звука создаются в материалах с сообщающимися и открытыми порами. С возрастанием частоты звука α одного и того же материала возрастает. Низкочастотные волны в материал почти не проникают. Коэффициент звукопоглощения применяется в качестве предварительной оценки звукопоглощающих свойств;

  • индекс улучшения изоляции ударного шумаL (дБ) – частотно независимые значения характеристики улучшения звукоизоляции, соответствующие величине смещенной нормативной кривой на частоте 500 Гц (среднегеометрической частоте октавной полосы). Для рулонных покрытий пола он должен составлять не менее 18 дБ;
  • индекс звукопоглощения αw– частотно независимые значения коэффициентов звукопоглощения, соответствующие величине смещенной нормативной кривой на частоте 500 Гц. Является наиболее применяемой на практике характеристикой звукопоглощающих свойств (ГОСТ Р 53377);
  • удельное сопротивление продуванию потоком воздуха Rs(Па · с/м) (СТБ EN 29053) определяется как отношение разности давлений с двух сторон образца пористого материала к линейной скорости потока воздуха через образец (Rs= R · A). Для продуваемых защитных оболочек из тканей или рогожек Rsдолжно быть в интервале 100…200 Па · с/м при поверхностной плотности оболочек не более 125 г/м 2 ;
  • плотность ρ (кг/м 3 ) (ГОСТ 17177) – чем плотнее материал, тем выше его отражающая способность и тем эффективнее защита от воздушного шума. Звукопоглощающие волокнистые материалы и изделия должны изготовляться плотностью 20…200 кг/м 3 ;
  • коэффициент относительного сжатия ε – относительное изменение толщины упругого слоя звукоизоляционного материала или изделия под нагрузкой 2, 5 и 10 кПа. Зависит в основном от вида и структуры материала или изделия и определяется экспериментально. Применяют при вычислении резонансной частоты конструкции плавающего пола;
  • предел прочности при изгибе или сжатии (для жестких и твердых изделий) кПа (МПа) (ГОСТ 17177);
  • сорбционная влажность (должна быть не более 10%);
  • индекс перфорации – отношение суммарной площади отверстий перфорированного покрытия (живое сечение) к общей площади покрытия, %.

4. Звукопоглощающие материалы и изделия

К звукопоглощающим относят материалы, имеющие, как правило, сквозную пористость и характеризующиеся относительно высоким коэффициентом звукопоглощения (α > 0,4). Они предназначены для применения в качестве поглощающего слоя в конструкциях облицовок внутренних поверхностей помещений и шумозащитных сооружений с целью снижения интенсивности отражения звуковых волн, а также в конструкциях легких многослойных ограждений с целью улучшения изоляции воздушного шума. Задача их – поглотить звук, не дать ему отразиться от преграды обратно в помещение и тем самым регулировать акустические характеристики помещения.

Способность материалов поглощать звуки в основном обусловлена их пористой структурой и наличием большого количества сообщающихся открытых пор со стороны падения звука. Максимальный диаметр пор не должен превышать 2 мм, а общая пористость составлять не менее 75%. Это вызвано тем, что при прохождении звуковой волны через толщу материала она приводит воздух, заключенный в его порах, в колебательное движение. Мелкие поры при этом создают большее сопротивление потоку воздуха, чем крупные. Движение воздуха в них тормозится, и в результате трения часть механической энергии превращается в тепловую. Чем выше открытая пористость изолирующей поверхности, тем выше звукопоглощение. Условно различают пористые звукопоглощающие материалы, резонансные поглотители звука и отдельные звукопоглотители.

Звукопоглощающие материалы могут иметь волокнистое, зернистое или ячеистое строение и обладать различной степенью жесткости (мягкие, полужесткие, жесткие или твердые). Твердые материалы волокнистого строения изготовляют в виде плит из минеральной ваты (преимущественно из каменной или стеклянной) на крахмальном или синтетическом связующем. Плотность их должна составлять до 200 кг/м 3 , диаметр волокон – не менее 1 мкм и не более 20 мкм, а содержание неволокнистых соединений (корольков) – не превышать 5% по массе.

Поверхность минераловатных плит, как правило, окрашивается или может иметь другое декоративное и проницаемое для звуковых волн покрытие, обладать различной фактурой (рифленой, бороздчатой, трещиноватой). Коэффициент звукопоглощения находится в пределах 0,6…0,7, плотность – 300…400 кг/м 3 . Звукопоглощающие плиты могут изготовляться также из белых и цветных цементов и пористых заполнителей (перлит, вермикулит, пемза, древесная шерсть), ячеистых бетонов, литых гипсовых и др.

В качестве полужестких используются минераловатные плиты с содержанием синтетического связующего 10…15%, древесноволокнистые плиты, из пористых пластмасс ячеистой структуры (пенополистирольные, пенополиуретановые и др.). Коэффициент звукопоглощения таких изделий находится в пределах 0,5…0,75, плотность – 80…130 кг/м 3 .

Мягкие звукопоглощающие материалы (рулоны, маты) тоже изготовляют из минеральной ваты без синтетического связующего и в комбинации с перфорированными листовыми экранами (алюминия, поливинилхлорида). Коэффициент звукопоглощения находится в пределах 0,7…0,95, плотность – до 70 кг/м 3 . Мягкие и полужесткие звукопоглощающие волокнистые материалы и изделия должны изготовляться и применяться только с защитными (продуваемыми или непродуваемыми) оболочками, препятствующими высыпанию волокон и пыли. Вместе с тем защитные оболочки не должны оказывать влияния на звукопоглощающие свойства защищаемого материала.

В настоящее время самыми эффективными звукопоглощающими материалами являются супертонкие минеральные (стеклянные и каменные) волокна. Однако их применение допускается при наличии специальных покрытий, обеспечивающих высокую степень защиты от нежелательной эмиссии частиц волокна. При этом для выполнения своих акустических функций такое покрытие должно быть пористым, т.е. негерметичным. В некоторых случаях в качестве отделочных покрытий звукопоглощающих конструкций могут применяться разнообразные ткани, ковры, шкуры и паласы, тоже обладающие некоторым акустическим эффектом.

На звукопоглощающие свойства материалов оказывает влияние также их упругость. В изделиях с гибким деформирующимся каркасом имеют место дополнительные потери звуковой энергии вследствие активного сопротивления материала вынужденным колебаниям под действием падающих звуковых волн. Основными качественными характеристиками всех звукопоглощающих материалов и изделий являются динамическая жесткость и динамический модуль упругости, удельное сопротивление потоку воздуха и продуванию потоком воздуха, нормальный и реверберационный коэффициенты звукопоглощения и индексы улучшения изоляции ударного шума и звукопоглощения.

5. Звукоизоляционные материалы и изделия

Материалы, предназначенные для решения вопросов звукопоглощения и звукоизоляции, не являются взаимозаменяемыми. Звукоизоляционные материалы предназначены для применения в качестве звуко- и виброизоляционного и демпфирующего (упругого) слоя в многослойных строительных конструкциях с целью улучшения изоляции воздушного, ударного и структурного звуков. Задача их – отразить звук и не позволить ему пройти сквозь стену. По определению ГОСТ 23499 они характеризуются вязкоупругими свойствами и обладают динамической жесткостью не более 250 МПа/м.

Следовательно, звукоизоляционные материалы не могут выполнять функции звукопоглощающих, в то время как качественные звукопоглощающие материалы способствуют улучшению звукоизоляции в помещениях. Поэтому в современном строительстве используют, как правило, комбинированное применение звукоизоляционных материалов в составе ограждающих конструкций и конструкций перекрытий и звукопоглощающих материалов в качестве отделочных, которые определяют интерьерную архитектуру и окончательный внешний вид, а также акустический комфорт в помещении.

Уменьшение уровня воздушного шума осуществляется устройством ограждающих конструкций (стен, перегородок, перекрытий). Звукоизоляционная способность их пропорциональна логарифму массы. Поэтому массивные конструкции обладают большей звукоизоляционной способностью от воздушного шума, чем легкие. Поскольку устройство тяжелых ограждений экономически нецелесообразно, надлежащую звукоизоляцию обеспечивают устройством двухили трехслойных ограждений, часто с воздушными зазорами, которые рекомендуется наполнять пористыми звукопоглощающими материалами. Желательно, чтобы конструктивные слои имели различную жесткость и герметичность, что повышает степень звукоизоляции.

Эффективность ограждающих конструкций оценивают индексом звукоизоляции воздушного шума (усредненным в диапазоне наиболее характерных для жилья частот 100…3000 Гц), а эффективность перекрытий – индексом приведенного ударного шума под перекрытием, измеряемых в дБ. Для ограждающих конструкций индекс звукоизоляции оптимально должен составлять 52…60 дБ. Чем больше индекс изоляции воздушного шума и меньше индекс приведенного ударного шума под перекрытием, тем лучше изоляция.

  • мягкие, полужесткие и жесткие изделия в виде плит, матов (прошивные маты, древесноволокнистые плиты, изделия из пенопластов, полиуретана);
  • засыпки (песок, керамзит, шлак, перлит и др.);
  • рулонные и плиточные покрытия полов (основный и безосновный поливинилхлоридный линолеум, поливинилхлоридные плитки, ковролин).

Однако предпочтение сегодня отдается универсальным звукоизоляционным материалам на основе природного сырья, например изделиям на основе каменной (базальтовой) ваты. Их отличные звукоизоляционные свойства определяет специфическая структура – хаотично направленные тончайшие волокна при трении друг с другом превращают энергию звуковых колебаний в тепловую.

Читайте также: