Универсальный коллекторный двигатель реферат

Обновлено: 02.07.2024

Принцип действия, применение и устройство электрических машин постоянного тока. Особенности работы коллекторного генератора и двигателя, возникновение магнитных сил в проводниках обмотки. Особенности конструкции статора и якоря машины постоянного тока.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 15.02.2015
Размер файла 486,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Электрические машины постоянного тока используются как в качестве генераторов, так и в качестве двигателей. Наибольшее применение имеют двигатели постоянного тока, области применения и диапазон мощности которых достаточно широки: от долей ватт (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других механизмов). Двигатели постоянного тока широко используются для привода подъемных средств в качестве крановых двигателей и привода транспортных средств в качестве тяговых двигателей. Основные преимущества двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока -- хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки -- относительно высокая стоимость, некоторая сложность в изготовлении и пониженная надежность. Все эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коллекторного узла, который к тому же является источником радиопомех и пожароопасности. Эти недостатки ограничиваю! применение машин постоянного тока.

В данном разделе рассмотрены машины постоянного тока общего назначения, получившие наибольшее применение в современном электроприводе. Рассмотрены также некоторые виды машин постоянного тока специального назначения, главным образом применяемые в устройствах автоматики. В заключение следует отметить, что наибольшее практическое применение получили машины постоянного тока в качестве электродвигателей. Объясняется это возрастающим применением в качестве источников постоянного тока полупроводниковых выпрямительных устройств, имеющих более высокие технико-экономические показатели по сравнению с коллекторными генераторами постоянного тока.

1. Принцип действия генератора и двигателя постоянного тока

Характерным признаком коллекторных машин является наличие у них коллектора -- механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии.

Рассмотрим принцип действия коллекторного генератора постоянного тока. На рис. 1 изображена упрощенная модель такого генератора: между полюсами N и S постоянного магнита находится вращающаяся часть генератора -- якорь, вал которого посредством шкива и ременной передачи механически связан с приводным двигателем (на рисунке не показан) -- источником механической энергии. В двух продольных пазах на сердечнике якоря расположена обмотка в виде одного витка a,b,c,d, концы которого присоединены к двум медным изолированным друг от друга полукольцам, образующим простейший коллектор. На поверхность коллектора наложены щетки А и В, осуществляющие скользящий контакт с коллектором и связывающие генератор с внешней цепью, куда включена нагрузка сопротивлением R.

Предположим, что приводной двигатель вращает якорь генератора против часовой стрелки, тогда в витке на якоре, вращающемся в магнитном поле постоянного магнита, наводится ЭДС, мгновенное значение которой

а направление для положения якоря, изображенного на рисунке, указано стрелками.

Рис. 1. Упрощенная модель коллекторной машины

В процессе работы генератора якорь вращается и виток a,b,c,d, занимает разное пространственное положение, поэтому в обмотке якоря наводится переменная ЭДС. Если бы в машине не было коллектора, то ток во внешней цепи (в нагрузке R) был бы переменным, но посредством коллектора и щеток переменный ток обмотки якоря преобразуется в пульсирующий ток во внешней цепи генератора, т. е. ток, неизменный по направлению. При положении витка якоря, показанном на рис. 1, ток во внешней цепи (в нагрузке) направлен от щетки А к щетке В; следовательно, щетка А является положительной, а щетка В -- отрицательной. После поворота якоря на 180 0 (рис. 2, а) направление тока в витке якоря изменится на обратное, однако полярность щеток, а следовательно, и направление не тока во внешней цепи (в нагрузке) останутся неизменными (рис. 2, б). Объясняется это тем, что в тот момент, когда ток в витке якоря меняет свое направление, происходит смена коллекторных пластин под щетками. Таким образом, под щеткой А всегда находится пластина, соединенная с проводником, расположенным под северным магнитным полюсом, а под щеткой В -пластина, соединенная с проводником, расположенным под южным полюсом. Благодаря этому полярность щеток генератора остается неизменной независимо от положения витка якоря. Что же касается пульсаций тока во внешней цепи, то они намного ослабится при увеличении числа витков в обмотке якоря при их равномерном распределении по поверхности якоря и соответствующем увеличении числа пластин в коллекторе.

Рис. 2. К принципу действия генератора постоянного тока

В результате взаимодействия этого тока с магнитным полем постоянного магнита (полем возбуждения) появятся электромагнитные силы , создающие на якоре электромагнитный момент М и вращающие его против часовой стрелки.

После поворота якоря на 180 0 электромагнитные силы не изменят своего направления, так как одновременно с переходом каждого проводника обмотки якоря из зоны одного магнитного полюса в зону другого полюса в этих проводниках меняется направление тока.

Рис. 3. К принципу действия двигателя постоянного тока

Таким образом, назначение коллектора и щеток в двигателе постоянного тока -- изменять направление тока в проводниках обмотки якоря при их переходе из зоны магнитного полюса одной полярности в зону полюса другой полярности.

Рассмотренная упрощенная модель машины постоянного тока не обеспечивает двигателю устойчивой работы, так как при прохождении проводниками обмотки якоря геометрической нейтрали (рис. 3) электромагнитные силы = 0 (магнитная индукция в середине межполосного пространства равна нулю). Однако с увеличением числа проводников в обмотке якоря (при равномерном их распределении на поверхности якоря) и числа пластин коллектора вращение якоря двигателя становится устойчивым и равномерным.

2. Устройство коллекторной машины постоянного тока

В настоящее время электромашиностроительные заводы изготовляют электрические машины постоянного тока, предназначенные для работы в самых различных отраслях промышленности, поэтому отдельные узлы этих машин могут иметь разную конструкцию, но общая конструктивная схема машин одинакова.

Неподвижная часть машины постоянного тока называется статором, вращающаяся часть -- якорем (рис. 4).

Рис. 4. Устройство машины постоянного тока

Статор. Состоит из станины 6 и главных полюсов 4. Станина 6 служит для крепления полюсов и подшипниковых щитов и является частью магнитопровода, так как через нее замыкается магнитный поток машины. Станину изготовляют из стали -- материала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. В нижней части станины имеются лапы 11 для крепления машины к фундаментной плите, а по окружности станины расположены отверстия для крепления сердечников главных полюсов 4. Обычно станину делают цельной из стальной трубы, либо сварной из листовой стали, за исключением машин с весьма большим наружным диаметром, у которых станину делают разъемной, что облегчает транспортировку и монтаж машины.

Главные полюсы предназначены для создания в машине магнитного поля возбуждения. Главный полюс состоит из сердечника 6 и полюсной катушки 5. Со стороны, обращенной к якорю, сердечник полюса имеет полюсный наконечник, который обеспечивает необходимое распределение магнитной индукции в зазоре машины. Сердечники главных полюсов делают шихтованными из листовой конструкционной стали толщиной 1--2 мм или из тонколистовой электротехнической анизотропной холоднокатаной стали, например марки 3411. Штампованные пластины главных полюсов специально не изолируют, так как тонкая пленка окисла на их поверхности достаточна для значительного ослабления вихревых токов, наведенных в полюсных наконечниках пульсациями магнитного потока, вызванного зубчатостью сердечника якоря. Анизотропная сталь обладает повышенной магнитной проницаемостью вдоль проката, что должно учитываться при штамповке пластин и их сборке в пакет.

В машинах постоянного тока небольшой мощности полюсные катушки делают бескаркасными -- намоткой медного обмоточного провода непосредственно на сердечник полюса, предварительно наложив на него изоляционную прокладку (рис. 5, а). В большинстве машин (мощностью 1 кВт и более) полюсную катушку делают каркасной: обмоточный провод наматывают на каркас (обычно пластмассовый), а затем надевают на сердечник полюса (рис. 5, б). В некоторых конструкциях машин полюсную катушку для более интенсивного охлаждения разделяют по высоте на части, между которыми оставляют вентиляционные каналы.

Якорь. Якорь машины постоянного тока (рис. 4) состоит из вала 10, сердечника 3 с обмоткой и коллектора 7. Сердечник якоря имеет шихтованную конструкцию и набирается из штампованных пластин тонколистовой электротехнической стали. Листы покрывают изоляционным лаком, собирают в пакет и запекают. Готовый сердечник напрессовывают на вал якоря. Такая конструкция сердечника якоря позволяет значительно ослабить в нем вихревые токи, возникающие в результате его перемагничивания в процессе вращения в магнитном поле. На поверхности сердечника якоря имеются продольные пазы, в которые укладывают обмотку якоря.

Обмотку выполняют медным проводом круглого или прямоугольного сечения. Пазы якоря после заполнения их проводами обмотки обычно закрывают клиньями (текстолитовыми или гетинаксовыми). В некоторых машинах пазы не закрывают клиньями, а накладывают на поверхность якоря бандаж. Бандаж делают из проволоки или стеклоленты с предварительным натягом. Лобовые части 9 обмотки якоря крепят к обмоткодержателям бандажом.

Рис. 5. Главные полюсы с бескаркасной (а) и каркасной (б) полюсными катушками: 1 -- станина, 2 -- сердечник полюса, 3 -- полюсная катушка

электрический генератор статор ток

Рис. 6. Устройство коллектора с конусными шайбами

В машинах постоянного тока малой мощности часто применяют коллекторы на пластмассе, отличающиеся простотой в изготовлении. Набор медных и миканитовых пластин в таком коллекторе удерживается пластмассой, запрессованной в пространство между набором пластин и стальной втулкой 4 и образующей корпус коллектора. Иногда с целью увеличения прочности коллектора эту пластмассу 2 армируют стальными кольцами 3 (рис. 7). В этом случае миканитовые прокладки должны иметь размеры большие, чем у медных пластин 1, что исключит замыкание пластин стальными (армирующими) кольцами 3.

Электрический контакт с коллектором осуществляется посредством щеток, располагаемых в щеткодержателях 4 (см. рис. 4).

Щеткодержатель (рис. 8) состоит из обоймы 4, в которую помещают щетку 3, курка 1, представляющего собой откидную деталь, передающую давление пружины 2 на щетку. Щеткодержатель крепят на пальце зажимом 5. Щетка снабжается гибким тросиком 6 для включения ее в электрическую цепь машины. Все щеткодержатели одной полярности соединены между собой сборными шинами, подключенными к выводам машины. Одно из основных условий бесперебойной работы машины -- плотный и надежный контакт между щеткой и коллектором. Давление на щетку должно быть отрегулировано, так как чрезмерный нажим может вызвать преждевременный износ щетки и перегрев коллектора, а недостаточный нажим -- искрение на коллекторе.

Рис. 7. Устройство коллектора на пластмассе

Рис. 8. Щеткодержатель (сдвоенный) машины постоянного тока

Помимо указанных частей машина постоянного тока имеет два подшипниковых щита: передний 12 (со стороны коллектора) и задний 7 (см. рис. 4). В центральной части щита имеется расточка под подшипник. На переднем подшипниковом щите имеется смотровое окно (люк) с крышкой, через которое можно осмотреть коллектор и щетки, не разбирая машины. Концы обмоток выведены на зажимы коробки выводов. Вентилятор 8 служит для самовентиляции машины: воздух поступает в машину обычно со стороны коллектора, омывает нагретые части (коллектор, обмотки и сердечники) и выбрасывается с противоположной стороны через решетку.

Из рассмотрения принципа действия и устройства коллекторной машины постоянного тока следует, что непременным элементом этой машины, включенным между обмоткой якоря и внешней сетью, является щеточно-коллекторный узел -- механический преобразователь рода тока. Таким образом, коллекторные машины сложнее бесколлекторных машин переменного тока (асинхронной и синхронной) и, следовательно, уступают им (особенно асинхронной машине) в надежности и имеют более высокую стоимость.

Подобные документы

Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

реферат [3,6 M], добавлен 17.12.2009

Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

презентация [4,1 M], добавлен 03.12.2015

Расчеты главных размеров двигателя. Выбор и определение параметров обмотки якоря. Проверка магнитной цепи машины, также расчет параллельной обмотки возбуждения, щеточно-коллекторного узла и добавочных полюсов. Конструкция двигателя постоянного тока.

курсовая работа [852,4 K], добавлен 30.03.2011

Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.

лабораторная работа [904,2 K], добавлен 09.02.2014

Расчет двигателя постоянного тока: главные размеры машины; параметры обмотки якоря, коллектор и щеточный аппарат; геометрия зубцовой зоны. Магнитная система машины: расчет параллельной обмотки возбуждения; потери и коэффициент полезного действия.

курсовая работа [2,7 M], добавлен 06.09.2012

Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

реферат [3,2 M], добавлен 12.11.2009

Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

Применение в обмотке якоря двигателя одновитковых секций также способствует ограничению, но при этом увеличивается количество пластин в коллекторе, а, следовательно, возрастают его размеры. Применение добавочных полюсов с обмоткой, включенной последовательно в цепь якоря, позволяет добиться полной взаимной компенсации трансформаторной ЭДС только при определенных значениях тока якоря и частоты… Читать ещё >

Универсальные коллекторные двигатели ( реферат , курсовая , диплом , контрольная )

Универсальными называют коллекторные двигатели, которые могут работать как от сети постоянного, так и от сети однофазного переменного тока.

Коллекторный двигатель постоянного тока в принципе может работать от сети переменного тока, так как при переходе от положительного полупериода переменного напряжения к отрицательному направление электромагнитного момента сохраняется неизменным. Объясняется это тем, что при переходе к отрицательному полупериоду почти одновременно с изменением направления тока в обмотке якоря меняется направление тока в обмотке возбуждения, т. е. меняется полярность полюсов.

К принципу работы универсального коллекторного двигателя.

Рис. 16. К принципу работы универсального коллекторного двигателя

Однофазные коллекторные двигатели имеют преимущественно последовательное возбуждение. Применение параллельного возбуждения (рис. 14,) в данном случае ограничивается значительной индуктивностью параллельной обмотки возбуждения, имеющей большое число витков. Это создает значительный фазовый сдвиг между током якоря и током возбуждения на угол (рис. 14, б). Среднее значение электромагнитного момента в этом случае определяется выражением, аналогичным выражению (24), но учитывающим угол сдвига между током якоря и магнитным потоком:

(34).

где — максимальное значение магнитного потока; — угол сдвига фаз между током якоря и током возбуждения; — угол сдвига фаз между током возбуждения и магнитным потоком, обусловленный наличием магнитных потерь в машине [, а следовательно, ].

В двигателе последовательного возбуждения (рис. 14, в) ток якоря и ток возбуждения совпадают по фазе: = 0 (рис. 14, г). Поэтому среднее значение электромагнитного вращающего момента в двигателе последовательного возбуждения больше, чем в двигателе параллельного возбуждения:

Электромагнитный момент двигателя последовательного возбуждения при работе от сети переменного тока имеет постоянную составляющую (рис. 14, д) и переменную составляющую, изменяющуюся с частотой, равной удвоенной частоте сети (рис. 14, е). Результирующий момент этого двигателя является пульсирующим M~ (рис. 14, ж): M~ =. Небольшие участки графика с отрицательным (тормозящим) моментом обусловлены фазовым сдвигом между векторами магнитного потока и током (рис. 14, г). Пульсации момента M~ практически не нарушают работу двигателя, включенного в сеть переменного тока, так как сглаживаются за счет момента инерции вращающегося якоря.

По своей конструкции универсальные коллекторные двигатели отличаются от двигателей постоянного тока тем, что их станина и главные полюсы делаются шихтованными из листовой электротехнической стали. Это дает возможность сократить магнитные потери, которые при работе двигателя от сети переменного тока повышаются, так как переменный ток в обмотке возбуждения вызывает перемагничивание всей магнитной цепи, включая станину и сердечники полюсов.

Основной недостаток однофазных коллекторных двигателей — тяжелые условия коммутации. Дело в том, что в коммутирующих секциях помимо реактивной ЭДС и ЭДС внешнего поля наводится трансформаторная ЭДС, действующее значение которой [10, "https://referat.bookap.info"].

Эта ЭДС наводится переменным магнитным потоком возбуждения, сцепленным с коммутирующими секциями. Для уменьшения трансформаторной ЭДС необходимо уменьшить поток, а чтобы мощность двигателя при этом осталась прежней, следует увеличить число полюсов в двигателе.

Применение в обмотке якоря двигателя одновитковых секций также способствует ограничению, но при этом увеличивается количество пластин в коллекторе, а, следовательно, возрастают его размеры. Применение добавочных полюсов с обмоткой, включенной последовательно в цепь якоря, позволяет добиться полной взаимной компенсации трансформаторной ЭДС только при определенных значениях тока якоря и частоты вращения. При других режимах работы двигателя условия коммутации остаются тяжелыми. Регулировка частоты вращения и реверсирование однофазного коллекторного двигателя выполняются так же, как и в двигателях постоянного тока последовательного возбуждения.

В универсальном коллекторном двигателе стремятся получить примерно одинаковые частоты вращения при номинальной нагрузке, как на постоянном, так и на переменном токе. Достигается это тем, что обмотку возбуждения двигателя выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотка возбуждения используется полностью, а при работе от сети переменного тока — частично (рис. 15,).

Расхождения в характеристиках двигателя на постоянном и переменном токе объясняются тем, что при работе от сети переменного тока на величину и фазу тока оказывают влияние индуктивные сопротивления обмоток якоря и возбуждения.

Схема соединений и рабочие характеристики универсального коллекторного двигателя.

Рис. 17. Схема соединений и рабочие характеристики универсального коллекторного двигателя

Однако уменьшение числа витков обмотки возбуждения обеспечивает сближение характеристик лишь при нагрузке, близкой к номинальной. На рис. 15, б приведены рабочие характеристики универсального коллекторного двигателя типа УМТ-22 (55 Вт, 200 об/мин, 110/127 В). Потребляемый двигателем ток при работе от сети переменного тока больше, чем при работе этого же электродвигателя от сети постоянного тока, так как переменный ток помимо активной имеет еще и реактивную составляющую. Коэффициент полезного действия универсальных двигателей при переменном токе ниже, чем при постоянном, что вызвано повышенными магнитными потерями. Области применения универсальных коллекторных двигателей достаточно широки: их применяют в автоматике, для привода различного электроинструмента, бытовых электроприборов и др.

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Коллектор на роторе электродвигателя (отмечен красным)

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

Универсальный двигатель - вращающийся электродвигатель, который может работать при питании от сети как постоянного, так и однофазного переменного тока [1].

Конструкция универсального электродвигателя

Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.

Универсальный двигатель

Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока [2].

Схема универсального двигателя

Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.

В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением .


Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.

Управление универсальным электродвигателем

    Способы подключения универсального электродвигателя к сети питания:
    • симисторный
    • транзисторный

    Особенности универсального двигателя

    Коэффициент полезного действия универсального двигателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть переменного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых секциях трансформаторной ЭДС, ухудшающей процесс коммутации в двигателе.

    Наличие щеточно-коллекторного узла является причиной ряда недостатков универсальных коллекторных двигателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при частоте питающего напряжения f = 50 Гц позволяют получать частоту вращения до 10 000 об/мин и более (наибольшая синхронная частота вращения при f = 50 Гц равна 3000 об/мин) [3].

    Области использования

    Благодаря тому, что универсальный двигатель может иметь высокую скорость вращения при работе от однофазной сети переменного тока без использования дополнительных преобразовательных устройств, он получил широкое применение в таких домашних приборах как пылесосы, блендеры, фены и др. Так же универсальный электродвигатель широко используется в таких инструментах, как дрели и шуруповерты.

    Благодаря тому, что скорость вращения универсального двигателя легко регулируется изменением величины питающего напряжения ранее он широко использовался в стиральных машинах. Сейчас благодаря развитию преобразовательной техники более широкое использование получают бесщеточные электродвигатели (СДПМ, АДКР) скорость вращения которых регулируется изменением частоты напряжения питания.

    Читайте также: