Ультрафиолетовое излучение виды спектров и их биологическая характеристика реферат

Обновлено: 02.07.2024

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Содержание

1. История открытия
2. Источники ультрафиолетового излучения
• Природные
• Искусственные
• Лазерные
3. Воздействие ультрафиолетовых излучений на организм человека
4.Применение ультрафиолетового излучения
• Чёрный свет
• Обеззараживание ультрафиолетовым (УФ) излучением
• Химический анализ
• Искусственный загар
• Ультрафиолет в реставрации
5. Защита от ультрафиолетового излучения
6. Список литературы

Вложенные файлы: 1 файл

реферат бжд.docx

1. История открытия

2. Источники ультрафиолетового излучения

  • Природные
  • Искусственные
  • Лазерные

3. Воздействие ультрафиолетовых излучений на организм человека

4.Применение ультрафиолетового излучения

    • Чёрный свет
    • Обеззараживание ультрафиолетовым (УФ) излучением
    • Химический анализ
    • Искусственный загар
    • Ультрафиолет в реставрации

    5. Защита от ультрафиолетового излучения

    6. Список литературы

    История открытия ультрафиолетового излучения

    Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

    После того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

    Источники ультрафиолетового излучения

    Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

    • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
    • от высоты Солнца над горизонтом
    • от высоты над уровнем моря
    • от атмосферного рассеивания
    • от состояния облачного покрова
    • от степени отражения УФ-лучей от поверхности (воды, почвы)

    Наиболее значительными искусственными источниками ультрафиолетового излучения, оказывающими воздействие на людей, являются:

    Дуга промышленной сварки. Наиболее важным источником потенциальной UVR экспозиции является лучистая энергия оборудования для дуговой сварки. Уровни ультрафиолетового излучения вокруг оборудования для дуговой сварки очень высоки и могут вызывать острые поражения глаз и кожи после трех - десяти минут экспозиции при нахождении наблюдателя на близком расстоянии в несколько метров. При проведении сварки обязательна защита глаз и кожи.

    Промышленные/рабочие UVR лампы. Многие промышленные и коммерческие процессы, такие как фотохимическое закрепление чернил, красок и пластиков, включают в себя использование ламп, которые испускают мощное излучение в ультрафиолетовом диапазоне. Хотя вероятность их вредного воздействия на человека низка из-за использования экранирования, в некоторых случаях может возникнуть случайная экспозиция.

    "Черный свет". Черным светом называют специальные лампы, испускающие энергию преимущественно в ультрафиолетовом диапазоне. Они, обычно, используются как адеструктивный метод испытания флуоресцентных порошков, для определения подлинности банкнот и документов и для специальных эффектов в рекламе и на дискотеках. Эти лампы, воздействуя на человека, не причиняют ему значительного вреда (за исключением случаев фотосенсибилизированной кожи).

    Медицинское лечение. Ультрафиолетовые лампы применяются в медицине для разнообразных диагностических и терапевтических целей. Источники UVA, обычно, используются в диагностических программах. UVA воздействие на пациента существенно варьируется в соответствии с типом лечения. Ультрафиолетовые лампы, применяющиеся в дерматологии, должны использоваться персоналом с большой осторожностью.

    Бактерицидные UVR лампы. Ультрафиолетовое излучение с длиной волны в диапазоне 250-265 nm является наиболее эффективным для стерилизации и дезинфекции, поскольку такая длина волны соответствует максимуму спектра поглощения РНК. Отводные трубы для ртути низкого давления также часто используются в качестве ультрафиолетового источника, поскольку более 90% излученной ими энергии находится на длине волны 254 nm. Эти лампы часто называют "гермицидными лампами", "бактерицидными лампами" или просто "ультрафиолетовыми лампами". Гермицидные лампы применяются в больницах для борьбы с туберкулезной инфекцией, и в кабинетах микробиологической безопасности для инактивации воздушно-капельных и поверхностных микроорганизмов. Важным фактором является правильная установка лампы и использование защиты для глаз.
    Косметический загар. Кушетки для загара находятся в заведениях, где клиенты могут загорать под специальными лампами для загара, излучающими преимущественно в UVA диапазоне, но испускающими также и небольшое количество UVB лучей. Регулярное пользование кушеткой для загара может существенно повлиять на ежегодную экспозицию кожи человека ультрафиолетовому излучению. Более того, персонал, работающий в салонах загара, также может подвергаться низкоуровневому воздействию ультрафиолета. Использование таких защитных средств для глаз, как защитные или солнечные очки, должно быть обязательным для клиентов. В зависимости от устройства солярия его персоналу также могут понадобиться средства защиты глаз.

    Общее освещение. Флуоресцентные лампы широко распространены на рабочих местах и дома. Эти лампы испускают небольшие количества ультрафиолетового излучения и дают только несколько процентов от ежегодной экспозиции человека этому диапазону излучений. Вольфрамово-галогенные лампы чаще всего больше применяются дома и на рабочем месте для разнообразного освещения и демонстрационных целей. Неэкранированные галогенные лампы могут излучать UVR на уровнях, достаточных для того, чтобы на близком расстоянии вызвать острое поражение. Оборудование таких ламп надевающимися поверх стеклянными фильтрами должно устранить эту опасность.

    Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях.

    В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргонный лазер, азотный лазер и др.), конденсированные инертные газы, специальные кристаллы, органические сцинтилляторы, либо свободные электроны, распространяющиеся в ондуляторе.

    В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета.

    Воздействие ультрафиолетовых излучений на организм человека

    Ультрафиолетовые излучения оказывают на организм человека действия физико-химического и биологического характера. При длине волны от 400 нм до 320 нм они характеризуются слабым биологическим действием; от 320 до 280 нм – действуют на кожу; от 280 нм до 200 нм – на тканевые белки и липоиды.
    Ультрафиолетовое излучение более короткого диапазона (от 180 нм и ниже) сильно поглощается всеми материалами и средами, в том числе и воздухом, а потому может иметь место только в условиях вакуума.
    Ультрафиолетовые лучи обладают способностью вызывать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминесценцию и обладают значительной биологической активностью. При этом ультрафиолетовые лучи области А отличаются сравнительно слабым биологическим действием, возбуждают флюоресценцию органических соединений. Лучи области В обладают сильным эритемным и антирахитическим действием, а лучи области С активно действуют на тканевые белки и липиды, вызывают гемолиз и обладают выраженным антирахитическим действием.
    Избыток и недостаток этого вида излучения представляет опасность для организма человека.

    Применение ультрафиолетового излучения

    Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

    Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

    Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в темном помещении существует некоторая опасность связанная именно с незначительным излучением в видимом спектре. Это обусловлено тем, что в темноте зрачок расширяется и относительно большая часть излучения беспрепятственно попадает на сетчатку.

    Обеззараживание ультрафиолетовым (УФ) излучением

    Стерилизация воздуха и твёрдых поверхностей

    Кварцевая лампа, используемая для стерилизации в лаборатории

    Ультрафиолетовые лампы используются для стерилизации ( обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

    Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

    Дезинфекция питьевой воды

    Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Обеззараживание ультрафиолетовым (УФ) излучением - безопасный, экономичный и эффективный способ дезинфекции. Ни озонирование, ни ультрафиолетовое излучение не обладают бактерицидным последействием, поэтому их не допускается использовать в качестве самостоятельных средств обеззараживания воды при подготовке воды для хозяйственно-питьевого водоснабжения, для бассейнов. Озониpование и ультрафиолетовое обеззараживаниe применяются как дополнительные методы дезинфекции, вместе с хлорированием, повышают эффективность хлорирования и снижают количество добавляемых хлорсодержащих реагентов.

    УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ- излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

    3.Качественный хроматографический анализ

    Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

    При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны фотарии, которые в быту часто называют соляриями.

    Ультрафиолет в реставрации

    I. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 103 м (радиоволны) до 10-8 см (рентгеновские лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

    Ультрафиолетовое излучение — невидимое глазом электромагнитное излучение, занимающее область между нижней границей видимого спектра и верхней границей рентгеновского излучения. Длина волны УФ — излучения лежит в пределах от 100 до 400 нм (1 нм = 10-9 м). По классификации Международной комиссии по освещению (CIE) спектр УФ — излучения делится на три диапазона:

    UV-A — длинноволновое (315 — 400 нм.)

    UV-B — средневолновое (280 — 315 нм.)

    UV-C — коротковолновое (100 — 280 нм.)

    II. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

    III. В современном мире ультрафиолетовое излучение находит самое широкое применение в различных областях:

    Нужна помощь в написании доклада?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Применение ультрафиолетового излучения в медицине связано с тем, что оно обладает бактерицидным, мутагенным, терапевтическим (лечебным), антимитотическим и профилактическим действиями, дезинфекция; лазерная биомедицина

    В косметологии ультрафиолетовое облучение широко применяется в соляриях для получения ровного красивого загара. Дефицит ультрафиолетовых лучей ведет к авитаминозу, снижению иммунитета, слабой работе нервной системы, появлению психической неустойчивости.

    Ультрафиолетовое излучение оказывает существенное воздействие на фосфорно-кальциевый обмен, стимулирует образование витамина D и улучшает все метаболические процессы в организме.

    3) Пищевая промышленность.

    Обеззараживания воды, воздуха, помещений, тары и упаковки УФ излучением

    Следует подчеркнуть, что использование УФИ как физического фактора воздействия на микроорганизмы может обеспечить обеззараживание среды обитания в очень высокой степени, например до 99,9%.

    4) Сельское хозяйство и животноводство.

    Нужна помощь в написании доклада?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    Технология формования полимерных изделий под действием ультрафиолетового излучения (фотохимическое формование) находит применение во многих областях техники. В частности, эта технология широко применяется в полиграфии и в производстве печатей и штампов.

    Ученые разработали технологию, позволяющую обнаруживать малейшие дозы взрывчатых веществ. В приборе для обнаружения следов взрывчатых веществ используется тончайшая нить (она в две тысячи раз тоньше человеческого волоса), которая светится под воздействием ультрафиолетового излучения, но всякий контакт со взрывчаткой: тринитротолуолом или иными используемыми в бомбах взрывчатыми веществами, прекращает ее свечение. Прибор определяет наличие взрывчатых веществ в воздухе, в воде, на ткани и на коже подозреваемых в преступлении

    Освещение, световые эффекты.

    IV. Источники УФ излучения:

    — излучается всеми твердыми телами, у которых t>1000оС, а также светящимися парами ртути.

    — звезды (в т.ч. Солнце).

    Нужна помощь в написании доклада?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    — газоразрядные лампы с трубками из кварца (кварцевые лампы), ртутные;

    V. Воздействие на человека.

    Существует ряд эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений. Как известно, эти повреждения можно разделить на:

    Нужна помощь в написании доклада?

    Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

    — вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог). Они происходят преимущественно за счет лучей UVB, энергия которых многократно превосходит энергию лучей UVA.

    — вызванные длительным облучением умеренными дозами. Они возникают преимущественно за счет лучей спектра UVA, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года.

    VI. Жесткое ультрафиолетовое излучение могло быть именно тем фактором, который заставил первые органические молекулы соединяться вместе для создания РНК — рибонуклеиновой кислоты, которая считается основой жизни. Но, не будь озонного слоя, все живое на земле исчезло бы под действием солнечной радиации, в состав которой входит и УФ- излучение.

    Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30- 50 км от поверхности земли.

    Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.

    Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.

    Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.

    При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.

    Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.

    Длина волны ультрафиолетового излучения

    Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ . оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ . (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).

    В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ ., т. е. обладающих значительной биологической активностью.

    В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.

    Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.

    Ультрафиолетовая эритема

    В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.

    Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи - ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.

    Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.

    Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротко

    Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.

    Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ . При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.

    Чувствительность различных участков кожи к ультрафиолету

    Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.

    Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.

    Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.

    В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество - меланин).

    Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.

    Положительное влияние ультрафиолета

    Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

    Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.

    Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.

    Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 - 200 mμ ).

    Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.

    По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.

    В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.

    Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.

    Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое - фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.

    Применение ультрафиолетового излучения

    Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.

    Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.

    Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.

    В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь - повышения его иммунобиологических свойств).

    С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).

    Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.

    Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.

    Применение ультрафиолетового излучения в медицине

    Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.

    В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:

    1) при лечении рахита;

    2) после перенесенных инфекционных заболеваний;

    3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;

    4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;

    5) при заболеваниях периферической нервной системы, мышц и суставов;

    6) при заболеваниях кожи;

    7) при ожогах и отморожениях;

    8) при гнойных осложнениях ран;

    9) при рассасывании инфильтратов;

    10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.

    Противопоказаниями к облучению являются:

    1) злокачественные новообразования (так как облучение ускоряет их рост);

    2) резкое истощение;

    3) повышенная функция щитовидной железы;

    4) выраженные сердечно-сосудистые заболевания;

    5) активный туберкулез легких;

    6) заболевания почек;

    7) выраженные изменения центральной нервной системы.

    Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.

    Негативное действие ультрафиолета

    Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

    В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

    При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

    Средства защиты от ультрафиолетового излучения

    Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

    В бытовых условиях рекомендуется использование солнцезащитных кремов, лосьонов, спреев с высоким фактором защиты, ношение солнцезащитных очков и закрытой одежды из натуральных тканей.

    Гост

    ГОСТ

    Общая характеристика ультрафиолетового излучения

    Ультрафиолетовое излучение открыл И.В. Риттер в $1842$ г. Впоследствии свойства этого излучения и его применение подверглись самому тщательному разбору и изучению. Такие ученые как А. Беккерель, Варшавер, Данциг, Франк, Парфенов, Галанин и многие другие внесли в это изучение большой вклад.

    В настоящее время ультрафиолетовое излучение широко применяется в разных областях деятельности. Пик активности по воздействию ультрафиолет достигает в интервале высоких температур. Появляется этот вид спектра, когда температура доходит от $1500$ до $20000$ градусов.

    Условно диапазон излучения делят на 2 области:

    1. Ближний спектр, который от Солнца через атмосферу доходит до Земли и имеет длину волны $380$-$200$ нм;
    2. Далекий спектр поглощается озоном, кислородом воздуха и другими компонентами атмосферы. Исследовать этот спектр можно при помощи специальных вакуумных устройств, поэтому его называют ещё вакуумным. Длина его волны $200$-$2$ нм.

    Ультрафиолетовое излучение может быть ближним, дальним, экстремальным, средним, вакуумным, причем каждый его вид имеет свои свойства и находит свое применение. Каждый вид ультрафиолетового излучения имеет свою длину волны, но в обозначенных выше пределах.

    Спектр ультрафиолетовых солнечных лучей, достигающих поверхности Земли, узок – $400$…$290$ нм. Получается, что Солнце не излучает свет с длиной волны короче $290$ нм. Так это или не так? Ответ на этот вопрос был найден французом А. Корню, установившим, что ультрафиолетовые лучи короче $295$ нм поглощаются озоном. На основании этого А.Корню предположил, что Солнце излучает коротковолновое ультрафиолетовое излучение. Молекулы кислорода под его действием распадаются на отдельные атомы и образуют молекулы озона. Озон в верхних слоях атмосферы покрывает планету защитным экраном.

    Предположение ученого подтвердилось тогда, когда человек сумел подняться в верхние слои атмосферы. Высота Солнца над горизонтом и количество ультрафиолетовых лучей, поступающих на земную поверхность, находятся в прямой зависимости. При изменении освещенности на $20$ % в $20$ раз уменьшится количество ультрафиолетовых лучей, дошедших до поверхности. Проведенные эксперименты показали, что на каждые $100$ м подъема на $3$-$4$ % увеличивается интенсивность ультрафиолетового излучения. В экваториальной области планеты, когда Солнце находится в зените, поверхность земли достигают лучи длиной $290$…$289$ нм. На земную поверхность за Полярным кругом поступают лучи с длиной волны $350$…$380$ нм.

    Готовые работы на аналогичную тему

    Источники ультрафиолетового излучения

    Ультрафиолетовое излучение имеет свои источники:

    1. Природные источники;
    2. Источники, созданные человеком;
    3. Лазерные источники.

    Природным источником ультрафиолетовых лучей является единственный их концентратор и излучатель – это наше Солнце. Самая близкая к нам звезда излучает мощнейший заряд волн, способных пройти через озоновый слой и достичь земной поверхности. Многочисленные исследования позволили ученым выдвинуть теорию о том, что только с появлением озонового слоя на планете смогла зародиться жизнь. Именно этот слой защищает всё живое от вредного избыточного проникновения ультрафиолетового излучения. Способность к существованию белковых молекул, нуклеиновых кислот и АТФ стала возможна именно в этот период. Озоновый слой выполняет очень важную функцию, взаимодействуя с основной массой УФ-А, УФ-В, УФ-С, он обезвреживает их и не пропускает к поверхности Земли. Поступающее на поверхность земли ультрафиолетовое излучение имеет диапазон, который колеблется в пределах от $200$ до $400$ нм.

    Концентрация ультрафиолета на Земле зависит от целого ряда факторов:

    1. Наличия озоновых дыр;
    2. Положения территории (высота) над уровнем моря;
    3. Высота самого Солнца;
    4. Способности атмосферы рассеивать лучи;
    5. Отражающей способности подстилающей поверхности;
    6. Состояния облачных паров.

    Искусственные источники ультрафиолета, как правило, создаются человеком. Это могут быть сконструированные людьми приборы, устройства, технические средства. Создаются они для получения нужного спектра света с заданными параметрами длины волны. Цель их создания заключается в том, чтобы полученное ультрафиолетовое излучение можно было с пользой применить в разных областях деятельности.

    К источникам искусственного происхождения относятся:

    1. Обладающие способностью активировать синтез витамина D в коже человека эритемные лампы. Они не только предохраняют от заболеваний рахитом, но и лечат это заболевание;
    2. Специальные аппараты для соляриев, предупреждающие зимнюю депрессию и дающие красивый естественный загар;
    3. Применяющиеся в помещениях для борьбы с насекомыми лампы-аттрактанты. Для человека они не представляют опасности;
    4. Ртутно-кварцевые устройства;
    5. Эксилампы;
    6. Люминесцентные устройства;
    7. Ксеноновые лампы;
    8. Газоразрядные устройства;
    9. Высокотемпературная плазма;
    10. Синхротронное излучение в ускорителях.

    К искусственным источникам ультрафиолета относятся лазеры, работа которых основана на генерации инертных и не инертных газов. Это может быть азот, аргон, неон, ксенон, органические сцинтилляторы, кристаллы. В настоящее время существует лазер, работающий на свободных электронах. В нем получают длину ультрафиолетового излучения равную той, которая наблюдается в вакуумных условиях. Лазерный ультрафиолет используется в биотехнологических, микробиологических исследованиях, масс-спектрометрии и др.

    Применение ультрафиолетового излучения

    Ультрафиолетовое излучение имеет такие характеристики, которые позволяют его применять в разных сферах.

    Характеристики УФ-излучения:

    1. Высокий уровень химической активности;
    2. Бактерицидное воздействие;
    3. Способность вызывать люминесценцию, т.е. свечение различных веществ разными оттенками.

    Исходя из этого, ультрафиолетовое излучение может широко использоваться, например, в спектрометрических анализах, астрономии, медицине, в обеззараживании питьевой воды, аналитическом исследовании минералов, для уничтожения насекомых, бактерий и вирусов. Каждая область использует свой тип УФ со своим спектром и длиной волны.

    Спектрометрия специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. По результатам спектрометрии спектры для каждого вещества можно классифицировать, т.к. они являются уникальными. Уничтожение насекомых основано на том, что их глаза улавливают коротковолновые спектры, невидимые для человека. Насекомые летят на этот источник и подвергаются уничтожению. Специальные установки в соляриях подвергают тело человека воздействию УФ-А. В результате в коже происходит активизация выработки меланина, что придает ей более темный и ровный цвет. Здесь, конечно, важно защитить чувствительные зоны и глаза.

    Медицина. Применение ультрафиолета в этой области тоже связано с уничтожением живых организмов – бактерий и вирусов.

    Медицинские показания лечения ультрафиолетом:

    1. Травма тканей, костей;
    2. Воспалительные процессы;
    3. Ожоги, обморожения, кожные заболевания;
    4. Острые респираторные заболевания, туберкулез, астма;
    5. Инфекционные заболевания, невралгии;
    6. Заболевания уха, горла, носа;
    7. Рахиты и трофические язвы желудка;
    8. Атеросклероз, почечная недостаточность и др.

    Это далеко не весь перечень заболеваний, для лечения которых используется ультрафиолет.

    Таким образом, ультрафиолет помогает медикам спасать миллионы человеческих жизней и возвращать им здоровье. Используется ультрафиолет и для обеззараживания помещений, стерилизации медицинских инструментов и рабочих поверхностей.

    Аналитическая работа с минералами. Ультрафиолет вызывает у веществ люминесценцию и это дает возможность использовать его для анализа качественного состава минералов и ценных горных пород. Очень интересные результаты дают драгоценные, полудрагоценные и поделочные камни. При облучении их катодными волнами, они дают удивительные и неповторимые оттенки. Голубой цвет топаза, например, при облучении высвечивается ярко-зеленым, изумруд – красным, жемчуг переливается многоцветьем. Зрелище потрясающее, фантастическое.

    Читайте также: