Тригонометрия в медицине реферат

Обновлено: 07.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

г. Боготол, МБОУ СОШ №6, 10 класс

Тригонометрия в медицине

Руководитель: Козлова Людмила Васильевна

Цель работы: Изучить использование тригонометрии в медицине. После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Данная работа рассказывает, в каких именно сферах медицины применяются знания по тригонометрии. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

Актуальность: Впервые с тригонометрией я столкнулась в восьмом классе, когда мы начали изучать азы этого раздела математики. Простейшие правила определения синуса и косинуса показались мне очень легкими, поэтому не вызвали особого интереса. Позднее, когда я начала учиться в десятом классе, то было ясно сразу, что тригонометрия- это огромный раздел математики, объединяющий большое количество знаний и теории. В дальнейшем я выяснила, что знания о тригонометрии очень универсальные для всех областей деятельности. Они имеют широкое применение в астрономии, географии, теории музыки, анализ финансовых рынков, электроники, теории вероятности, статистике, биологии, медицине, фармацевтики, химии, криптографии и многие другие.

Тригономе́трия (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников) — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Как известно, тригонометрия применяется не только в математике, но и в других сферах науки. Данная работа рассказывает, в каких именно сферах медицины применяются знания по геометрии.

Одно из главных применений - кардиология. Аппараты ЭКГ снимают кардиограмму у людей, фиксируя удары сердца. После общения со специалистом по чтению графиков электрокардиограммы я выяснила, что график является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения.

ЦЕЛЬ: Изучить использование тригонометрии в медицине.

Изучить историю тригонометрии.

Выяснить, в каких сферах медицины применяется тригонометрия.

Выполнить практическую часть работы, выяснить принцип, на который опираются врачи-кардиологи, читая график электрокардиограммы.

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180—125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху. [9]

Замена хорд синусами стала главным достижением средневековой Индии. С VIII века учёные стран Ближнего и Среднего Востока развили тригонометрию. После того как трактаты мусульманских ученых были переведены на латынь, многие идеи стали достоянием европейской и мировой науки.[7]

2. ТРИГОНОМЕТРИЯ В МЕДИЦИНЕ

Биоритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации— от молекулярных до биосферы. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам — суточным (колебания интенсивности деления клеток, обмена веществ) [6].

Человек со дня рождения находится в трех , биоритмах : физическом, эмоциональном и интеллектуальном.

Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

Эмоциональный цикл (28 дня) обусловливает состояние нервной системы и настроение.

Интеллектуальный цикл (33 дня) определяет творческую способность личности.

Любой из циклов состоит из двух полупериодов, положительного и отрицательного.

В течение первой половины физического цикла человек энергичен и достигает лучших результатов в своей деятельности; во второй половине цикла энергичность уступает лености.

В первой половине эмоционального цикла человек весел, агрессивен, оптимистичен, переоценивает свои возможности, во второй половине - раздражителен, легко возбудим, недооценивает свои возможности, пессимистичен, все критически анализирует.

F:\тригонометрия\bio.jpg

Первая половина интеллектуального цикла характеризуется творческой активностью; во второй половине происходит творческий спад.[5]

Модель биоритмов строят с помощью графиков тригонометрических функций. В интернете находится огромное количество сайтов, которые занимаются расчетом биоритмов. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

2.2. ФОРМУЛА СЕРДЦА

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрокардиографии.

Формула, получившая название тегеранской, представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, постановку диагноза и начало лечения [4].

На данный момент не известна точная информация касающегося вопроса, ведутся активные работы и исследования по данной теме.

Российские ученые вывели математическую формулу сердца. Благодаря этим уравнениям можно высчитать, спрогнозировать и предотвратить любое сердечное заболевание. Единственная в России лаборатория математической физиологии действует при Екатеринбургском Институте иммунологии и физиологии.

Проблема математических описаний физиологических функций организма – вторая по значимости проблема после проблемы ДНК человека. В будущем будут вычислены формулы других органов человека, и медики с помощью элементарных уравнений смогут прогнозировать и лечить любую болезнь[3].

Человек - сложнейший механизм, в котором непрерывно происходят физические и химические процессы. Если все процессы, перевести на язык уравнений, то можно будет вывести единую формулу человека.

Математики создали модель сердечной мышцы, которую биологи виртуально соединили с настоящей живой тканью. В компьютерной программе ученые задают сердцу различные нагрузки и наблюдают, как оно ведет себя. Изучив всевозможные алгоритмы, имитирующие деятельность сердца, ученые смогут делать реальные прогнозы.

2. 3. ЭЛЕКТРОКАРДИОГРАММА

Примененный в практических целях в 70-х годах 19 века англичанином А.Уоллером аппарат, записывающий электрическую активность сердца, продолжает служить человеку и по сей день. Электрокардиограф позволяет выявить явные отклонения от нормального ритма сердца, такие как Инфаркт миокарда, Ийшемическая болезнь сердца, синусовая брадикардия, тахекардия,аритмия, синдром слабости синусового узла и т.п. Как же отличить нормальные снимки ЭКГ от ярко выраженных заболеваний?[1,2].

3.ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

После того, как мне удалось пообщаться со специалистом расшифровки кардиограммы в нашей больнице, я узнала множество полезной информации для моей исследовательской работы.

График электрокардиограммы является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения. Поэтому график ЭКГ всегда печатается на миллиметровой бумаге.

При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явления в сердце и электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

Более строгая расшифровка ЭКГ производиться с помощью анализа и расчета площади зубцов при использовании специальных отведений, однако в практике, обходятся показателем направления электрической оси, которая представляет собой суммарный вектор.

Существуют разные способы расшифровки ЭКГ. Некоторые специалисты основываются на формулы и рассчитывают все по ним; так частоту сердечных сокращений можно вычислить по формуле: где R - R длительность интервала, а некоторые пользуются готовыми данными, что тоже не запрещает отечественная медицина. На рисунке 2 представлены результаты расчетов ЧСС в зависимости от интервала.

F:\002.jpg

Рис.2. Оценка ЧЧС

Рис.3. Виды кардиограмм

D:\001.jpg

На рис.3 представлены три вида кардиограммы. Первая кардиограмма здорового человека, вторая, того же человека, только с синусовой тахикардией, после физической нагрузки, а третья кардиограмма больного человека с синусовой аритмией.

После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

Электрокардиография: Учебн. пособие. -5-е издание. – М.: МЕДпресс-информ, 2001. – 312с., ил.

Исследовательская работа

А.А.Гин Новые требования, которые предъявляются к результатам освоения программы обучающимися, предполагают изменение содержания образования, опираясь на принципы метапредметности. Под метапредметностью понимаются умения и универсальные учебные действия, как указано в новом образовательном стандарте . Выделяют следующие группы метапредметных умений: 1) умение планировать собственную деятельность; 2) способность эффективно действовать в группе; 3) компьютерная грамотность; 4) умение работать с источниками информации. Опираясь на работы известных современных учёных А.В Хуторского, Н.В.Громыко, Ю.В.Громыко, О.В.Лебедева и А.Г.Асмолова, рассмотрим понятие метапредметных компетенций. Метапредметный подход предполагает такое изменение организации образования, при котором знания воспринимаются, как то, что необходимо осмыслить и применить в жизни. При таком подходе возможно сформировать у обучающегося представление о дисциплине, как о системе знаний о мире, выраженном в числах и обеспечить преемственность всех ступеней образования. Математика – это наука о фундаментальных структурах реального мира. На протяжении веков, развитие математики способствовало развитию научно-технического прогресса всего человечества. Математически образованная личность легко применит её технологии в изучении любой новой для человека проблематики.

Место тригонометрии в жизни человека

Место тригонометрии в жизни человека

Место тригонометрии в жизни человека.

Выполнила ученица 11 класса
Гамзатова Патимат А.
Руководитель: Джамалова Заира М.

Цель : связь между тригонометрией и реальной жизнью

Цель : связь между тригонометрией и реальной жизнью

Цель: связь между тригонометрией и реальной жизнью.

Задачи:
Какие понятия тригонометрии используются в реальной жизни чаще всего?
Какую роль играет тригонометрия в реальной жизни?
Определить связь тригонометрии с музыкой и архитектурой.

Гипотеза:
Большинство физических явлений природы, физиологических процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна

Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса.

Тригонометрия в физике.

Тригонометрия в астрономии. Составленные

Тригонометрия в астрономии. Составленные

Тригонометрия в астрономии.

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах.

Тригонометрия в биологии и медицине

Тригонометрия в биологии и медицине

Тригонометрия в биологии и медицине.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси,медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия в музыке.

Тригонометрия в архитектуре. Детская школа

Тригонометрия в архитектуре. Детская школа

Тригонометрия в архитектуре.

Детская школа Гауди в Барселоне (образует синусоиду)

Феликс Кандела Ресторан в Лос-Манантиалес

Мост в Сингапуре
(синусоида)

Таким образом, получив информацию о тригонометрии из различных источников, я выяснила, что данный раздел возник еще до нашей эры, что изучают его все поколения ученых,…

Таким образом, получив информацию о тригонометрии из различных источников, я выяснила, что данный раздел возник еще до нашей эры, что изучают его все поколения ученых,…

Таким образом, получив информацию о тригонометрии из различных источников, я выяснила, что данный раздел возник еще до нашей эры, что изучают его все поколения ученых, на примерах доказала, что большинство физических явлений природы, физиологических процессов, закономерностей в музыке и искусстве можно описать с помощью тригонометрии и тригонометрических функций.


Тригонометрия встречается в таких науках, как физика, биология, в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Содержимое разработки

Немного о тригонометрии в нашей жизни МКОУ СОШ№6 Учитель математики: Шевцова В.В. 2019 год.

о тригонометрии

в нашей жизни

Учитель математики: Шевцова В.В.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.

Зачатки тригонометрии обнаружены в сохранившихся документах Древнего Вавилона, где астрономия достигла значительного развития. Вавилонские ученые составили одну из первых карт звездного неба. Они умели предсказывать солнечные и лунные затмения. Некоторые сведения тригонометрического характера встречаются и в старинных памятниках других народов древности.

Зачатки тригонометрии обнаружены в

сохранившихся документах Древнего Вавилона, где астрономия достигла значительного развития. Вавилонские ученые составили одну из первых карт звездного неба. Они умели предсказывать солнечные и лунные затмения.

Некоторые сведения тригонометрического

характера встречаются и в старинных

памятниках других народов древности.

История тригонометрии как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц. Историки полагают, что тригонометрию создали древние астрономы; немного позднее её стали использовать в геодезии и архитектуре. Со временем область применения тригонометрии постоянно расширялась, и в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности

История тригонометрии как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.

Историки полагают, что тригонометрию создали древние астрономы; немного позднее её стали использовать в геодезии и архитектуре. Со временем область применения тригонометрии постоянно расширялась, и в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180—125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд.

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом

Никейским (180—125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд.

Замена хорд синусами стала главным достижением средневековой Индии . Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Замена хорд синусами стала главным достижением средневековой Индии . Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Все проблемные вопросы полностью освещены. Рассмотрены различные виды оптических иллюзий, и выяснены основные причины возникновения иллюзий. Также раскрыта суть естественных (природных) оптических иллюзий – радуги, миража, северного сияния – с помощью законов физики. Выяснено, что законы оптики описываются с помощью тригонометрических функций.

Северное сияние. Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром. Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

  • Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром. Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы

Тригонометрия в музыке

Тетраэдр семейства аккордов из четырех звуков, вид сверху.

Биология Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

  • Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.
  • К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Архитектура

Тригонометрия и тригонометрические функции повсюду! Стоит только приглядеться!

Тригонометрия и тригонометрические функции повсюду!

Стоит только приглядеться!

Спасибо за внимание.

Спасибо за внимание.


-75%

Нажмите, чтобы узнать подробности

Показано применение тригонометрии в различных сферах науки и жизни:в архитектуре, природных явлениях, таких как северное сияние, радуга, применение в медицине, а также история возникновения тригонометрии. Указаны фамилии ученых-математиков. Исследовано применение тригонометрии в конкретных сферах деятельности. Показано на слайдах данное применение с конкретными пояснениями и примерами. Пиведены примеры решения задач с практическим содержанием и подробным решением.

Тригонометрия и ее применение в различных сферах науки и жизни Епихина Е.В.

Тригонометрия и ее применение в различных сферах науки и жизни

Цели работы

Цели работы

История тригонометрии

ТРИГОНОМЕТРИЯ – (от греч. trigwnon – треугольник и metrew – измеряю) – математическая дисциплина, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Гиппарх Никейский

( 180 – 125 г. до н.э.)

  • Первая таблица синусов, высчитанная по хордам в окружности
  • «Альмагест – самая значимая тригонометрическая работа всей античности

Клавдий Птолемей (90 – 168 г н.э)

Архаджива (инд.) - половина тетивы лука

Джайб (араб.) - выпуклость, пазуха

( ок. 900 г. н.э)

  • Присоединил к линиям синусов и косинусов линии тангенсов, котангенсов, секансов и косекансов
  • Установил основные соотношения между этими линиями
  • Дал определения функциям
  • Установил формулу двойного угла

( 940 – 997 г. н.э)

Насир-эд-Дин из Туса

(1201 – 1274 г. н.э)

(783 – 850 г. н.э)

Франсуа Виет (1540 – 1603 г.)

  • Разложил функции в ряды и открыл путь для их использования в математическом анализе

Исаак Ньютон

(1643 – 1727г.)

Леонард Эйлер

(1707 – 1783 г. н.э)

Тригонометрия в искусстве cos 2 С + sin 2 С = 1 АС – расстояние от верха статуи до глаз человека, АН – высота статуи, sin С - синус угла падения взгляда. А А С Н Н С РИС. 1 РИС. 2

Тригонометрия в искусстве

cos 2 С + sin 2 С = 1

АС – расстояние от верха статуи до глаз человека,

АН – высота статуи,

sin С - синус угла падения взгляда.

Поверхности Гауди k=1, a=1

Поверхности Гауди

Детская школа Гауди в Барселоне

Детская школа Гауди в Барселоне

Страховая корпорация Swiss Re в Лондоне x = λ y = f ( λ )cos θ z = f ( λ )sin θ

Страховая корпорация Swiss Re в Лондоне

Феликс Кандела Ресторан в Лос-Манантиалесе [a d cos(t) + d d t , b d sin(t), c d t + e d t 2 ]

Феликс Кандела Ресторан в Лос-Манантиалесе

[a d cos(t) + d d t , b d sin(t), c d t + e d t 2 ]

Готическая архитектура Собор Парижской Богоматери 1163г. – середина XIV века.

Готическая архитектура

Собор Парижской Богоматери

1163г. – середина XIV века.

Тригонометрия в физике Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), называются гармоническими колебаниями . Выражение, стоящее под знаком косинуса или синуса, называется фазой колебания:

Тригонометрия в физике

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), называются гармоническими колебаниями .

Выражение, стоящее под знаком косинуса или синуса, называется фазой колебания:

Скорость – это производная от координаты по времени: Максимальная скорость колебательного движения: Скорость при гармоническом колебании: Скорость для случая с нулевой начальной фазой:

Скорость – это производная от координаты по времени:

Максимальная скорость колебательного движения:

Скорость при гармоническом колебании:

Скорость для случая с нулевой начальной фазой:


Ускорение – производная от скорости по времени: Вторая производная от координаты по времени: Максимальное ускорение: Ускорение при гармоническом колебании: Ускорение для случая с нулевой начальной фазой:

Ускорение – производная от скорости по времени:

Вторая производная от координаты по времени:

Ускорение при гармоническом колебании:

Ускорение для случая с нулевой начальной фазой:


Сравним: Выражение для смещения Выражение для ускорения и Можно записать: Часто бывает удобно записывать уравнения для колебаний в виде: период колебания , где

Выражение для смещения

Выражение для ускорения

Часто бывает удобно записывать уравнения для колебаний

Теория радуги n 1 sin α = sin β n 2 n 1 - показатель преломления первой среды n 2 - показатель преломления второй среды α -угол падения, β -угол преломления света

Теория радуги

sin α

n 1 - показатель преломления первой среды

n 2 - показатель преломления второй среды

α -угол падения, β -угол преломления света

Ка́устика — геометрическое место всех фокусов негомоцентрических пучков

Ка́устика — геометрическое место всех фокусов негомоцентрических пучков

Схема образования радуги

1. Сферическая капля

2. Внутреннее отражение

3. Первичная радуга

5. Вторичная радуга

7. Ход лучей при формировании первичной радуги

8. Ход лучей при формировании вторичной радуги

10-12. Область формирования радуги.

Северное сияние

Северное сияние

Задача № 1 Для двух шкивов, соединенных ременной передачей вычислите углы α при прямой передаче и β при перекрестной, если диаметры шкивов D=250 мм и d = 100 мм, а расстояние между центрами шкивов l=1250 мм

Для двух шкивов, соединенных ременной передачей вычислите углы α при прямой передаче и β при перекрестной, если диаметры шкивов D=250 мм и d = 100 мм, а расстояние между центрами шкивов l=1250 мм

Читайте также: