Строение хромосомы кариотип реферат

Обновлено: 02.07.2024

Хромосомы - наиболее важные компоненты ядра. Они играют ведущую роль в явлениях наследственности. Хромосомы хорошо видны под микроскопом в момент деления клетки. Хромосомы ядра неделящейся клетки не видны, поскольку они деконденсации хромосом, тем активнее протекают метаболические процессы в самом ядре. Морфологические хромосомы растений чаще всего имеют нитевидную или палочкообразную форму. Большинство хромосом разделено первичной перетяжкой на два плеча. Под микроскопом первичная перетяжка представлена светлой (неокрашенной) зоной, получившее название центромеры, которые играют основную роль в перемещении хромосом строго определении ядра. Центромера занимает на каждой из хромосом строго определенного место. По положению центромеры хромосомы делят на метацентрические (приблизительно равноплечие), субметацентрические (неравноплечие) и акроцентрические (головчатые), у которых центромера сдвинута к одному из концов. У некоторых хромосом имеется и вторичная перетяжка. Она, как правило, располагается у дистального конца хромосомы и отделяет небольшой ее участок, носящий название спутника. Вторичная перетяжка не участвует в движении хромосом при деление ядра. Она получила название ядрышкового организатора, поскольку в месте ее локализация происходит образование ядрышка. Концевые участки хромосомы называют теломерными. Они препятствуют ее соединению с другими хромосомами.

Формы хромосом на стадии метафазы (схема):

1,5 - равноплечие; 2,3 - неравноплечие; 4 – головчатые

Каждому из населяющих нашу планету видов растений и животных свойственно строгое число хромосом, обозначаемое 2n (диплоидный набор). В половых клетках число хромосом в два раза меньше и равно n (гаплоидный набор). В соматических клетках организма каждая хромосома имеет пара, идентичную как морфологически, так и генетически (гомологичные хромосомы). Исключение из этого правила составляют половые хромосомы у гетерогаметных особей. Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа.

Графическое изображение кариотипа, показывающие его структурные особенности, называется идиограммой. В последние годы получил распространение метод дифференциального окрашивание хромосом. При этом на каждого из хромосом прокрашиваются специфические, характерные для нее полосы (бэнды), что значительно облегчает идентификацию отдельных хромосом кариотипа. Хромосомы, определяющие пол особи, называют половыми хромосомами, а все остальные - аутосомами. Внутренне строение хромосом чрезвычайно сложно. По химическому составу они на 40% состоят из ДНК и на 60% из белков, в среднем около 60% из которых приходится гистоны. Строение метафазной хромосомы при исследовании с помощью светового микроскопа представляет следующим образом. Каждая хромосома состоит из двух хроматид, спирально закрученными и располагающихся параллельно оси хромосомы. Для прокрашивающихся в интерфазном яде участков хромосом используют термин "хромонема" - красящая нить. Утолщения на хромонемах получили название хромомер. Особенность вышеописанного строения хромосом зависит от уровня меняется при переходе от интерфазного состояния хромосом к метафазному

Первый, получивший название нуклеосомного, определяет скручивание ДНК по поверхности гистоновой сердцевины. Второй - объединение нескольких нуклеосом (до 10) в бусину - называется нуклеомерный. Третий уровень - объединение скрепками из негистоновых белков фибрилл дезоксирибонуклеопротеида в петлевой домен, называемый хромомером. Четвертый - образование хромонем. Далее, по-видимому, хромонема укладывается в виде спирали в хроматиде, хотя весьма вероятно, что это еще один уровень - "петлистых структур".

2. Мейоз как цитологическая основа образования и развития половых клеток

Мейоз, или редукционное деление, - особый тип деления клеток, характерный только для спорогенных тканей. При этом число хромосом в дочерних клетках уменьшается вдвое, т.е. происходит редукция числа хромосом. Мейоз предшествует интерфаза, которая аналогична таковой при митозе. В S-период интерфазы происходит редупликация хромосом, поэтому хромосомы, вступающие в процесс мейотического деления, состоят из двух хроматид. Мейоз состоит двух ядерных делений, которое следует одно за другим. При первом делении (мейоз II) происходит редукция числа хромосом, т.е. число хромосом в клетке уменьшается в два раза. Второе деление (мейоз II) протекает по типу митоза. Как и митоз, первое и второе деление мейоз подразделяют на следующие фазы: профаза, метафаза, анафаза и телофаза. Соответственно эти фазы обозначают: метафаза I, метафаза II, анафаза I и т.д.

Мейоз I начинается с профазы I. Это наиболее продолжительная фаза мейоза, которая, в свою очередь, подразделяются на стадии лептотена, зиготена, пахитена, диплотена и диакинез.

На стадии лептотены в ядре появляются слабоспирализованные хромосомы. Постепенно они приобретают нитевидную форму.

Зиготена начинается с постепенно попарного соединения (конъюгации, синапсиса) по длине параллельно уложенных гомологичных хромосом. Соединение попарно хромосомы образуют биваленты. В связи с тем, что перед началом мейоза произошла редупликация хромосом, каждый бивалент состоит из четырех хроматид. Функцию синапсиса выполняет синаптонемный комплекс (СК) - белковое образование, входящие в состав бивалента и имеющие вид трехслойной ленты, располагающейся между конъюгирующими хромосомами. СК формируются постепенно по принципу застежки - молнии на протяжении всей стадии зиготены. Образование бивалентов создает предпосылки для возможности обмена гомологичными участками между гомологичными хромосомами (кроссинговера), что представляет важное генетическое событие. В то же время продолжается процесс конденсации хромосом.

Пахитена - это стадия, на которой СК сформирован по всей длине хромосом (стадия стабильного синапсиса). Она характеризуется продолжающимся утолщением хромосом в результате непрерывной конденсации хроматина. На этой стадии происходит обмен гомологичным участками хроматид (кроссинговер) и, как следствие, рекомбинация сцепленных генов.

На следующей за пахитеной стадии, получившей название диплотены, продолжается конденсация хромосом, но при этом начинается процесс расхождение гомологичных хромосом, которые удерживаются в точках обмена участками, возникшими при кроссинговере. Они получили название хиазм.

Диакинез - последняя стадия профазы I. Она характеризуется максимальной конденсации хромосом. Исчезает ядрышко, а биваленты располагаются по периферии ядра. При этом гомологичные хромосомы удерживаются в составе бивалентов благодаря хиазмам.

Далее следует метафаза I. Ее началу соответствует распад оболочки ядра и формирование веретена деления. Биваленты располагаются в экваториальной плоскости.

Анафаза I - стадия, на которой гомологичные хромосомы расходится к полюсам. В результате число хромосом во вновь образующейся клетке (n) будет в два раза меньше, чем в родительской (2n). В этом отличие анафаза I мейоза от анафазы митоза.

Окончательное расхождение хромосом к полюсам свидетельствует о том, что началась телофаза I.

За ней у ряда видов следует очень короткий интеркинез, во время которого синтез ДНК и репликация хромосом не происходят, и начинается второе деление мейоза (мейоз II). В этом случае хромосомы не деконденсируются. Однако у некоторых видов растений интерфаза между первым и вторым делением мейоза продолжается довольно долго. В этом случае хромосомы деконденсируются, образуя два вида ядра, разделенные клеточной перегородкой. Второе деление мейоза протекает довольно быстро по типу обычного митоза, но уже в клетках с гаплоидным числом хромосом. В тех случаях, когда интерфаза короткая, профаза II выпадает и второе деление начинается с метафазы II, во время которой происходит образование веретена деления и хромосомы располагаются в экваториальной плоскости. В анафазе II центромеры делятся и начинается расхождение хроматид к полюсам, которое заканчивается на стадии телофазы II. На этой стадии происходит полная деконденсация хроматина, образуются ядра и клеточные перегородки. В конечном итоге в результате мейоза образуется 4 клетки, каждая из которых содержит в ядре гаплоидное (n) число хромосом.

3. Сцепленное с полом наследование

В опытах Менделя и других исследователей по изучению закономерностей наследования было установлено, что ход наследования многих признаков не зависит от того, материнским или отцовским организмом вносит тот или другой аллель, т.е. реципрокные скрещивания дают одинаковый результат.

Однако при анализе наследования ряда признаков у раздельнополых организмов оказалось, что некоторые из них передаются своеобразно и явно зависит от пола.

В этих случаях реципрокные скрещивания давали разные результаты. Было высказано предложение о том, что определяющие такие признаки гены находится в половых хромосомах, в то время как гены, определяющие признаки, наследующиеся в соответствии с классическими схемами, локализованы в хромосомы, одинаковых у обоих полов, т.е. в аутосомах.

Этот вывод и его доказательство были получены еще в 1909г.Т. Морганом с сотрудниками. Изучая наследование признаков, он установил у дрозофилы наличие связи определенных генов с половыми хромосомами и таким образом заложил фундамент хромосомной теории наследственности. Кроме генов, определяющих пол, половые хромосомы содержат гены, влияющие на разные признаки, не имеющие отношения к дифференциации пола. При передачи таких генов и наблюдается явление так называемого наследования, сцепленного с полом.

В своих первых опытах Морган использовал мутацию белых глаз. Дикие дрозофилы имеют красные глаза. Красный цвет глаз W доминирует над белыми w (white).

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 глаза у всех мух красные, а в F2 происходило расщепление в равном соотношении на красноглазых и белоглазых мух только среди самцов, а все самки F2 были красноглазые. Соотношение по полу было 1: 1:

P ♀ красноглазая х ♂ белоглазый

F1 ♀ красноглазые, ♂ красноглазые

F2 ♀ красноглазые, Ѕ ♂ красноглазые и Ѕ ♂ белоглазые

В реципрокном скрещивание результаты отличались тем, что уже в F1 надобилось расщепление по цвету глаз, причем все самки были красноглазыми, т.е. похоже на отцов, а все самцы - белоглазыми, т.е. похоже на матерей. Такое наследование называют крисс - кросс, или крест - накрест. В F2 и среди самок, и среди самцов половина особей имела красные глаза, половина - белые:

P ♀ белоглазая х ♂ красноглазый

F1 ♀ красноглазые, ♂ белоглазые

F2 Ѕ ♀ красноглазые и Ѕ ♀ белоглазые

Ѕ ♂ красноглазый и Ѕ ♂ белоглазые

Такое расщепление становится понятным, если допустить, что гены, определяющие окраску глаз, находится в X-хромосоме, а в Y-хромосоме их нет.

В первом случае скрещивание гомозиготной красноглазой самки WW с белоглазым самцом wY приводит к образованию красноглазых гетерозиготных по генам окраски самок (Ww) и красноглазых самцов (WY). В F1 самки образуют два типа гамет: с Х-хромосомой с геном W и с Y-хромосомой, не несущей гена окраски. В соответствии с этим в F2 все самки будут красноглазыми: Ѕ гомозиготы WW и Ѕ гетерозиготы Ww, а самцы Ѕ красноглазые WY и Ѕ белоглазые wY:

F2 ♀ WW ♀ Ww ♂ WY ♂ wY

Красноглазые Красноглазые Красноглазые Белоглазые

В реципрокном скрещивании результаты получаются другие, так как гомозиготная белоглазая самка ww образует один тип гамет - с Х-хромосомой с геном w, красноглазый самец (WY) - два типа гамет: с Х-хромосомой, несущий ген W, и Y-хромосомой, не несущей окраски. В F1 все самки Ww будут красноглазые, а самцы wY - белоглазые. В F2 появится красноглазые гетерозиготные по гену окраски самки Ww и гомозиготные белоглазые ww; Ѕ самцов получают Х-хромосомы, несущие ген красных глаз, и Ѕ - ген белых глаз wY:

F2 ♀ Ww ♀ ww ♂ WY ♂ wY

Красноглазые Белоглазые Красноглазые Белоглазые

Из результатов скрещивания следует, что самки могут быть гетерозиготными (Ww) или гомозиготными (WW, ww) по генам окраски глаз. У самцов ген окраски локализован только в Х-хромосоме. Y-хромосому называют в этом случае генетически инертной, т.е. проявляется одна доза гена. Такое состояние называют гемизиготными, т.е. WY - красноглазый самец, wY - белоглазый.

Аналогичным образом наследуется все признаки, определяемые генами, локализованными в Х-хромосомах, и у других организмов, у которых гетерогаметен мужской пол. Так, у человека около 60 генов наследуются сцеплено с Х-хромосомой, в том числе гены, обусловливающие такие заболевания, как гемофилия, цветовая слепота, мускульная дистрофия и др.

Однако установлено, что Y-хромосомы не во всех случаях генетически инертны и их функции не сводят только к роли синаптических партнеров при конъюгации с Х-хромосомы во время мейоза. Известно небольшое число примеров, когда в Y-хромосоме локализованы гены, не имеющие аллелей в Х-хромосоме. Например, у живородящей рыбки лебистуса (гуппи) один из признаков - темное пятно спиной плавнике - обусловлено геном, локализованными в Y-хромосоме, и потому передается только от отца к сыну.

Такие признаки называются голандрическими, т.е. наследуемыми исключительно по мужской линии. У человека, таким образом, наследуется локализованный в Y-хромосоме ген SPY, ответственный за развитие мужской потенции, а также гены, контролирующий размер зубов, развитие кожи перепонки между пальцами ног, волосатость мочек ушей (ихтиоз) и др.

Кроме генов, аллели которых локализованы только либо в Х-, либо в Y-хромосоме, имеются гены, общие для обеих половых хромосом. Такие гены у одного и того же вида наследуется как сцепленные то с Х-, то с Y-хромосомой и проявляются в зависимости от того, в какой из них находится доминантный аллель, а какой - рецессивный.

У разных организмов количество таких общих для Х - и Y-хромосом генов неодинаково, а следовательно, различаются и размеры гомологичных участников половых хромосом.

Специфическая часть Y-хромосомы, не имеющая гомологии с Х-хромосомой, у всех изученных организмов генетически инертна, т.е. содержит очень мало генов.

4. Транскрипция ДНК

Это-перенос генетической информации, закодированной в последовательности пар нуклеотидов, с двуцепочечной молекулы ДНК на одноцепочечную молекулу РНК. При этой матрицей для синтеза РНК служит только одна цепь ДНК, называемая смысловой.

В транскрипции, как и в других матричных процессах, различают три стадии: инициацию, элонгацию и терминацию. Фермент, осуществляющий этот процесс, называют ДНК-зависимой РНК-полимеразой или просто РНК-полимеразой; при этом полимеризация полирибонуклеотида (РНК) происходит в направлении от 5 - к 3 - концу растущей цепи.

Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфазы, до начала репликации ДНК.

В результате транскрипции наследственная информация, записанная в ДНК гена, точно транскрибируется (переписывается) в нуклеотидную последовательность мРНК. Синтез мРНК начинается с участка инициации транскрипции, называемого промотором. Промотор расположен перед геном и включает в себя около 80 пар нуклеотидов (у вирусов и бактерий этот участок соответствует примерно одному витку спирали ДНК и включает около 10 пар нуклеотидов). В нуклеотидных последовательностях промоторов часто встречаются пары АТ, поэтому их называют также ТАТА-последовательностями.

Транскрипция осуществляется с помощью ферментов РНК-полимераз. У эукариот известны три типа РНК-полимераз: I-ответственен за синтез рРНК, II-за синтез мРНК; III-за синтез тРНК и низкомолекулярной рРНК-5S РНК.

РНК-полимераза прочно связывается с промотором и разъединяет нуклеотиды комплементарных цепей. Затем этот фермент начинает двигаться вдоль гена (молекулы ДНК) и по мере разъединения цепей ведет на одну из них (смысловой) синтез мРНК, присоединяя согласно принципу комплементарности аденин к тимину, урацил к аденину, гуанин к цитозин к гуанину. Те участки ДНК, на которых полимераза образовала мРНК, вновь соединяются, а синтезируемая молекула мРНК постепенно отделяется от ДНК. Окончание синтеза мРНК определяется участком остановки транскрипции - терминатором. Нуклеотидные последовательности промотора и терминатора узнаются специальными белками, регулирующими активность РНК-полимеразы.

Перед выходом из ядра к начальной части мРНК (5-концу) присоединяется остаток метилированного гуанина, называемый "колпачком", а к концу мРНК (3-концу) - около 200 остатков адениловой кислоты. В таком виде зрелая мРНК проходит через ядерную мембрану в цитоплазму к рибосоме и соединяется с ней. Полагают, что у эукариот "колпачок" мРНК участвует в связывании её с малой субъединицей рибосомы.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Конденсированные хромосомы делящейся клетки наиболее легко анализировать в метафазе или прометафазе. На этих этапах хромосомы видны под световым микроскопом как разброс; каждая хромосома состоит из двух сестринских хроматид, хотя в большинстве случаев при подготовке хромосомных препаратов две хроматиды прилежат друг к другу настолько плотно, что их редко можно выделить как отдельные объекты.

Большинство хромосом можно различить не только по их длине, но и по позиции центромеры. Центромера выглядит как первичная перетяжка или сужение в хроматидах из-за наличия кинетохора. Эта хорошо определяемая точка делит хромосому на два плеча: короткое, обозначаемое буквой р (от французского petit — малый) и длинное, обозначаемое буквой q. В настоящее время все 24 хромосомы (22 аутосомы, X и Y) могут быть индивидуально идентифицированы с помощью целого ряда широко доступных цитогенетических и молекулярных методов.

Рисунок показывает клетку в стадии прометафазы, в которой хромосомы окрашены методом Гимзы (G-окраска), наиболее широко используемом в клинических цитогенетических лабораториях. Хромосомы сначала обрабатывают трипсином для частичного разрушения хромосомных белков, а затем окрашивают красителем Гимзы. Каждая пара хромосом имеет свою характерную окраску в виде чередования светлых и темных полос, что приблизительно согласуется с характеристиками последовательности оснований ДНК (т.е. соотношением пар AT и ГЦ) и распределением повторяющихся участков ДНК.
Применяя G-окраску и другие методы, можно различить все хромосомы. Таким образом, можно легко определить природу любых структурных или числовых аномалий хромосом.

кариотип человека

В отличие от хромосом, которые можно увидеть на окрашенных препаратах под микроскопом или на фотографии, хромосомы живых клеток — жидкие динамические структуры. В ходе митоза, например, хроматин каждой интерфазной хромосомы в значительной степени конденсируется. В профазе, когда хромосомы становятся видимыми под световым микроскопом, хромосома 1 (содержит около 250 млн пар оснований) упаковывается до размера около 50 мкм. При максимальной степени конденсации в метафазе ДНК в хромосомах сжимается почти до 1/10 000 своего полностью распакованного состояния.

При дифференциальных окрасках во всех хромосомах можно различить до 1000 и более отдельных полос. Следовательно, каждая такая полоса содержит до 50 или больше генов, хотя плотность генов в геноме, как уже упоминалось, различается. После метафазы, по мере того как клетки завершают митоз, хромосомы деконденсируются и возвращаются в обычное состояние хроматина в интерфазном ядре, готовом начинать цикл снова.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021


Хромосомы: строение, функции. Число хромосом

Раздел ЕГЭ: 2.7. Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Клетка — генетическая единица живого

Клетка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов и вироидов — форм жизни, не имеющих клеточного строения). Обладает собственным обменом веществ, способна к самовоспроизведению.

Содержимое клетки отделено от окружающей среды плазматической мембраной. Внутри клетка заполнена цитоплазмой, в которой расположены различные органеллы и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждая из органелл клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.


Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Хромосомы

Хромосомы— нуклеопротеидные структуры клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митоза или мейоза. Набор всех хромосом клетки, называемый кариотипом.

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит группу множества генов. Комплекс белков, связанных с ДНК, образует хроматин. Хроматин — нуклеопротеид, составляющий основу хромосом, находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

строение хромосомы

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид, удерживаемых центромерой в области первичной перетяжки.

Под микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение светлых и темных полос (чередование АТ и ГЦ — пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например, у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчетам, у человека около 120 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Число хромосом и их видовое постоянство

Каждый вид растений и животных в норме имеет строго определенное и постоянное число хромосом, которые могут различаться по размерам и форме. Поэтому можно сказать, что число хромосом и их морфологические особенности являются характерным признаком для данного вида. Эта особенность известна как видовое постоянство числа хромосом.

Число хромосом в одной клетке у разных видов: горилла – 48, макака – 42, кошка – 38, собака – 78, корова – 120, ёж -96, горох – 14, береза – 84, лук – 16, пшеница – 42. Наименьшее число у муравья – 2, наибольшее у одного из видов папоротника – 1260 хромосом на клетку.

В кариотипе человека 46 хромосом — 22 пары аутосом и одна пара половых хромосом. Мужчины гетерогаметны (половые хромосомы XY), а женщины гомогаметны (половые хромосомы XX). Y-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Например, в Y-хромосоме нет аллеля свертываемости крови. В результате гемофилией болеют, как правило, только мальчики.


Хромосомы одной пары называются гомологичными. Гомологичные хромосомы в одинаковых локусах (местах расположения) несут аллельные гены (гены, отвечающие за один признак).

Хромосомная теория наследственности

Хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866—1945):

  1. ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.
  2. аллельные гены расположены в строго определенных местах (локусах) гомологических хромосом.
  3. гены располагаются в хромосомах линейно, т. е. друг за другом.
  4. в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т.е. может происходить кроссинговер. Гены одной хромосомы не наследуются сцепленно.

Явление кроссинговера помогло ученым установить расположение каждого гена в хромосоме, создать генетические карты хромосом (хромосомные карты). Вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме.

К настоящему времени при помощи подсчета кроссинговеров и других, более современных методов построены генетические карты хромосом многих видов живых существ; гороха, томата, дрозофилы, мыши. Кроме того, успешно продолжается работа по составлению генетических карт хромосом человека, что может помочь в борьбе с различными неизлечимыми пока болезнями.


1_1.tif
1_2.tif

Рис. 1. Мужской кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

Как указано выше, кариотип человека состоит из 46 хромосом, которые нумеруются от 1 до 22 (аутосомы) и делятся на 7 групп, – A, B, C, D, E, F, G и половые хромосомы (гоносомы) X и Y (рис. 1 и 2).

К первой группе А относятся хромосомы 1, 2 и 3, которые хорошо отличаются друг от друга. Хромосома 1 (размер – 11 мкм) – метацентрическая, содержит вторичную перетяжку в околоцентромерном участке длинного плеча. Хромосома 2 (10,8 мкм) по размерам почти равна хромосоме 1 и является субметацентрической. Хромосома 3 (размер – 8,3 мкм) – практически метацентрическая.

2_1.tif
2_2.tif

Рис. 2. Женский кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

К группе В относятся хромосомы 4 и 5 (размер – 7,7 мкм каждая) – это крупные субметацентрические хромосомы, которые не отличаются друг от друга при рутинном окрашивании ни размером, ни положением центромер.

К группе С относятся хромосомы с 6 по 12 и Х. В основном, это субметацентрические хромосомы крупных и средних размеров. Наиболее крупные хромосомы из группы С – 6, 7 и Х (6,8–7,2 мкм). Хромосома Х является половой хромосомой (гоносомой). Хромосома 7 более метацентрична, чем хромосома 6. Хромосомы 8 и 9 – практически одинаковы по размеру (5,8 мкм). Хромосома 8 метацентричнее хромосомы 9, которая характеризуется регулярной вторичной перетяжкой в прицентромерном районе длинного плеча.

К группе D относятся хромосомы 13, 14 и 15 (4,2 мкм) – средних размеров акроцентрические хромосомы с почти терминальным расположением центромеры. Эти хромосомы между собой не различаются ни по размерам, ни морфологически после рутинного окрашивания. Короткое плечо всех трёх пар хромосом может формировать спутники (рис. 1, 2 и 5).

К группе Е относятся хромосомы 16, 17 и 18. Хромосома 16 (размер – 3,6 мкм) – сравнительно небольшая метацентрическая хромосома, содержащая вторичную перетяжку в длинном плече. Хромосома 17 (размер – 3,5 мкм) – сравнительно короткая субметацентрическая хромосома. Хромосома 18 (размер – 3,2 мкм) – самая короткая субметацентрическая хромосома.

Группа F представлена хромосомами 19 и 20 (размеры – 2,9 мкм). Это короткие метацентрические хромосомы, которые не отличаются между собой без дифференциального окрашивания по длине.

Хромосомы 21 и 22 (2,8 мкм) относятся к группе G. Это наиболее короткие акроцентрические хромосомы в кариотипе, которые обладают способностью формировать спутники на коротком плече (рис. 1, 2 и 5).

Хромосома Y (2,3 мкм) является маленькой акроцентрической хромосомой, сравнимой по размерам с хромосомами 21 и 22, но не имеющая спутников.

Следует отметить, что хромосомные синдромы и аномалии связаны с хромосомными (геномными) мутациями (аномалиями) в виде различных структурных перестроек хромосом или с изменением их числа (n). Численные изменения хромосом могут быть двух типов: полиплоидии – умножение хромосомного набора (3n, 4n и т. д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом, некратное гаплоидному. Структурные хромосомные (геномные) перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). Подробная информация по возможным аномалиям хромосом человека представлена в главе 3.5.

Читайте также: