Стекло в архитектуре реферат

Обновлено: 05.07.2024

Сырьем для производства обычного стекла служит главным образом оксид кремния (71-73%), или, иначе говоря, обычный песок. В качестве флюссирующих (понижающих температуру плавления) материалов используется двуоксид натрия, то есть сода (13-16%), и оксид калия (5-10%). Карбонат кальция придает веществу твердость (если не включить этот компонент, то получится жидкое силикатное стекло). Оксиды магния и алюминия выполняют стабилизирующую функцию, повышая прочность стекла. Другие добавки обеспечивают материалу специфические технологические, эксплуатационные, физико-механические и декоративные свойства.

Чтобы получить идеально ровное стеклянное полотно, нужно было вытянуть ленту на поверхность жидкости. Забавно, что решение этой задачи оказалось мистическим образом зашифровано в русском грамматическом правиле, объединившем в одном исключении три слова: стеклянный, оловянный, деревянный. С деревом разобрались еще средневековые мастера, которые заменили соду поташем (древесной золой), покончив тем самым с импортом соды из стран Востока и улучшив некоторые свойства стеклянных изделий (цвет, тугоплавкость).

Александр Скворцов, специалист группы спецпроектов и ключевых клиентов компании Glaverbel Russia

Как известно, окна представляют собой своеобразные бреши в тепловом контуре здания. И дело не только в низком сопротивлении теплопередачи стеклянного заполнения оконных проемов. В ходе научных исследований доказано, что основной объем теплопотерь происходит за счет радиационной (излучательной) составляющей тепловой энергии, направленной во внешнюю среду. Следовательно, чтобы сократить утечку тепла, необходимо обеспечить отражение инфракрасного излучения внутрь здания.

Справедливости ради отметим, что задача эффективного теплоснабжения не решается только за счет термических достоинств стеклянного заполнения. Улучшить теплотехнику окна или другого светопрозрачного элемента позволяют прогрессивные технологии и современные материалы, обеспечивающие конструкции такие качества, как герметичность и геометрическая стабильность, а также продолжительный срок безремонтной службы. В наши дни при необходимости создаются оконные системы, сопротиаление теплопередачи которых превышает 2,0 кв. м С/Вт, то есть по теплотехническим характеристикам близкие к стеновой ограждающей конструкции ( для московского региона приведенное сопротивление теплопередачи наружной стены должно быть не менее 3,0-3,2 кв. м С/Вт).

Поглощать или отражать.

Решение задачи теплосбережения обострило другую проблему – перегрев внутреннего пространства зданий и солнечную погоду. Внешнее тепло, проникнув в здание, не может вернуться обратно: путь ему преграждает низкоэмиссионное покрытие. Это приводит к возникновению парникового эффекта и повышению температуры в помещениях до 60-80˚С.

Ослабить воздействие солнца можно посредством поглощения или отражения. В первом случае применяются специальные виды окрашенных в массе стекол: Arctic BlueTM (Pilkington), Planibel Coloured (Glaverbel), Parsol (Saint-Gobian Glass). Тонирование достигается за счет добавления в расплав оксидов металлов. При этом конечный продукт приобретает не только цвет (насыщенный голубой, серый, зеленый, бронзовый, розовый), но и особые энергетические и оптические качества. Окрашенное в массе остекление частично поглощает радиационное тепло, снижая тем самым интенсивность воздействия солнечного излучения. В зависимости от толщины листа и цвета тонированное стекло поглощает от 23 до 51% тепловой энергии. На теплопоглощающем стекле почти не образуется бликов, что благотворно сказывается на визуальной экологии городской среды. Тонированная продукция (Arctic BlueTM) также характеризуется низким уровнем пропускания ультрафиолетового излучения.

Добавим, что эффект поглощения тепла используется в солнечных коллекторах, изготовленных на базе специальных стекол. Такие изделия являются продуктом нанотехнологий. На поверхность стекла наносится тончайшая пленка кремниевых наночастиц, которая в сочетании с кремовой основой (т.е. со стеклом) образует нанокремниевый фотоэлектрический элемент. Благодаря последнему поглощаемое солнечное излучение преобразуется в электричество. Тонированное остекление далеко не всегда устраивает архитекторов и дизайнеров. В современной архитектуре сильны тенденции, ориентированные на стирание границ между внутренним пространством и окружающей средой. Для достижения визуальной интеграции интерьеров и внешнего мира используются нейтральные стекла со светоотражающим напылением либо абсолютно бесцветные стекла, обладающие повышенным коэффициентом светопропускания: Pilkington Optiwhiteтм, Eurowhite (Euroglas, Германия) – с пониженным содержанием оксида железа, который придает нейтральному стеклу легкий зеленоватый оттенок.

Следует упомянуть и о рефлективных стеклах: Reflectasol, Cool-Lite (Saint-Gobain) и других. На их поверхность нанесен особый зеркальный слой, не только превосходно отражающий солнечное излучение, но и обладающий впечатляющим визуальным эффектом. При этом обеспечивается одностороннее наблюдение, т.е. изнутри нет ограничения видимости, а снаружи стекло практически не проницаемо для взгляда прохожих. Такое стекло ограждает внутреннюю жизнь здания от постороннего взгляда в условиях тесной городской застройки.

Все большую популярность приобретают антибликовые стекла, т.е. продукция, полностью лишенная отражающего эффекта. До недавнего времени такие изделия были востребованы лишь в музейном деле, в художественных салонах и галереях. Однако в наши дни остро встал вопрос визуальной экологии городской среды, а также обеспечения транспортной безопасности. Выяснилось, что зеркальные фасады оказывают негативное влияние на физиологию человека. Кроме того, отражение света фар может ослепить водителя, особенно если мощный световой поток возникает внезапно, из-за угла. Чтобы исключить возникновение аварий, Государственная инспекция по обеспечению безопасности дорожного движения предписывает использовать для остекления первых этажей стекла с низким уровнем отражения (не более 8 %).

Андрей Стольный, глава российского представительства компании Guardian Gllass S.A.

Идея мультифункциональных стекол заключается в том, чтобы в одном продукте объединить две характеристики: теплоизоляционную и теплозащитную. Магнетронная технология дает такую возможность. Наша компания в 1996 году разработала технологию Silacoat®, позволяющую последовательно наносить различные слои не белое прозрачное стекло. Таким образом, удается решить одновременно несколько задач и создать действительно многофункциональные стекла. Линейка продуктов Sun-Guard® Solar и High Performance включает 14 видов Solar и 10 видов HP стекол в серых, серо-голубых, синих и зеленых тонах толщиной 3-15 мм. Суть технологии заключается в чередовании функциональных и защитных слоев. Верхний и нижний слои из оксидов и нитридов влияют на зеркальность, светопропускание и цвет. Основной функциональный слой из различных металлов (серебро, хром) обеспечивает отражение коротковолнового и длинноволнового теплового излучения. Для защиты основных функциональных слоев от механических и химических повреждений, а также отражения и поглощения коротковолнового теплового излучения между этими слоями делается защитное напыление. Защитный слой из нитрида кремния позволяет подвергать многофункциональные стекла Guardian закаливанию по стандартной технологии: с нагревом до 600˚С и быстрым охлаждением. До последнего времени эта возможность была прерогативой компании Guardian. Наше стекло с магнетронным напылением обеспечивает более высокое светопропускание (до 67%) и гораздо более низкое пропускание тепла от солнца (солнечный фактор менее 41%). За таким стеклом комфортнее находиться, потому что оно более прозрачное, более светлое, но при этом защищает помещение от перегрева летом. И самое главное – покрытия нанесены на полупросветленное стекло. Что гарантирует естественность освещения.


[

Сырьем для производства обычного стекла служит главным образом оксид кремния (71-73%), или, иначе говоря, обычный песок. В качестве флюссирующих (понижающих температуру плавления) материалов используется двуоксид натрия, то есть сода (13-16%), и оксид калия (5-10%). Карбонат кальция придает веществу твердость (если не включить этот компонент, то получится жидкое силикатное стекло). Оксиды магния и алюминия выполняют стабилизирующую функцию, повышая прочность стекла. Другие добавки обеспечивают материалу специфические технологические, эксплуатационные, физико-механические и декоративные свойства.

Чтобы получить идеально ровное стеклянное полотно, нужно было вытянуть ленту на поверхность жидкости. Забавно, что решение этой задачи оказалось мистическим образом зашифровано в русском грамматическом правиле, объединившем в одном исключении три слова: стеклянный, оловянный, деревянный. С деревом разобрались еще средневековые мастера, которые заменили соду поташем (древесной золой), покончив тем самым с импортом соды из стран Востока и улучшив некоторые свойства стеклянных изделий (цвет, тугоплавкость).

Александр Скворцов, специалист группы спецпроектов и ключевых клиентов компании Glaverbel Russia

Как известно, окна представляют собой своеобразные бреши в тепловом контуре здания. И дело не только в низком сопротивлении теплопередачи стеклянного заполнения оконных проемов. В ходе научных исследований доказано, что основной объем теплопотерь происходит за счет радиационной (излучательной) составляющей тепловой энергии, направленной во внешнюю среду. Следовательно, чтобы сократить утечку тепла, необходимо обеспечить отражение инфракрасного излучения внутрь здания.

Справедливости ради отметим, что задача эффективного теплоснабжения не решается только за счет термических достоинств стеклянного заполнения. Улучшить теплотехнику окна или другого светопрозрачного элемента позволяют прогрессивные технологии и современные материалы, обеспечивающие конструкции такие качества, как герметичность и геометрическая стабильность, а также продолжительный срок безремонтной службы. В наши дни при необходимости создаются оконные системы, сопротиаление теплопередачи которых превышает 2,0 кв. м С/Вт, то есть по теплотехническим характеристикам близкие к стеновой ограждающей конструкции ( для московского региона приведенное сопротивление теплопередачи наружной стены должно быть не менее 3,0-3,2 кв. м С/Вт).

Поглощать или отражать.

Решение задачи теплосбережения обострило другую проблему – перегрев внутреннего пространства зданий и солнечную погоду. Внешнее тепло, проникнув в здание, не может вернуться обратно: путь ему преграждает низкоэмиссионное покрытие. Это приводит к возникновению парникового эффекта и повышению температуры в помещениях до 60-80˚С.

Ослабить воздействие солнца можно посредством поглощения или отражения. В первом случае применяются специальные виды окрашенных в массе стекол: Arctic BlueTM (Pilkington), Planibel Coloured (Glaverbel), Parsol (Saint-Gobian Glass). Тонирование достигается за счет добавления в расплав оксидов металлов. При этом конечный продукт приобретает не только цвет (насыщенный голубой, серый, зеленый, бронзовый, розовый), но и особые энергетические и оптические качества. Окрашенное в массе остекление частично поглощает радиационное тепло, снижая тем самым интенсивность воздействия солнечного излучения. В зависимости от толщины листа и цвета тонированное стекло поглощает от 23 до 51% тепловой энергии. На теплопоглощающем стекле почти не образуется бликов, что благотворно сказывается на визуальной экологии городской среды. Тонированная продукция (Arctic BlueTM) также характеризуется низким уровнем пропускания ультрафиолетового излучения.

Добавим, что эффект поглощения тепла используется в солнечных коллекторах, изготовленных на базе специальных стекол. Такие изделия являются продуктом нанотехнологий. На поверхность стекла наносится тончайшая пленка кремниевых наночастиц, которая в сочетании с кремовой основой (т.е. со стеклом) образует нанокремниевый фотоэлектрический элемент. Благодаря последнему поглощаемое солнечное излучение преобразуется в электричество. Тонированное остекление далеко не всегда устраивает архитекторов и дизайнеров. В современной архитектуре сильны тенденции, ориентированные на стирание границ между внутренним пространством и окружающей средой. Для достижения визуальной интеграции интерьеров и внешнего мира используются нейтральные стекла со светоотражающим напылением либо абсолютно бесцветные стекла, обладающие повышенным коэффициентом светопропускания: Pilkington Optiwhiteтм, Eurowhite (Euroglas, Германия) – с пониженным содержанием оксида железа, который придает нейтральному стеклу легкий зеленоватый оттенок.

Следует упомянуть и о рефлективных стеклах: Reflectasol, Cool-Lite (Saint-Gobain) и других. На их поверхность нанесен особый зеркальный слой, не только превосходно отражающий солнечное излучение, но и обладающий впечатляющим визуальным эффектом. При этом обеспечивается одностороннее наблюдение, т.е. изнутри нет ограничения видимости, а снаружи стекло практически не проницаемо для взгляда прохожих. Такое стекло ограждает внутреннюю жизнь здания от постороннего взгляда в условиях тесной городской застройки.

Все большую популярность приобретают антибликовые стекла, т.е. продукция, полностью лишенная отражающего эффекта. До недавнего времени такие изделия были востребованы лишь в музейном деле, в художественных салонах и галереях. Однако в наши дни остро встал вопрос визуальной экологии городской среды, а также обеспечения транспортной безопасности. Выяснилось, что зеркальные фасады оказывают негативное влияние на физиологию человека. Кроме того, отражение света фар может ослепить водителя, особенно если мощный световой поток возникает внезапно, из-за угла. Чтобы исключить возникновение аварий, Государственная инспекция по обеспечению безопасности дорожного движения предписывает использовать для остекления первых этажей стекла с низким уровнем отражения (не более 8 %).

Андрей Стольный, глава российского представительства компании Guardian Gllass S.A.

Идея мультифункциональных стекол заключается в том, чтобы в одном продукте объединить две характеристики: теплоизоляционную и теплозащитную. Магнетронная технология дает такую возможность. Наша компания в 1996 году разработала технологию Silacoat®, позволяющую последовательно наносить различные слои не белое прозрачное стекло. Таким образом, удается решить одновременно несколько задач и создать действительно многофункциональные стекла. Линейка продуктов Sun-Guard® Solar и High Performance включает 14 видов Solar и 10 видов HP стекол в серых, серо-голубых, синих и зеленых тонах толщиной 3-15 мм. Суть технологии заключается в чередовании функциональных и защитных слоев. Верхний и нижний слои из оксидов и нитридов влияют на зеркальность, светопропускание и цвет. Основной функциональный слой из различных металлов (серебро, хром) обеспечивает отражение коротковолнового и длинноволнового теплового излучения. Для защиты основных функциональных слоев от механических и химических повреждений, а также отражения и поглощения коротковолнового теплового излучения между этими слоями делается защитное напыление. Защитный слой из нитрида кремния позволяет подвергать многофункциональные стекла Guardian закаливанию по стандартной технологии: с нагревом до 600˚С и быстрым охлаждением. До последнего времени эта возможность была прерогативой компании Guardian. Наше стекло с магнетронным напылением обеспечивает более высокое светопропускание (до 67%) и гораздо более низкое пропускание тепла от солнца (солнечный фактор менее 41%). За таким стеклом комфортнее находиться, потому что оно более прозрачное, более светлое, но при этом защищает помещение от перегрева летом. И самое главное – покрытия нанесены на полупросветленное стекло. Что гарантирует естественность освещения.


[

Объемы производства стекла на мировом рынке.

Без угрозы для здоровья.

Стекло считается едва ли не эталоном хрупкости. При разрушении стеклянного полотна образуются крупные и очень опасные осколки. Высокой хрупкость стекло обязано своему самому твердому компоненту – оксиду кремния, который не способен воспринимать пластическую деформацию изгиба. Попытки повысить ударную прочность стеклянных изделий предпринимались с древности. Так, методом проб и ошибок было обнаружено, что некоторого упрочнения стекла можно достичь благодаря введению в состав шихты специальных компонентов, в частности оксида магния.

В начале прошлого века стекольщики взяли на вооружение металлургический опыт. Был разработан метод термического предварительного напряжения (аналог закалки металла), который используется и в наши дни. Для повышения прочностных характеристик стекло помещают в печь, нагревают до температуры около 600˚С и затем быстро охлаждают. В результате внутренние растянутые слои стеклянного полотна оказываются заключенными в сжатой наружной оболочке. Позднее выяснилось, что такого же эффекта можно достичь и химическим способом. Верхние слои стекла подвергаются сжатию за счет ионного обмена. В процессе закаливания (термического или химического) оптические и другие показатели стеклянных изделий остаются в норме.

Термическая и ударная прочность закаленного стекла соответственно в три и шесть раз выше, чем у обычного стекла. При разрушении упрочненные листы рассыпаются на мелкие и вполне безобидные кусочки.

Подчеркнем, что тонированные стекла, характеризующиеся высоким коэффициентом поглощения солнечного света (более 25%), нуждаются в упрочнении посредством закалки. В процессе эксплуатации окрашенное остекление подвергается неравномерному нагреву, что приводит к возникновению значительных внутренних напряжений и, как следствие, разрушению стекла.

Вместе с тем закаленному стеклу присущ один существенный недостаток – табу на механическую обработку. Его нельзя резать, сверлить, шлифовать (эти операции следует производить до закалки стекла). Еще один минус – спонтанное саморазрушение, которое происходит по вине остаточных напряжений.

Важно, чтобы разбитое стекло не разлеталось во все стороны, а удерживалось некой стабильной основой. С этой задачей хорошо справляются стекла, упрочненные стальной сеткой. К тому же такая продукция обладает повышенной огнестойкостью. Однако применение армированных стекол ограниченно, прежде всего, из-за низких оптических свойств.

В 1910 году был изобретен способ производства многослойного высокопрочного стекла, которое даже назвали пуленепробиваемым. Продукт представлял собой композитный материал, в котором между стеклами (двумя и более) помещалась целлулоидная пленка. Подобное стекло получило широкое применение в авиационной и автомобильной промышленности, особенно в их военных отраслях.

Вячеслав Коломиец, генеральный директор компании TGE

Философская идея изменения характеристик остекления в зависимости от окружающей среды стара, как стекольный мир. В наши дни выпускается множество специальных стекол: тонированные, солнцеотражающие, низкоэмиссионные и так далее. Однако все они обладают заданными при производстве абсолютно статичными свойствами. Между тем условия внутри и снаружи здания постоянно меняются. Скажем, естественное освещение зависит от времени суток, сезона, погоды. Обитателям застекольного пространства подчас требуется приватная и комфортная атмосфера.

Наша компания предлагает электрохромные стекла, прозрачность которых можно регулировать одним нажатием кнопки переносного пульта. Под воздействием электрического ток (напряжение 2 В) активная полимерная прослойка триплекса приобретает насыщенную окраску. При отключении электричества полимерная композиция возвращается в исходное прозрачное состояние. Наша технология позволяет производить электрохромное стекло различного цвета (синее, бронзовое, серое).

Продукт официально признан в России и в мире (имеет российский и международный патенты). Технология полностью подготовлена для внедрения в промышленное производство. На нашем опытном предприятии пока выпускается несколько сотен квадратных метров стекла в месяц (различных оттенков синего цвета). Вопрос дальнейшего наращивания объемов производства находится на стадии проработки.

Пожароустойчивые стекла последнего поколения Pyrobel (Glaverbel), Pilkington Pyrodurтм, Pilkington Pyrostopтм, Fireswiss (Euroglas) имеют многослойную структуру. Зазоры между стеклами заполнены особым гелиевым составом. При критическом повышении температуры промежуточные слои расширяются и переходят в твердое, пористое состояние. В результате элемент остекления превращается в жесткую не прозрачную огнезащитную конструкцию.

Виктор Франк, руководитель отдела продаж огнестойких стекол компании Pilkington

Огнестойкость – способность изделия, конструкции или элемента сооружения препятствовать распространению огня, обеспечивая при пожаре безопасность путей эвакуации. Огнестойкость раздельной конструкции как комплексной системы, состоящей из стекла и профильных элементов, обеспечивается соответствием этих элементов, а также способов крепления стекла и конструкции в целом.

Существует два типа разделительных конструкций: E и EI(W). От стеклянных конструкций класса E требуется герметичность по отношению к пламени и горячим газам в течение определенного времени. Для класса E не установлены ограничения роста температуры поверхности стекла на противоположной по отношению к огню стороне. Стекло пропускает тепловое излучение (жар). Поэтому при использовании конструкций класса E необходимо обращать внимание на то, чтобы эвакуационные проходы и легковоспламеняющиеся материалы находились на достаточном расстоянии от стекла.

От разделительных стеклянных конструкций класса EI требуется герметичность (E) по отношению к пламени и горячим газам, а также способность в значительной степени препятствовать (I) прохождению теплового излучения на противоположную по отношению к огню сторону в течение установленного времени. Максимальный разрешенный подъем температуры не может превышать 3,5 кВт/кв.м. Огнестойкие стекла класса EI предотвращают нагрев и вызываемое им воспламенение материалов, находящихся в непосредственной близости к стеклу, и гарантируют людям безопасность вблизи стекла при выходе из здания. Наиболее типичными местами, где применяются стекла класса EI, служат остекления лестниц эвакуационных проходов.

Стеклянный дом: миф или реальность?

Какие метаморфозы ожидают стекло в будущем?

Очевидно, что материал постепенно приобретает конструкционный статус. Давно перестали быть диковинкой стеклянные полы, лестницы, демонстрационные площадки. В новом здании аэропорта в Риге светопрозрачная крыша опирается на стеклянные несущие балки. Комбинируя стекла разного типа и разной толщины, можно создавать небывалые строительные конструкции. В развитии стекла все явственнее проявляют себя нанотехнологии, позволяющие придать ему специфические эксплуатационные и технические характеристики, а также экстраординарные эстетические качества. Известно, что стекло – аморфный материал, не имеющий жесткой кристаллической решетки. Молекулы оксида кремния расположены в случайном порядке, а соединения натрия и калия объединены в комплексы. Один из способов упрочнения стекла – изменение структуры за счет введения высокопрочных синтетических фибр (нанотрубок), способных создать стабильные связи между элементами.

Производство стекла в древности. Поиск совершенной технологии. Изобретение "флоат" ("плавающего") стекла. Перспективы развития стекольной индустрии. Прозрачная "стена". Производство стекла пиролитическим методом. Решение задачи эффективного теплоснабжения

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 10.07.2008
Размер файла 74,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Институт Архитектуры и Искусства ЮФУ

Сырьем для производства обычного стекла служит главным образом оксид кремния (71-73%), или, иначе говоря, обычный песок. В качестве флюссирующих (понижающих температуру плавления) материалов используется двуоксид натрия, то есть сода (13-16%), и оксид калия (5-10%). Карбонат кальция придает веществу твердость (если не включить этот компонент, то получится жидкое силикатное стекло). Оксиды магния и алюминия выполняют стабилизирующую функцию, повышая прочность стекла. Другие добавки обеспечивают материалу специфические технологические, эксплуатационные, физико-механические и декоративные свойства.

Чтобы получить идеально ровное стеклянное полотно, нужно было вытянуть ленту на поверхность жидкости. Забавно, что решение этой задачи оказалось мистическим образом зашифровано в русском грамматическом правиле, объединившем в одном исключении три слова: стеклянный, оловянный, деревянный. С деревом разобрались еще средневековые мастера, которые заменили соду поташем (древесной золой), покончив тем самым с импортом соды из стран Востока и улучшив некоторые свойства стеклянных изделий (цвет, тугоплавкость).

Александр Скворцов, специалист группы спецпроектов и ключевых клиентов компании Glaverbel Russia

Как известно, окна представляют собой своеобразные бреши в тепловом контуре здания. И дело не только в низком сопротивлении теплопередачи стеклянного заполнения оконных проемов. В ходе научных исследований доказано, что основной объем теплопотерь происходит за счет радиационной (излучательной) составляющей тепловой энергии, направленной во внешнюю среду. Следовательно, чтобы сократить утечку тепла, необходимо обеспечить отражение инфракрасного излучения внутрь здания.

Справедливости ради отметим, что задача эффективного теплоснабжения не решается только за счет термических достоинств стеклянного заполнения. Улучшить теплотехнику окна или другого светопрозрачного элемента позволяют прогрессивные технологии и современные материалы, обеспечивающие конструкции такие качества, как герметичность и геометрическая стабильность, а также продолжительный срок безремонтной службы. В наши дни при необходимости создаются оконные системы, сопротиаление теплопередачи которых превышает 2,0 кв. м С/Вт, то есть по теплотехническим характеристикам близкие к стеновой ограждающей конструкции ( для московского региона приведенное сопротивление теплопередачи наружной стены должно быть не менее 3,0-3,2 кв. м С/Вт).

Поглощать или отражать.

Решение задачи теплосбережения обострило другую проблему - перегрев внутреннего пространства зданий и солнечную погоду. Внешнее тепло, проникнув в здание, не может вернуться обратно: путь ему преграждает низкоэмиссионное покрытие. Это приводит к возникновению парникового эффекта и повышению температуры в помещениях до 60-80?С.

Ослабить воздействие солнца можно посредством поглощения или отражения. В первом случае применяются специальные виды окрашенных в массе стекол: Arctic BlueTM (Pilkington), Planibel Coloured (Glaverbel), Parsol (Saint-Gobian Glass). Тонирование достигается за счет добавления в расплав оксидов металлов. При этом конечный продукт приобретает не только цвет (насыщенный голубой, серый, зеленый, бронзовый, розовый), но и особые энергетические и оптические качества. Окрашенное в массе остекление частично поглощает радиационное тепло, снижая тем самым интенсивность воздействия солнечного излучения. В зависимости от толщины листа и цвета тонированное стекло поглощает от 23 до 51% тепловой энергии. На теплопоглощающем стекле почти не образуется бликов, что благотворно сказывается на визуальной экологии городской среды. Тонированная продукция (Arctic BlueTM) также характеризуется низким уровнем пропускания ультрафиолетового излучения.

Добавим, что эффект поглощения тепла используется в солнечных коллекторах, изготовленных на базе специальных стекол. Такие изделия являются продуктом нанотехнологий. На поверхность стекла наносится тончайшая пленка кремниевых наночастиц, которая в сочетании с кремовой основой (т.е. со стеклом) образует нанокремниевый фотоэлектрический элемент. Благодаря последнему поглощаемое солнечное излучение преобразуется в электричество. Тонированное остекление далеко не всегда устраивает архитекторов и дизайнеров. В современной архитектуре сильны тенденции, ориентированные на стирание границ между внутренним пространством и окружающей средой. Для достижения визуальной интеграции интерьеров и внешнего мира используются нейтральные стекла со светоотражающим напылением либо абсолютно бесцветные стекла, обладающие повышенным коэффициентом светопропускания: Pilkington Optiwhiteтм, Eurowhite (Euroglas, Германия) - с пониженным содержанием оксида железа, который придает нейтральному стеклу легкий зеленоватый оттенок.

Следует упомянуть и о рефлективных стеклах: Reflectasol, Cool-Lite (Saint-Gobain) и других. На их поверхность нанесен особый зеркальный слой, не только превосходно отражающий солнечное излучение, но и обладающий впечатляющим визуальным эффектом. При этом обеспечивается одностороннее наблюдение, т.е. изнутри нет ограничения видимости, а снаружи стекло практически не проницаемо для взгляда прохожих. Такое стекло ограждает внутреннюю жизнь здания от постороннего взгляда в условиях тесной городской застройки.

Все большую популярность приобретают антибликовые стекла, т.е. продукция, полностью лишенная отражающего эффекта. До недавнего времени такие изделия были востребованы лишь в музейном деле, в художественных салонах и галереях. Однако в наши дни остро встал вопрос визуальной экологии городской среды, а также обеспечения транспортной безопасности. Выяснилось, что зеркальные фасады оказывают негативное влияние на физиологию человека. Кроме того, отражение света фар может ослепить водителя, особенно если мощный световой поток возникает внезапно, из-за угла. Чтобы исключить возникновение аварий, Государственная инспекция по обеспечению безопасности дорожного движения предписывает использовать для остекления первых этажей стекла с низким уровнем отражения (не более 8 %).

Андрей Стольный, глава российского представительства компании Guardian Gllass S.A.

Идея мультифункциональных стекол заключается в том, чтобы в одном продукте объединить две характеристики: теплоизоляционную и теплозащитную. Магнетронная технология дает такую возможность. Наша компания в 1996 году разработала технологию Silacoat®, позволяющую последовательно наносить различные слои не белое прозрачное стекло. Таким образом, удается решить одновременно несколько задач и создать действительно многофункциональные стекла. Линейка продуктов Sun-Guard® Solar и High Performance включает 14 видов Solar и 10 видов HP стекол в серых, серо-голубых, синих и зеленых тонах толщиной 3-15 мм. Суть технологии заключается в чередовании функциональных и защитных слоев. Верхний и нижний слои из оксидов и нитридов влияют на зеркальность, светопропускание и цвет. Основной функциональный слой из различных металлов (серебро, хром) обеспечивает отражение коротковолнового и длинноволнового теплового излучения. Для защиты основных функциональных слоев от механических и химических повреждений, а также отражения и поглощения коротковолнового теплового излучения между этими слоями делается защитное напыление. Защитный слой из нитрида кремния позволяет подвергать многофункциональные стекла Guardian закаливанию по стандартной технологии: с нагревом до 600?С и быстрым охлаждением. До последнего времени эта возможность была прерогативой компании Guardian. Наше стекло с магнетронным напылением обеспечивает более высокое светопропускание (до 67%) и гораздо более низкое пропускание тепла от солнца (солнечный фактор менее 41%). За таким стеклом комфортнее находиться, потому что оно более прозрачное, более светлое, но при этом защищает помещение от перегрева летом. И самое главное - покрытия нанесены на полупросветленное стекло. Что гарантирует естественность освещения.

Объемы производства стекла на мировом рынке.

Без угрозы для здоровья.

Стекло считается едва ли не эталоном хрупкости. При разрушении стеклянного полотна образуются крупные и очень опасные осколки. Высокой хрупкость стекло обязано своему самому твердому компоненту - оксиду кремния, который не способен воспринимать пластическую деформацию изгиба. Попытки повысить ударную прочность стеклянных изделий предпринимались с древности. Так, методом проб и ошибок было обнаружено, что некоторого упрочнения стекла можно достичь благодаря введению в состав шихты специальных компонентов, в частности оксида магния.

В начале прошлого века стекольщики взяли на вооружение металлургический опыт. Был разработан метод термического предварительного напряжения (аналог закалки металла), который используется и в наши дни. Для повышения прочностных характеристик стекло помещают в печь, нагревают до температуры около 600?С и затем быстро охлаждают. В результате внутренние растянутые слои стеклянного полотна оказываются заключенными в сжатой наружной оболочке. Позднее выяснилось, что такого же эффекта можно достичь и химическим способом. Верхние слои стекла подвергаются сжатию за счет ионного обмена. В процессе закаливания (термического или химического) оптические и другие показатели стеклянных изделий остаются в норме.

Термическая и ударная прочность закаленного стекла соответственно в три и шесть раз выше, чем у обычного стекла. При разрушении упрочненные листы рассыпаются на мелкие и вполне безобидные кусочки.

Подчеркнем, что тонированные стекла, характеризующиеся высоким коэффициентом поглощения солнечного света (более 25%), нуждаются в упрочнении посредством закалки. В процессе эксплуатации окрашенное остекление подвергается неравномерному нагреву, что приводит к возникновению значительных внутренних напряжений и, как следствие, разрушению стекла.

Вместе с тем закаленному стеклу присущ один существенный недостаток - табу на механическую обработку. Его нельзя резать, сверлить, шлифовать (эти операции следует производить до закалки стекла). Еще один минус - спонтанное саморазрушение, которое происходит по вине остаточных напряжений.

Важно, чтобы разбитое стекло не разлеталось во все стороны, а удерживалось некой стабильной основой. С этой задачей хорошо справляются стекла, упрочненные стальной сеткой. К тому же такая продукция обладает повышенной огнестойкостью. Однако применение армированных стекол ограниченно, прежде всего, из-за низких оптических свойств.

В 1910 году был изобретен способ производства многослойного высокопрочного стекла, которое даже назвали пуленепробиваемым. Продукт представлял собой композитный материал, в котором между стеклами (двумя и более) помещалась целлулоидная пленка. Подобное стекло получило широкое применение в авиационной и автомобильной промышленности, особенно в их военных отраслях.

Вячеслав Коломиец, генеральный директор компании TGE

Философская идея изменения характеристик остекления в зависимости от окружающей среды стара, как стекольный мир. В наши дни выпускается множество специальных стекол: тонированные, солнцеотражающие, низкоэмиссионные и так далее. Однако все они обладают заданными при производстве абсолютно статичными свойствами. Между тем условия внутри и снаружи здания постоянно меняются. Скажем, естественное освещение зависит от времени суток, сезона, погоды. Обитателям застекольного пространства подчас требуется приватная и комфортная атмосфера.

Наша компания предлагает электрохромные стекла, прозрачность которых можно регулировать одним нажатием кнопки переносного пульта. Под воздействием электрического ток (напряжение 2 В) активная полимерная прослойка триплекса приобретает насыщенную окраску. При отключении электричества полимерная композиция возвращается в исходное прозрачное состояние. Наша технология позволяет производить электрохромное стекло различного цвета (синее, бронзовое, серое).

Продукт официально признан в России и в мире (имеет российский и международный патенты). Технология полностью подготовлена для внедрения в промышленное производство. На нашем опытном предприятии пока выпускается несколько сотен квадратных метров стекла в месяц (различных оттенков синего цвета). Вопрос дальнейшего наращивания объемов производства находится на стадии проработки.

Пожароустойчивые стекла последнего поколения Pyrobel (Glaverbel), Pilkington Pyrodurтм, Pilkington Pyrostopтм, Fireswiss (Euroglas) имеют многослойную структуру. Зазоры между стеклами заполнены особым гелиевым составом. При критическом повышении температуры промежуточные слои расширяются и переходят в твердое, пористое состояние. В результате элемент остекления превращается в жесткую не прозрачную огнезащитную конструкцию.

Виктор Франк, руководитель отдела продаж огнестойких стекол компании Pilkington

Огнестойкость - способность изделия, конструкции или элемента сооружения препятствовать распространению огня, обеспечивая при пожаре безопасность путей эвакуации. Огнестойкость раздельной конструкции как комплексной системы, состоящей из стекла и профильных элементов, обеспечивается соответствием этих элементов, а также способов крепления стекла и конструкции в целом.

Существует два типа разделительных конструкций: E и EI(W). От стеклянных конструкций класса E требуется герметичность по отношению к пламени и горячим газам в течение определенного времени. Для класса E не установлены ограничения роста температуры поверхности стекла на противоположной по отношению к огню стороне. Стекло пропускает тепловое излучение (жар). Поэтому при использовании конструкций класса E необходимо обращать внимание на то, чтобы эвакуационные проходы и легковоспламеняющиеся материалы находились на достаточном расстоянии от стекла.

От разделительных стеклянных конструкций класса EI требуется герметичность (E) по отношению к пламени и горячим газам, а также способность в значительной степени препятствовать (I) прохождению теплового излучения на противоположную по отношению к огню сторону в течение установленного времени. Максимальный разрешенный подъем температуры не может превышать 3,5 кВт/кв.м. Огнестойкие стекла класса EI предотвращают нагрев и вызываемое им воспламенение материалов, находящихся в непосредственной близости к стеклу, и гарантируют людям безопасность вблизи стекла при выходе из здания. Наиболее типичными местами, где применяются стекла класса EI, служат остекления лестниц эвакуационных проходов.

Стеклянный дом: миф или реальность?

Какие метаморфозы ожидают стекло в будущем?

Очевидно, что материал постепенно приобретает конструкционный статус. Давно перестали быть диковинкой стеклянные полы, лестницы, демонстрационные площадки. В новом здании аэропорта в Риге светопрозрачная крыша опирается на стеклянные несущие балки. Комбинируя стекла разного типа и разной толщины, можно создавать небывалые строительные конструкции. В развитии стекла все явственнее проявляют себя нанотехнологии, позволяющие придать ему специфические эксплуатационные и технические характеристики, а также экстраординарные эстетические качества. Известно, что стекло - аморфный материал, не имеющий жесткой кристаллической решетки. Молекулы оксида кремния расположены в случайном порядке, а соединения натрия и калия объединены в комплексы. Один из способов упрочнения стекла - изменение структуры за счет введения высокопрочных синтетических фибр (нанотрубок), способных создать стабильные связи между элементами.

Подобные документы

Этапы развития стеклоделия. Стеклообразное состояние. Физические свойства стекла. Общая классификация по химическому составу. Основы современной технологии получения стекла. Применение стекла в строительстве.

реферат [49,1 K], добавлен 20.06.2007

Характеристика особенностей использования стекла в архитектуре и дизайне. Виды стекла и основные способы его обработки: фьюзинг, шелкография, изготовление стемалита, гнутье или моллирование. Модные "стеклянные" решения в дизайне. Зонирование помещения.

реферат [591,1 K], добавлен 11.01.2012

История происхождения и технология изготовления стекла. Свойства стекла: физические, структурные, агрегатные характеристики; его достоинства и недостатки. Основные промышленные виды стекла, использование его функций в дизайнерских разработках интерьера.

реферат [45,3 K], добавлен 29.05.2009

Многоуровневая защита фасадного остекления. Степени и виды защиты безопасного стекла в зависимости от прочности, способов обработки, толщины пакетов. Повышенная механическая и термическая прочность закаленного стекла. Триплекс (ламинированное) стекло.

презентация [3,7 M], добавлен 04.12.2009

История начала использования стекла как строительного материала и применения его функций в дизайнерских разработках интерьера. Основные промышленные виды стекла, сферы и особенности его применения. Достоинства и недостатки стеклянных интерьеров.

реферат [22,2 K], добавлен 02.03.2011

Понятие и характеристика стекла, история его открытия и современное использование в качестве отделочного материала. Происхождение данного термина. Основные промышленные виды стекла. Сферы и особенности применения этого материала, способы его матирования.

реферат [47,8 K], добавлен 23.01.2011

Аргументы в пользу фасадного остекления зданий: высокая тепло- и звукоизоляция помещений, абсолютная экологичность, существенное снижение затрат на освещение. Виды стекла для фасадного остекления. Выбор стекла с учетом его достоинств и недостатков.


Много миллионов лет назад началась история стекла. Идею этого современного конструкционного материала подсказала сама природа. Стекло возникло из расплава песка в жерле вулкана. В строительной технологии впервые стали применять этот материал для остекления световых проемов в Романский период (ок. 1000–1500 гг.). Именно тогда архитекторы обратили внимание на этот материал.

С конца XIX века стекло применяют при возведении промышленных, гражданских и жилых зданий. Дизайнеры и архитекторы охотно используют этот высокотехнологичный, функциональный, экологичный, эстетичный строительный материал в своих проектах. В XXI веке стекло приобрело новые масштабы и стало одним из главных строительных материалов. Ведь благодаря таким физико-механическим свойствам, как повышенная атмосферостойкость, высокая твердость, прочность, исключительная химическая стойкость, высокие показатели тепло- и звукоизоляции, долговечность, он вполне способен заменить кирпич, дерево и бетон.

Ограждающие и несущие конструкции зданий, элементы интерьера, и даже полностью дома и сооружения возводят из стекла. И в наш век, стеклянный современный фахверковый дом это не фантазия архитектора, а реальность (рис. 1). Еще более новаторский проект стеклянного дома в 2012 году представил итальянский дизайнер и архитектор Карло Сантамборджио. Стены, потолки, мебель, предметы интерьера — все выполнено из стекла. [3 ]


Рис. 1. Современный фахверковый дом


Рис. 2. Проект стеклянного дома по задумке архитектора Карло Сантамборджи

Автор проекта — Адриан Смит.

Это самое высокое сооружение в мире. Высота башни составляет 828 метров.

Здание отделано тонированными стеклянными термопанелями, уменьшающими нагрев помещений внутри. Площадь остекления здания примерно равна площади 17 футбольных полей. [4]


Потребность в стекле растет с каждым годом. Человек научился создавать высокотехнологичное стекло и применять его для амбициозных проектов в строительстве. Благодаря современным разработкам и технологиям, этот строительный материал приобретает энергосберегающие, улучшенные теплотехнические и иные инновационные свойства.

Создать уют и комфорт внутри помещений — это непременная задача окон. Тепло-, звуко-, энергосберегающие стеклопакеты устанавливают сегодня повсеместно. Они удерживают тепло внутри помещения и, как следствие, этого экономят деньги потребителя, а также изолируют внутреннее пространство здания от шума внешней среды.

Суть технологии производства таких окон заключается в следующем: на внутренние поверхности стекол, входящих в состав стеклопакета, наносится теплоотражающее покрытие (ионы серебра). Оно пропускает и удерживает ультрафиолетовые лучи, создавая комфорт внутри помещения. Пространство между стеклами заполняют инертным газом, что позволяет снизить теплопотери. Для придания стеклопакету звукоизоляционных свойств применяют стекла различной толщины и триплексы.

Ученые Эстонского центра развития нанотехнологий ( Nano TAK ) разработали стекло с изменяемой прозрачностью. Энергоэффективное стекло это своеобразный сэндвич, состоящий из двух стекол с начинкой из активных металлов — индия и олова, а также гелево-солевого слоя. Стоит только электричеству подействовать, как поверхность становится прозрачной. Это достигается в результате упорядоченного расположения кристаллов гелевого слоя при подаче питания на слой окислов индия и олова. Для затенения стекла размером 90*170 см. электричества требуется крайне мало примерно 3–5 Вт. Однако эта разработка европейских технологов эффективна только при положительных и незначительных отрицательных температурах. Ученые из Дубны и Москвы предполагают совместить эту технологию с электрообогреваемым покрытием, учитывая климатические условия эксплуатации. Это покрытие наносится сплошным слоем на всю поверхность стекла, и затем по периметру накладываются токопроводные шины, по которым подводится электричество. Таким образом поверхность стекла нагревается.

Однако для высотных зданий с фасадами из электрохромных стекол требуется в целом большое количество энергии. Дополнительным источником энергии могут являться фотогальванические элементы, располагающиеся на фасадах.

контролировать освещенность помещения (путем изменения прозрачности);

Сегодня окна способны противостоять грязи и пыли. Новейшая разработка российских ученых позволяет сэкономить материальные и физические ресурсы. Одну из сторон горячего стеклянного листа покрывают слоем двуокиси титана. Это вещество обладает удивительным свойством: как только вода попадает на поверхность покрытия она стекает с нее, забирая с поверхности стекла грязь и окно таким образом очищается. При этом покрытие является фотоактивным. Ультрафиолетовые лучи солнца всегда поддерживают его в активном состоянии, то есть на покрытии органический материал разлагается на воду и двуокись углерода, а затем смываются дождем.

Корреляция архитектуры и строительных материалов обеспечили кардинальный прогресс в строительстве. Стекло заняло значимое положение среди строительных материалов и обеспечило новое видение пространства.

Айрапетов Г. А. Строительные материалы: учебно-справочное пособие / Г. А. Айрапетов, О. К. Безродный, А. Л. Жолобов. — М: Изд-во Феникс, 2009. — 699 с.

Маклакова Т. Г.. Архитектура двадцатого века — М.: Изд-во АСВ, 2001.-200 с.

Магай А. А. Инновационные технологии в остеклении фасадов высотных зданий/ А. А. Магай, П. П. Семикн// Энергосовет, 2012. — № 4(23) — с. 48–52.

Основные термины (генерируются автоматически): стекло, поверхность стекла, TAK, материал, окно, Умное стекло.

Гост

ГОСТ

Стеклянные сооружения в современной архитектуре

Стекло является неотъемлемой частью современной архитектуры, ведь когда сооружение полностью состоит из прозрачных, мерцающих материалов – это привлекает внимание и вызывает восхищение людей.

Вопреки распространенному мнению жить в стеклянном здании не холодно даже в условиях самого сурового климата. В этой связи для Росси стеклянные дома являются вполне уместными и даже нужными, так как архитекторы должны работать над разнообразием архитектурного ландшафта. Если провести грамотные расчеты, верно подобрать толщину стеклопакетов, а также применить крепления с терморазрывами, то в здании всегда будет правильная температура.

Рисунок 1. Стеклянная мастерская Кайто. Автор24 — интернет-биржа студенческих работ

Однако в настоящее время не существует единого мнения ученых по поводу целесообразности применения стекла в архитектуре зданий и сооружений.

История возникновения стеклянной архитектуры

В первое время стекло применялось в архитектуре исключительно в качестве второстепенного материала, а использование светопрозрачных конструкций развивалось только в области торговых и промышленных зданий.

Примечательно, что архитектурная критика XIX – начала XX веков не признавала такие сооружения объектом художественного творчества.

Готовые работы на аналогичную тему

При проектировании высотных сооружений в прошлом веке архитекторы не учитывали возможное психологическое состояние людей, которые могут находиться в таких сооружениях, не заботились о безопасности людей.

Рисунок 2. Пирамида Лувра в Париже. Автор24 — интернет-биржа студенческих работ

Следующее десятилетие характеризуется тем, что архитектурные решения большинства сооружений начинают стремительно опережать технологические и инженерные возможности, имеющиеся на тот период в данной области. Появляется необходимость корректировать существующие методы расчета конструктивных схем на ветровую нагрузку, которые воспринимаются легкими навесными ограждениями. Обозначаются трудности в организации стыков некоторых конструктивных элементов, которые не могут быть решены при помощи традиционных методов расчета. Помимо прочего, основной проблемой становится малая изученность температурных деформаций и линейного расширения некоторых материалов. Здесь возникла необходимость в решении многих вопросов строительной физики, теплотехники и пожарной безопасности.

В настоящее время построено множество выдающихся сооружений с применением стекла, например:

Читайте также: