Современные микропроцессоры семейства amd реферат

Обновлено: 07.07.2024

Определение, история развития и структура рынка современных микропроцессоров, а также приблизительные прогнозы об их будущем развитии. Современные процессоры INTEL и микропроцессоры компании АМD. Микропроцессор Pentium M, Core 2 Duo и Intel Core 2 Quad.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 30.03.2015
Размер файла 40,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И.Г. ПЕТРОВСКОГО

КАФЕДРА АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КУРСОВАЯ РАБОТА

История развития современных микропроцессоров

Структура рынка современных микропроцессоров

Современные процессоры INTEL

Микропроцессор Pentium M

Intel Core 2 Quad

Современные микропроцессоры компании АМD

Развитие персональных компьютеров в мире повлекло за собой и развитие микропроцессоров. Тенденции развития современных технологий изготовления процессоров и их применения с каждым годом набирают все большие обороты. Применяются новые нано-технологии, увеличивается число ядер на одном кристалле, растет разрядность процессоров, увеличивается кэш память всех уровней, применяются новые наборы инструкций и многое другое. Именно поэтому эта тема на сегодняшний день считается наиболее актуальной для рассмотрения в данной курсовой работе. Целью моей работы является изучения устройство микропроцессоров, узнать его технологии изготовления и рассмотреть виды современных микропроцессоров. Объектом изучения является микропроцессор и его основные функции. Предметом изучения является виды современных микропроцессоров.

В основе любой ЭВМ лежит использование микропроцессоров. Это самое важное устройство любого компьютера. Именно от него зависит уровень производительности любого компьютера, и не только персонального. Микропроцессоры окружают человека везде. Любая электроника в современном обществе снабжена своим микропроцессором.

Задачей моей курсовой работы является:

Проанализировать тенденции развития современных микропроцессоров.

Выявить их значимость для общества.

Попытаться сделать приблизительные прогнозы об их будущем развитии.

обработка данных по заданной программе путем выполнения арифметических и логических операций;

программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.

Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции (OR, AND, ASL, ROL и др.) обрабатываются при помощи АЛУ. Эти операции составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно исполнять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU.

Математический сопроцессор (FPU). Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процесс

Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.

Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше. Также в настоящее время в процессорах используется кэш третьего уровня.

Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая.

Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.

Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.

Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

BTB (Branch Target Buffer) - буфер целей ветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.

Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

Некоторые важные регистры имеют свои названия, например:

сумматор -- регистр АЛУ, участвующий в выполнении каждой операции.

счетчик команд -- регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти.

регистр команд -- регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные -- для хранения кодов адресов операндов.

История развития современных микропроцессоров

Начало 70-х годов ознаменовалось рождением нового и, как оказалось, весьма перспективного и беспрецедентного по своим последствиям направления в развитии вычислительной техники - в 1971 г. был выпущен первый в мире микропроцессор. Это был однокристальный микропроцессор, получивший название 4004 (4-разрядная шина данных и 16-контактный корпус). Процессор Intel 4004 стал технологическим триумфом корпорации: устройство размером с палец, стоило 200 долларов, и было сравнимо по своей вычислительной мощи с первой ЭВМ ENIAC, созданной в 1946 г., и занимавшей пространство объемом в 85 куб. метров. Новая технология, практически сразу, легла в основу создания программируемых калькуляторов с огромным, по тем временам (от 4-х до 64-х килобайт) объемом оперативной памяти, способных обрабатывать массивы данных. Изначально процессор 4004 предназначался для Японской компании Busicom. Но из-за финансовых трудностей японцы отказались от проекта, и разработка перешла в руки Intel. Появление микропроцессора изменило весь рынок микроэлектроники, а именно появлению тех самых компьютеров, на каких мы работаем сегодня.

Как это не было бы парадоксально, но сразу после появления процессора 4004 Intel утратила лидерство на рынке. Прежде всего это компании ZILOG и MOTOROLA - были лидерами процессорного рынка в 70-х годах. Но Intel создала совершенно новый процессор, который стал прототипом современных процессоров персональных компьютеров. Это был восьмиразрядный процессор i8008 (1972 год). i8080 являлся основой первого в мире персонального компьютера Altair. Все процессоры х86 - это дальние потомки i8080. Несмотря на свое огромное значение и большой объем продаж, на рынке этот процессор потеснил более удачный Zilog-80, который, в свою очередь, был обязан такой популярностью i8080. Процессор Z-80 создала группа инженеров, ранее работавших в Intel и участвовавших в разработке i8080.

В 80-х годах Intel открыла эру высокопроизводительного настольного компьютерного оборудования. В 1982 г. вышел современнейший, по тем временам, микропроцессор i286, который уже тогда, кроме неслыханной производительности, имел, в зачаточном виде, возможности по обеспечению многозадачного режима и защищенного режима (Protected Mode). Также он поддерживал обращение к расширяемой (EMS) памяти, объемом до 8 MB. В 1985 г. появился микропроцессор i386. Процессор i386 имел не только завершенную систему поддержки многозадачного режима, механизм защиты сегментов, но и мог оперировать оперативной памятью объемом до 64MB

Улучшение технологии производства микропроцессоров позволило значительно повысить их тактовую частоту. Каждое новое поколение процессоров имеет более низкое напряжение питания и меньшие токи, что способствует уменьшению выделяемого ими тепла. Но самым главным достижением является то, что при уменьшении нормы технологического процесса можно значительно увеличить количество транзисторов на одном кристалле. Большее количество транзисторов, входящих в состав процессора, позволяет усовершенствовать архитектуру процессора с целью достижения еще большей производительности. Даже разрядность процессоров очень быстро увеличилась с 4 в первом процессоре до 32 в процессоре i386.

Значительной вехой в истории развития архитектуры процессоров персональных компьютеров (очередная революция) стало появление процессора i486. Производственный техпроцесс к тому времени достиг отметки в 1 мкм, благодаря чему удалось расположить в ядре процессора 1,5 млн. транзисторов, что было почти в 6 раз больше, чем у CPU предыдущего 386-го поколения. Он был в 1500 раза быстрее своего "прапрадедушки" i4004. В архитектуре процессора персонального компьютера впервые появился конвейер на пять стадий. Конвейерные вычисления были, конечно, известны задолго до появления персональных компьютеров, но высокая степень интеграции теперь позволила применить этот эффективный способ вычислений и в персональном компьютере. На одном кристалле Intel разместила и собственно процессор, и математический сопроцессор, и кэш-память L1, которые до этого располагались в отдельных микросхемах. Эта революция произошла спустя 20 лет после появления первого микропроцессора, в октябре 1989 года. 486-й микропроцессор обладал достаточным для того времени быстродействием. Тактовая частота процессора даже превысила тактовую частоту системной шины.

При таком стремительном прогрессе микропроцессорной и компьютерной индустрии вполне возможно, что к 2011 г. микропроцессоры будут работать на тактовой частоте до 10 ГГц. При этом число транзисторов на каждом процессоре достигнет 1 миллиарда, а вычислительная мощность - 100 миллиардов операций в секунду. микропроцессор intel компания pentium

Структура рынка современных микропроцессоров

Доминирующее положение на рынке универсальных микропроцессоров занимают микропроцессоры с системой команд х86. основными производителями которых являются компании Intel, AMD и VIA. Ежегодный рост выпуска таких микропроцессоров составляет 10--15%. Доля остальных микропроцессоров с RISC-архитектурой составляет около 20 % рынка.

В настоящее время производятся и используются вычислительные системы на базе микропроцессоров следующих архитектур.(таблица 1)

Процессоры персональных компьютеров отвечают единому стандарту, который задан фирмой Intel, мировым лидером в производстве процессоров для ПК. В старых компьютерах мы можем найти процессоры типов PentiumII, Pentium III, в новейших - Pentium 4. Фирма AMD выпускает процессоры, в общем аналогичные интеловским, но называются они немного иначе: K6 (пентиум второй), К7 или Athlon (пентиум третий). Поэтому AMD приходится предугадывать будущее индустрии, иногда опережая Intel с ее полумиллиардными доходами. Предсказуемо появление новых идей у отстающей компании — для нее это способ выжить. Но неожиданно то, что иногда эти идеи принимает на вооружение и Intel. Речь идет о IBM-совместимых персональных компьютерах. На нашем рынке, как, впрочем, и в мире, их подавляющее большинство. В расчёте именно на этот стандарт пишутся игры, программы и прочее.

В основе любой ПЭВМ лежит использование микропроцессоров. Он является одним из самых важнейших устройств в компьютере, которым привычно характеризуют уровень производительности ПК. Микропроцессор является "мозгом" и "сердцем" компьютера. Он осуществляет выполнение программ, работающих на компьютере, и управляет работой остальных устройств компьютера. Когда выбирают себе компьютер, первым делом выбирают себе микропроцессор, который будет соответствовать требованиям, тех или иных людей. От процессора зависит, как быстро будут запускаться программы, и даже насколько быстро будет происходить процесс архивации данных в WinRAR, не говоря уже о создании трёхмерной анимации в 3D MAX Studio. Из всего выше сказанного, я считаю, что моя тема очень актуальна и значима на сегодняшний день.

Цель моей работы состоит в том, чтобы провести сравнение нескольких самых популярных, на сегодняшний день, процессоров и выявить лидера среди них.

обработка данных по заданной программе путем выполнения арифметических и логических операций;

программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

Устройство управления (УУ). Осуществляет координацию работы всех остальных устройств, выполняет функции управления устройствами, управляет вычислениями в компьютере.

Арифметико-логическое устройство (АЛУ). Так называется устройство для целочисленных операций. Арифметические операции, такие как сложение, умножение и деление, а также логические операции (OR, AND, ASL, ROL и др.) обрабатываются при помощи АЛУ. Эти операции составляют подавляющее большинство программного кода в большинстве программ. Все операции в АЛУ производятся в регистрах - специально отведенных ячейках АЛУ. В процессоре может быть несколько АЛУ. Каждое способно исполнять арифметические или логические операции независимо от других, что позволяет выполнять несколько операций одновременно. Арифметико-логическое устройство выполняет арифметические и логические действия. Логические операции делятся на две простые операции: "Да" и "Нет" ("1" и "0"). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

AGU (Address Generation Unit) - устройство генерации адресов. Это устройство не менее важное, чем АЛУ, т.к. оно отвечает за корректную адресацию при загрузке или сохранении данных. Абсолютная адресация в программах используется только в редких исключениях. Как только берутся массивы данных, в программном коде используется косвенная адресация, заставляющая работать AGU.

Математический сопроцессор (FPU). Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

Кэш-память. Особая высокоскоростная память процессора. Кэш используется в качестве буфера для ускорения обмена данными между процессором и оперативной памятью, а также для хранения копий инструкций и данных, которые недавно использовались процессором. Значения из кэш-памяти извлекаются напрямую, без обращения к основной памяти. При изучении особенностей работы программ было обнаружено, что они обращаются к тем или иным областям памяти с различной частотой, а именно: ячейки памяти, к которым программа обращалась недавно, скорее всего, будут использованы вновь. Предположим, что микропроцессор способен хранить копии этих инструкций в своей локальной памяти. В этом случае процессор сможет каждый раз использовать копию этих инструкций на протяжении всего цикла. Доступ к памяти понадобиться в самом начале. Для хранения этих инструкций необходим совсем небольшой объём памяти. Если инструкции в процессор поступают достаточно быстро, то микропроцессор не будет тратить время на ожидание. Таким образом экономиться время на выполнение инструкций. Но для самых быстродействующих микропроцессоров этого недостаточно. Решение данной проблемы заключается в улучшении организации памяти. Память внутри микропроцессора может работать со скоростью самого процессора.

Кэш первого уровня (L1 cache). Кэш-память, находящаяся внутри процессора. Она быстрее всех остальных типов памяти, но меньше по объёму. Хранит совсем недавно использованную информацию, которая может быть использована при выполнении коротких программных циклов.

Кэш второго уровня (L2 cache). Также находится внутри процессора. Информация, хранящаяся в ней, используется реже, чем информация, хранящаяся в кэш-памяти первого уровня, но зато по объёму памяти он больше.

Кэш третьего уровня (L3 cache). Находиться внутри процессора. По объему больше чем память первого и второго уровней(512Кб-2Мб). Увеличивает пропускную способность памяти.

Основная память. Намного больше по объёму, чем кэш-память, и значительно менее быстродействующая.

Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.

Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.

Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

BTB (Branch Target Buffer) - буферцелейветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.

Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

Intel придерживаетсястандарта EPIC (Explicitly Parallel Instruction Computing). Данная технология создавалась специально для крупных серверов и некоторых рабочих станций. Возможности EPIC огромны: во-первых, это высокая скорость выполнения операций с плавающей запятой. Во-вторых, поддержка распараллеливания. И, в-третьих, благодаря улучшению считывания данных из памяти, скорость обмена информацией резко возрастает.

AMD избрал иной путь к 64-разрядности. Производители прибавили 32 к уже имеющимся разрядам и получили новую архитектуру x86-64. Новая технология отличается от старой лишь префиксом 64. В новом процессоре был сделан ряд улучшений, в первую очередь ядра процессора. Это позволило получить новый уровень быстродействия как для 32, так и для 64-разрядных систем.

Итоги: AMD переходит на новый уровень без применения новых технологий. Это приводит к полной совместимости как 32, так и 64-разрядных приложений. Intel же стремится показать себя лишь в 64 разрядах.

В новых процессорах были сделаны большие изменения, которые повлекли за собой производительность и совместимость со старыми платформами.

В AMD были добавлены режимы совместимости и 64-битные адресные регистры. Они позволяют расширить адресуемое пространство оперативной памяти и избавиться от существующего ограничения в 4 Гб, которое создает ощутимые трудности при построении систем обработки информации. Для ускорения работы с памятью используется технология NUMA, позволяющая работать напрямую с памятью, минуя системную шину и набор микросхем. Такое нововведение было названо HyperTransport и появилось в первом чипсете Golem.

В Intel все намного сложнее. Из-за интенсивного пути развития, компания в корне поменяла архитектуру.

1. Режимы совместимости со старыми платформами.

2. Уменьшение количества ошибок, так как против них созданы две независимых технологии. Главной является EMCA, которая позволяет вести контроль и протоколирование всех ошибок, возникающих во время работы процессора. И второстепенная технология ECC, позволяющая предварительно обрабатывать код и вести контроль четности.

Intel создал ряд регистров для полной совместимости старых приложений. В итоге получается, что все 64-разрядные инструкции выполняются как обычно, иные же обрабатываются технологией IA-32. Эмуляция есть эмуляция, никакой производительности при этом не происходит, поэтому Itanium целиком и полностью ориентирован для 64-разрядных платформ.

В AMD все намного сложнее. Для улучшения производительности со старыми платформами были придуманы специальные режимы.

Архитектура AMD 64 предусматривает два главных режима работы: Long и Legacy. В первом открываются все достоинства технологии x86-64. Для полной совместимости над старыми приложениями существует подрежим совместимости, в котором способны обрабатываться 32/16-разрядные инструкции. В режиме Legacy процессор работает по принципу обычной x86-архитектуры. Преимуществом такой системы режимов является то, что процессор можно эксплуатировать до выхода стабильных релизов 64-разрядных операционных систем. Помимо этого существует несколько преимуществ x86-64 над IA-64:

1. Быстродействие в обработке 32-разрядных инструкций. Связано с тем, что после перехода в режим совместимости не происходит никакой эмуляции, процессор обрабатывает данные с большой скоростью. Этого нет в Itanium, поскольку там все инструкции выполняются в 64 разрядах.

2. Полная совместимость с x86-архитектурой. В Itanium подобное реализовано не полностью.

3. Одновременная работа 16/32/64 приложений. Благодаря введению режимов, становится возможным обрабатывать ряд разных инструкций одновременно. Это сказывается на производительности и улучшает совместимость.

Intel изначально поставил перед собой задачу – выполнить распараллеливание процессов в одном кремниевом устройстве. Как правило, этот процессор используют на мощных серверах с большими базами данных либо в банковских системах, где нельзя ошибаться. AMD же ориентировался как нечто среднее между 32 и 64 разрядами. Конечно, он встречается в крупных серверах, но также может использоваться в обычных рабочих станциях, ибо подстроен как под x86-64, так и под x86-архитектуру.

Intel просит за свое изобретение ни много ни мало $1200. Причем раньше процессор стоил в три раза дороже: около $4k. Учитывая, сколько будет стоить материнская плата под процессор, можно сделать вывод – денег на сервер придется потратить немало.

У AMD цена на Athlon 64 составляет всего $417. Остальные 64-разрядные процессоры стоят от $300 до $600, что значительно ниже цен Intel.

Процессор Celeron является бюджетной версией соответствующего main-stream процессора, на основе ядра которого он был создан. У процессоров Celeron в два или в четыре раза меньше кэш памяти второго уровня. Так же у них по сравнению с соответствующими "родителями" понижена частота системной шины. У процессоров Duron по сравнению с Athlon в 4 раза меньше кэш памяти и заниженная системная шина 200МHz (266MHz для Applebred), хотя существуют и "полноценные" Athlon c FSB 200MHz. Так же уже появились урезанные по кэшу Barton’ы, ядро которых носит название Thorton. Есть задачи, в которых между обычными и урезанными процессорами почти нет разницы, а в некоторых случаях отставание довольно серьёзное. В среднем же, при сравнении с неурезанным процессором той же частоты, отставание это равно 10-30%. Зато урезанные процессоры имеют тенденцию лучше разгоняться из-за меньшего объёма кэш памяти и стоят при этом дешевле. Необходимо отметить, что процессоры Celeron работают весьма плохо по сравнению с полноценными P4 - отставание в некоторых ситуациях достигает 50%. Это не касается процессоров Celeron D,в которых кэш второго уровня составляет 256 кбайт (128 кбайт в обычных Celeron) и отставание уже не такое большое.

Во-первых, у AXP (и Athlon 64) вместо частоты пишется рейтинг, т. е. например 2000+ процессор реально работает на частоте 1667Mhz, но по эффективности работы он соответствует Athlon (Thunderbird) 2000Mhz. Основным недостатком недавно считалась температура. Но последние модели (на ядрах Thoroughbred, Barton и т. д.) по тепловыделению сравнимы Pentium 4, ну а самые последние, на момент написания реферата, модели от Intel (P4 Extreme Edition) греются иногда и значительно больше. По надёжности процессоры теперь тоже не сильно уступают P4, они хоть и не могут пропускать такты при перегреве, но обзавелись встроенным термодатчиком. Athlon XP на ядре Barton обзавелись похожей функцией BusDisconnect - она "отключает" процессор от шины во время холостых тактов, но она фактически бессильна при перегреве от повышенной нагрузки - тут вся "ответственность" перекладывается на термоконтроль материнской платы. "Крепкость" кристалла хоть и повысилась, но из-за уменьшенной площади ядра фактически осталась прежней. Поэтому вероятность повреждения кристалла хоть и стала меньше, но существует. А вот у Athlon 64 процессорный кристалл наконец-то был спрятан под теплорассеивателем (heat spreader), поэтому его повредить будет чрезвычайно сложно. Все неполадки приписываемые AMD часто являются следствием неустановленных или неправильно установленных универсальных драйверов для чипсетов VIA (VIA 4 in 1 Service Pack) или драйверов чипcетов других производителей (AMD, SIS, ALi).

Работают процессоры Atholn XP и Pentium 4 в разных приложениях очень по-разному. Например, в сложных математических вычислениях, архивации, кодировании в MPEG4, P4 часто "обыгрывает" AXP. Но есть и ряд программ, лучше работающих с AXP. В основном это - игры. Для обычного пользователя стоит ориентироваться именно на них, так как перекодировка в любом случае требует много времени, а играм, наоборот, необходимо провести все вычисления как можно быстрее. Уже выпущены процессоры AXP Barton с 400Mhz шиной и принципиально новые K8.

Классический критерий производительности в виде мегагерцев был заменён параллелизмом, когда два ядра в одном чипе позволяют увеличить производительность, поделив между собой нагрузку.

Однако многие приложения не оптимизированы и не могут получить преимущество от дву- или многоядерных окружений. Чтобы использовать несколько процессоров, программное обеспечение должно разбиваться на несколько параллельных потоков. Такой подход позволяет распределить нагрузки по всем доступным вычислительным ядрам, снижая время вычислений сильнее, чем это можно было сделать с помощью одной тактовой частоты. Впрочем, большинство программ сегодня не умеют использовать возможности двуядерных или многоядерных чипов.

Популярные двуядерные процессоры AMD и Intel стоят около $1000 - примерно столько стоит целый готовый компьютер. В то же время, одноядерные процессоры, работающие на такой же тактовой частоте, обойдутся всего в $300-$350.

Для нашего сравнения были взяты процессоры профессионального уровня, а именно: AMD Opteron и Intel Xeon. AMD просит около $1100 за двуядерный Opteron 275 (2,2 ГГц), в то время как пара одноядерных Opteron 248 обойдётся всего в $700.

Оглавление
Введение 2
1.Общая характеристика процессоров 3
2.История развития процессора AMD 5
2.1 Процессор AMD K6-2 7
2.2 Технология 3DNow 9
2.3 Процессор AMD Athlon 10
2.4 Процессоры AMD сегодня и завтра 11
2.5 Процессоры AMD Athlon 64 12
Заключение 13
Список использованной литературы: 14

Современный микропроцессор — это микросхема снесколькими сотнями выводов, которая устанавливается в специальный разъем на системной плате; сверху на нем закрепляется радиатор с вентилятором для охлаждения (его также называют кулером). Установка процессора в разъем требует особой осторожности и аккуратности и обычно подробно описана в инструкции к системной плате.
Работа процессора заключается в последовательном выполнении команд из оперативнойпамяти, и чем больше команд успевает выполнить процессор за секунду, тем выше производительность компьютера в целом. Скорость работы процессора зависит от нескольких параметров; тактовой частоты, количества ядер, объема кэш-памяти и некоторых других [11].

1.Общая характеристика процессоров

Рассмотрим все параметры процессоров более подробно.
1. Частота FSB. Для обмена данными с другимиустройствами процессор использует шину FSB (Front Side Bus). Во всех современных системах используются технологии, умножающие скорость обмена данными по системной шине, и частота FSB может указываться уже с учетом умножения.
2. Тактовая частота. Параметр, показывающий реальную частоту работы ядра процессора, которая для современных процессоров может находиться в диапазоне 1,5-4 ГГц. Тактовая частота определяетсяумножением частоты внешней шины процессора (FSB) на коэффициент умножения.
3. Количество ядер. Поскольку тактовые частоты современных процессоров приблизились к физическому пределу, для повышения их производительности применяется объединение нескольких процессорных ядер в одном корпусе. На момент написания книги процессоры с одним ядром (одноядерные) устанавливались только в самые дешевые компьютеры,в большинстве новых компьютеров использовались двухядерные процессоры, а наиболее производительные системы собирались на основе четырехъядерных процессоров [5].
4. Тип ядра и степпинг. Современные процессоры умеют выполнять за один такт сразу несколько команд, и этот показатель постоянно увеличивается. При одинаковых значениях тактовой частоты и количестве ядер процессоры с более современнойархитектурой будут работать быстрее.
5. Объем кэш-памяти. Процессор работает значительно быстрее, чем оперативная память, и при обращении к ней ему приходится некоторое время ожидать результата. Чтобы уменьшить время ожидания, непосредственно на кристалле процессора устанавливается небольшой объем очень быстрой памяти, называемой кэш-памятью. Она содержит данные, наиболее часто используемыепроцессором, и обычно работает на его тактовой частоте. Специальные алгоритмы для кэш-памяти позволяют своевременно подгружать нужные процессору данные из оперативной памяти, что увеличивает производительность системы.
6. Тип разъема, или форм-фактор. Каждая модель процессора устанавливается в разъем соответствующего типа и с соответствующим количеством контактов. Цифра в названии разъема обозначаетколичество контактов. Установить процессор в непредназначенный для него разъем нельзя, даже если различие всего в один контакт.
7. Напряжение питания ядра. Ядро современного процессора питается довольно низким напряжением, порядка 1,2-1,7 В. Для каждой модели есть свое паспортное значение этого напряжения, которое обычно задается автоматически. Ручная регулировка иногда используется приразгоне, но это может привести к перегреву процессора и выходу его из строя.
8. Тепловыделение. Поскольку процессоры работают на очень высоких частотах, они могут обладать большим тепловыделением, достигающим до 100 Вт и более. Для обозначения потребляемой процессором .мощности используется параметр TDP (Thermal Design Power). Производители процессоров используют.

Процессоры персональных компьютеров отвечают единому стандарту, который задан фирмой Intel, мировым лидером в производстве процессоров для ПК. В старых компьютерах мы можем найти процессоры типов PentiumII, Pentium III, в новейших - Pentium 4. Фирма AMD выпускает процессоры, в общем аналогичные интеловским, но называются они немного иначе: K6 (пентиум второй), К7 или Athlon (пентиум третий).

Содержание

ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 2
Функции и строение процессора 3
Особенности и различия процессоров Intel и AMD 9
64-разрядные процессоры AMD и Intel 9
Отличия процессоров Pentium и Celeron, Athlon и Duron 12
Основные недостатки процессоров фирм AMD и Intel 12
Новые разработки компаний Intel и AMD 13
Двуядерный процессор 13
Технологии создания процессора со сдвоенным ядром 17
Сравнение процессоров AMD Athlon 64 и Pentium 4 Extreme Edition 18
ЗАКЛЮЧЕНИЕ 21
Список литературы 21

Работа содержит 1 файл

Реферат Современные процессоры Intel и AMD..doc

Министерство Образования и Науки Российской Федерации

Федеральное Агентство по Образованию Государственное Общеобразовательное Учреждение Высшего Профиля

Таганрогский Государственный Радиотехнический Университет

Современные процессоры Intel и AMD.

Волощенко А. П., гр. Э-25

Вишневецкий В. Ю.

Таганрог 2005 г

Процессоры персональных компьютеров отвечают единому стандарту, который задан фирмой Intel, мировым лидером в производстве процессоров для ПК. В старых компьютерах мы можем найти процессоры типов PentiumII, Pentium III, в новейших - Pentium 4. Фирма AMD выпускает процессоры, в общем аналогичные интеловским, но называются они немного иначе: K6 (пентиум второй), К7 или Athlon (пентиум третий). Поэтому AMD приходится предугадывать будущее индустрии, иногда опережая Intel с ее полумиллиардными доходами. Предсказуемо появление новых идей у отстающей компании — для нее это способ выжить. Но неожиданно то, что иногда эти идеи принимает на вооружение и Intel. Речь идет о IBM-совместимых персональных компьютерах. На нашем рынке, как, впрочем, и в мире, их подавляющее большинство. В расчёте именно на этот стандарт пишутся игры, программы и прочее.

В основе любой ПЭВМ лежит использование микропроцессоров. Он является одним из самых важнейших устройств в компьютере, которым привычно характеризуют уровень производительности ПК. Микропроцессор является "мозгом" и "сердцем" компьютера. Он осуществляет выполнение программ, работающих на компьютере, и управляет работой остальных устройств компьютера. Когда выбирают себе компьютер, первым делом выбирают себе микропроцессор, который будет соответствовать требованиям, тех или иных людей. От процессора зависит, как быстро будут запускаться программы, и даже насколько быстро будет происходить процесс архивации данных в WinRAR, не говоря уже о создании трёхмерной анимации в 3D MAX Studio. Из всего выше сказанного, я считаю, что моя тема очень актуальна и значима на сегодняшний день.

Цель моей работы состоит в том, чтобы провести сравнение нескольких самых популярных, на сегодняшний день, процессоров и выявить лидера среди них.

  • обработка данных по заданной программе путем выполнения арифметических и логических операций;
  • программное управление работой устройств компьютера.

Модели процессоров включают следующие совместно работающие устройства:

Многоуровневая кэш-память позволяет снизить требования наиболее производительных микропроцессоров к быстродействию основной динамической памяти. Так, если сократить время доступа к основной памяти на 30%, то производительность хорошо сконструированной кэш-памяти повыситься только на 10-15%. Кэш-память, как известно, может достаточно сильно влиять на производительность процессора в зависимости от типа исполняемых операций, однако ее увеличение вовсе не обязательно принесет увеличение общей производительности работы процессора. Все зависит от того, насколько приложение оптимизировано под данную структуру и использует кэш, а также от того, помещаются ли различные сегменты программы в кэш целиком или кусками.

Кэш-память не только повышает быстродействие микропроцессора при операции чтения из памяти, но в ней также могут храниться значения, записываемые процессором в основную память; записать эти значения можно будет позже, когда основная память будет не занята. Такая кэш-память называется кэшем с обратной записью (write back cache). Её возможности и принципы работы заметно отличаются от характеристик кэша со сквозной записью (write through cache), который участвует только в операции чтения из памяти.

  • Шина - это канал пересылки данных, используемый совместно различными блоками системы. Шина может представлять собой набор проводящих линий в печатной плате, провода, припаянные к выводам разъемов, в которые вставляются печатные платы, либо плоский кабель. Информация передается по шине в виде групп битов. В состав шины для каждого бита слова может быть предусмотрена отдельная линия (параллельная шина), или все биты слова могут последовательно во времени использовать одну линию (последовательная шина). К шине может быть подключено много приемных устройств - получателей. Обычно данные на шине предназначаются только для одного из них. Сочетание управляющих и адресных сигналов, определяет для кого именно. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными (т.е. осуществлять только либо передачу, либо прием) и двунаправленными (осуществлять и то и другое). Однако самая быстрая процессорная шина не сильно поможет, если память не сможет доставлять данные с соответствующей скоростью.
    1. Шина данных. Служит для пересылки данных между процессором и памятью или процессором и устройствами ввода-вывода. Эти данные могут представлять собой как команды микропроцессора, так и информацию, которую он посылает в порты ввода-вывода или принимает оттуда.
    2. Шина адресов. Используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.
    3. Шина управления. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).
    • BTB (Branch Target Buffer) - буфер целей ветвления. В этой таблице находятся все адреса, куда будет или может быть сделан переход. Процессоры Athlon еще используют таблицу истории ветвлений (BHT - Branch History Table), которая содержит адреса, по которым уже осуществлялись ветвления.
    • Регистры - это внутренняя память процессора. Представляют собой ряд специализированных дополнительных ячеек памяти, а также внутренние носители информации микропроцессора. Регистр является устройством временного хранения данных, числа или команды и используется с целью облегчения арифметических, логических и пересылочных операций. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций.

    64-разрядные процессоры AMD и Intel

    Intel придерживается стандарта EPIC (Explicitly Parallel Instruction Computing). Данная технология создавалась специально для крупных серверов и некоторых рабочих станций. Возможности EPIC огромны: во-первых, это высокая скорость выполнения операций с плавающей запятой. Во-вторых, поддержка распараллеливания. И, в-третьих, благодаря улучшению считывания данных из памяти, скорость обмена информацией резко возрастает.

    AMD избрал иной путь к 64-разрядности. Производители прибавили 32 к уже имеющимся разрядам и получили новую архитектуру x86-64. Новая технология отличается от старой лишь префиксом 64. В новом процессоре был сделан ряд улучшений, в первую очередь ядра процессора. Это позволило получить новый уровень быстродействия как для 32, так и для 64-разрядных систем.

    Итоги: AMD переходит на новый уровень без применения новых технологий. Это приводит к полной совместимости как 32, так и 64-разрядных приложений. Intel же стремится показать себя лишь в 64 разрядах.

    Архитектура

    В новых процессорах были сделаны большие изменения, которые повлекли за собой производительность и совместимость со старыми платформами.

    В AMD были добавлены режимы совместимости и 64-битные адресные регистры. Они позволяют расширить адресуемое пространство оперативной памяти и избавиться от существующего ограничения в 4 Гб, которое создает ощутимые трудности при построении систем обработки информации. Для ускорения работы с памятью используется технология NUMA, позволяющая работать напрямую с памятью, минуя системную шину и набор микросхем. Такое нововведение было названо HyperTransport и появилось в первом чипсете Golem.

    В Intel все намного сложнее. Из-за интенсивного пути развития, компания в корне поменяла архитектуру.

    1. Режимы совместимости со старыми платформами.

    2. Уменьшение количества ошибок, так как против них созданы две независимых технологии. Главной является EMCA, которая позволяет вести контроль и протоколирование всех ошибок, возникающих во время работы процессора. И второстепенная технология ECC, позволяющая предварительно обрабатывать код и вести контроль четности.

    Совместимость

    Intel создал ряд регистров для полной совместимости старых приложений. В итоге получается, что все 64-разрядные инструкции выполняются как обычно, иные же обрабатываются технологией IA-32. Эмуляция есть эмуляция, никакой производительности при этом не происходит, поэтому Itanium целиком и полностью ориентирован для 64-разрядных платформ.

    В AMD все намного сложнее. Для улучшения производительности со старыми платформами были придуманы специальные режимы.

    Архитектура AMD 64 предусматривает два главных режима работы: Long и Legacy. В первом открываются все достоинства технологии x86-64. Для полной совместимости над старыми приложениями существует подрежим совместимости, в котором способны обрабатываться 32/16-разрядные инструкции. В режиме Legacy процессор работает по принципу обычной x86-архитектуры. Преимуществом такой системы режимов является то, что процессор можно эксплуатировать до выхода стабильных релизов 64-разрядных операционных систем. Помимо этого существует несколько преимуществ x86-64 над IA-64:

    Читайте также: