Реферат защита каналов связи

Обновлено: 18.07.2024

Технология защищенного канала призвана обеспечивать безопасность передачи данных по открытой транспортной сети, например по Интернету. Защищенный канал подразумевает выполнение трех основных функций:

· взаимную аутентификацию абонентов при установлении соединения, которая может быть выполнена, например, путем обмена паролями;

Совокупность защищенных каналов, созданных предприятием в публичной сети для объединения своих филиалов, часто называют виртуальной частной сетью (Virtual Private Network, VPN).

Существуют разные реализации технологии защищенного канала, которые, в частности, могут работать на разных уровнях модели OSI. Так, функции популярного протокола SSL соответствуют представительному уровню модели OSI. Новая версия сетевого протокола IP предусматривает все функции – взаимную аутентификацию, шифрование и обеспечение целостности, – которые по определению свойственны защищенному каналу, а протокол туннелирования РРТР защищает данные на канальном уровне.

В зависимости от места расположения программного обеспечения защищенного канала различают две схемы его образования:

· схему с конечными узлами, взаимодействующими через публичную сеть (Рис. 1.2, а);

· схему с оборудованием поставщика услуг публичной сети, расположенным на границе между частной и публичной сетями (Рис. 1.2, б).

В первом случае защищенный канал образуется программными средствами, установленными на двух удаленных компьютерах, принадлежащих двум разным локальным сетям одного предприятия и связанных между собой через публичную сеть. Преимуществом этого подхода является полная защищенность канала вдоль всего пути следования, а также возможность использования любых протоколов создания защищенных каналов, лишь бы на конечных точках канала поддерживался один и тот же протокол. Недостатки заключаются в избыточности и децентрализованности решения. Избыточность состоит в том, что вряд ли стоит создавать защищенный канал на всем пути прохождения данных: уязвимыми для злоумышленников обычно являются сети с коммутацией пакетов, а не каналы телефонной сети или выделенные каналы, через которые локальные сети подключены к территориальной сети. Поэтому защиту каналов доступа к публичной сети можно считать избыточной. Децентрализация заключается в том, что для каждого компьютера, которому требуется предоставить услуги защищенного канала, необходимо отдельно устанавливать, конфигурировать и администрировать программные средства защиты данных. Подключение каждого нового компьютера к защищенному каналу требует выполнения этих трудоемких работ заново.


Рисунок 1.2 – Два способа образования защищенного канала

Во втором случае клиенты и серверы не участвуют в создании защищенного канала – он прокладывается только внутри публичной сети с коммутацией пакетов, например, внутри Интернета. Канал может быть проложен, например, между сервером удаленного доступа поставщика услуг публичной сети и пограничным маршрутизатором корпоративной сети. Это хорошо масштабируемое решение, управляемое централизованно как администратором корпоративной сети, так и администратором сети поставщика услуг. Для компьютеров корпоративной сети канал прозрачен – программное обеспечение этих конечных узлов остается без изменений. Такой гибкий подход позволяет легко образовывать новые каналы защищенного взаимодействия между компьютерами независимо от их места расположения. Реализация этого подхода сложнее – нужен стандартный протокол образования защищенного канала, требуется установка у всех поставщиков услуг программного обеспечения, поддерживающего такой протокол, необходима поддержка протокола производителями пограничного коммуникационного оборудования. Однако вариант, когда все заботы по поддержании защищенного канала берет на себя поставщик услуг публичной сети, оставляет сомнения в надежности защиты: во-первых, незащищенными оказываются каналы доступа к публичной сети, во-вторых, потребитель услуг чувствует себя в полной зависимости от надежности поставщика услуг. И, тем не менее, специалисты прогнозируют, что именно вторая схема в ближайшем будущем станет основной в построении защищенных каналов.

2. Принципы криптографической защиты информации

Проблемы конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.

2.1. Схема симметричной криптосистемы

Обобщенная схема криптографической системы, обеспечивающей шифрование передаваемой информации, показана на рис.2.1.

Рисунок 2.1 – Обобщенная схема криптосистемы

Преобразование ЕК выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, с помощью которого выбирается отдельное используемое преобразование, называетсякриптографическим ключом К. Криптосистема имеет разные варианты реализации: набор инструкций, аппаратные средства, комплекс программ компьютера, которые позволяют зашифровать открытый текст и расшифровать шифр-текст различными способами, один из которых выбирается с помощью конкретного ключа К.

Криптографическая система – это однопараметрическое семейство обратимых преобразований

Преобразование шифрования может быть симметричным или асимметричным относительно преобразования расшифрования. Это важное свойство функции преобразования определяет два класса криптосистем:

· симметричные (одноключевые) криптосистемы;

· асимметричные (двухключевые) криптосистемы (с открытым ключом).

Схема симметричной криптосистемы с одним секретным ключом показана на рис.2.1. В ней используются одинаковые секретные ключи в блоке шифрования и блоке расшифрования.

2.2. Схема асимметричной криптосистемы

Обобщенная схема асимметричной криптосистемы с двумя разными ключами К1 и К2 показана на рис. 2.2. В этой криптосистеме один из ключей является открытым, а другой – секретным.

Рисунок 2.2 – Обобщенная схема асимметричной криптосистемы

с открытым ключом

В симметричной криптосистеме секретный ключ надо передавать отправителю и получателю по защищенному каналу распространения ключей, например такому, как курьерская служба. На рис. 2.1 этот канал показан "экранированной" линией. Существуют и другие способы распределения секретных ключей, они будут рассмотрены позднее. В асимметричной криптосистеме передают по незащищенному каналу только открытый ключ, а секретный ключ сохраняют на месте его генерации.

На рис. 2.3 показан поток информации в криптосистеме в случае активных действий перехватчика. Активный перехватчик не только считывает все шифртексты, передаваемые по каналу, но может также пытаться изменять их по своему усмотрению.

Любая попытка со стороны перехватчика расшифровать шифртекст С для получения открытого текста М или зашифровать свой собственный текст М’ для получения правдоподобного шифртекста С’, не имея подлинного ключа, называется крипто-аналитической атакой.

Рисунок 2.3 – Поток информации в криптосистеме при активном

Если предпринятые криптоаналитические атаки не достигают поставленной цели и криптоаналитик не может, не имея подлинного ключа, вывести М из С или С’ из М’, то считается, что такая криптосистема является криптостойкой.

Фундаментальное правило криптоанализа, впервые сформулированное голландцем А.Керкхоффом еще в XIX веке заключается в том, что стойкость шифра (криптосистемы) должна определяться только секретностью ключа. Иными словами, правило Керкхоффа состоит в том, что весь алгоритм шифрования, кроме значения секретного ключа, известен криптоаналитику противника. Это обусловлено тем, что криптосистема, реализующая семейство криптографических преобразований, обычно рассматривается как открытая система.

2.3. Аппаратно-программные средства защиты компьютерной информации

Аппаратно-программные средства, обеспечивающие повышенный уровень защиты можно разбить на пять основных групп (Рис. 2.4).

Первую группу образуют системы идентификации и аутентификации пользователей. Такие системы применяются для ограничения доступа случайных и незаконных пользователей к ресурсам компьютерной системы. Общий алгоритм работы этих систем заключается в том, чтобы получить от пользователя информацию, удостоверяющую его личность, проверить ее подлинность и затем предоставить (или не предоставить) этому пользователю возможность работы с системой.

При построении подобных систем возникает проблема выбора информации, на основе которой осуществляются процедуры идентификации и аутентификации пользователя. Можно выделить следующие типы:

(1) секретная информация, которой обладает пользователь (пароль, персональный идентификатор, секретный ключ и т.п.); эту информацию пользователь должен запомнить или же могут быть применены специальные средства хранения этой информации);

(2) физиологические параметры человека (отпечатки пальцев, рисунок радужной оболочки глаза и т.п.) или особенности поведения человека (особенности работы на клавиатуре и т.п.).

Системы идентификации, основанные на первом типе информации, принято считать традиционными. Системы идентификации, использующие второй тип информации, называются биометрическими.

Вторую группу средств, обеспечивающих повышенный уровень защиты, составляют системы шифрования дисковых данных. Основная задача, решаемая такими системами, состоит в защите от несанкционированного использования данных, расположенных на магнитных носителях.

Обеспечение конфиденциальности данных, располагаемых на магнитных носителях, осуществляется путем их шифрования с использованием симметричных алгоритмов шифрования. Основным классификационным признаком для комплексов шифрования служит уровень их встраивания в компьютерную систему.

Работа прикладных программ с дисковыми накопителями состоит из двух этапов – “логического” и “физического”.

Логический этап соответствует уровню взаимодействия прикладной программы с операционной системой (например, вызов сервисных функций чтения/записи данных). На этом уровне основным объектом является файл.

Физический этап соответствует уровню взаимодействия операционной системы и аппаратуры. В качестве объектов этого уровня выступают структуры физической организации данных - сектора диска.

В результате, системы шифрования данных могут осуществлять криптографические преобразования данных на уровне файлов (защищаются отдельные файлы) и на уровне дисков (защищаются диски целиком).

Другим классификационным признаком систем шифрования дисковых данных является способ их функционирования.

По способу функционирования системы шифрования дисковых данных делят на два класса:

(1) системы “прозрачного” шифрования;

(2) системы, специально вызываемые для осуществления шифрования.

Рисунок 2.4 – Аппаратно-программные средства защиты компьютерной информации

В системах прозрачного шифрования (шифрования “на лету”) криптографические преобразования осуществляются в режиме реального времени, незаметно для пользователя. Например, пользователь записывает подготовленный в текстовом редакторе документ на защищаемый диск, а система защиты в процессе записи выполняет его шифрование.

Системы второго класса обычно представляют собой утилиты, которые необходимо специально вызывать для выполнения шифрования. К ним относятся, например, архиваторы со встроенными средствами парольной защиты.

К третьей группе средств относятся системы шифрования данных, передаваемых по компьютерным сетям. Различают два основных способа шифрования: канальное шифрование и оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся передаваемая по каналу связи информация, включая служебную. Соответствующие процедуры шифрования реализуются с помощью протокола канального уровня семиуровневой эталонной модели взаимодействия открытых систем OSI.

Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы.

Однако, у данного подхода имеются существенные недостатки:

- шифрованию на данном уровне подлежит вся информация, включая служебные данные транспортных протоколов; это осложняет механизм маршрутизации сетевых пакетов и требует расшифрования данных в устройствах промежуточной коммутации (шлюзах, ретрансляторах и т.п.);

- шифрование служебной информации, неизбежное на данном уровне, может привести к появлению статистических закономерностей в шифрованных данных; это влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Четвертую группу средств защиты составляют системы аутентификации электронных данных.

При обмене электронными данными по сетям связи возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе.

В отечественном стандарте симметричного шифрования данных (ГОСТ 28147-89) предусмотрен режим выработки имитовставки, обеспечивающий имитозащиту, т.е. защиту системы шифрованной связи от навязывания ложных данных.

Электронная цифровая подпись (ЭЦП) представляет собой относительно небольшое количество дополнительной аутентифицирующей цифровой информации, передаваемой вместе с подписываемым текстом.

Для реализации ЭЦП используются принципы асимметричного шифрования. Система ЭЦП включает процедуру формирования цифровой подписи отправителем с использованием секретного ключа отправителя и процедуру проверки подписи получателем с использованием открытого ключа отправителя.

Пятую группу средств, обеспечивающих повышенный уровень защиты, образуют средства управления ключевой информацией. Под ключевой информацией понимается совокупность всех используемых в компьютерной системе или сети криптографических ключей.

Безопасность любого криптографического алгоритма определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в компьютерной системе или сети.

Основным классификационным признаком средств управления ключевой информацией является вид функции управления ключами. Различают следующие основные виды функций управления ключами: генерация ключей, хранение ключей и распределение ключей.

Способы генерации ключей различаются для симметричных и асимметричных криптосистем. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел, в частности, схемы с применением блочного симметричного алгоритма шифрования. Генерация ключей для асимметричных криптосистем представляет существенно более сложную задачу в связи с необходимостью получения ключей с определенными математическими свойствами.

Функция хранения ключей предполагает организацию безопасного хранения, учета и удаления ключей. Для обеспечения безопасного хранения и передачи ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей. В иерархию ключей обычно входят главный ключ (мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключей являются критическими вопросами криптографической защиты.

Распределение ключей является самым ответственным процессом в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также оперативность и точность их распределения. Различают два основных способа распределения ключей между пользователями компьютерной сети:

Защита (безопасность) информации является неотъемлемой составной частью общей проблемы информационной безопасности, роль и значимость которой во всех сферах жизни и деятельности общества и государства на современном этапе неуклонно возрастают.

Производство и управление, оборона и связь, транспорт и энергетика, банковское дело, финансы, наука и образование, средства массовой информации всё больше зависят от интенсивности информационного обмена, полноты, своевременности, достоверности и безопасности информации.

В связи с этим проблема безопасности информации стала предметом острой озабоченности руководителей органов государственной власти, предприятий, организаций и учреждений независимо от их организационно-правовых форм и форм собственности.

Бурное развитие средств вычислительной техники открыло перед человечеством небывалые возможности по автоматизации умственного труда и привело к созданию большого числа разного рода автоматизированных информационно-телекоммуникационных и управляющих систем, к возникновению принципиально новых, так называемых информационных технологий.

При выработке подходов к решению проблемы компьютерной, информационной безопасности следует всегда исходить из того, что защита информации и вычислительной системы не является самоцелью. Конечной целью создания системы компьютерной безопасности является защита всех категорий субъектов, прямо или косвенно участвующих в процессах информационного взаимодействия, от нанесения им ощутимого материального, морального или иного ущерба в результате случайных или преднамеренных воздействий на информацию и системы ее обработки и передачи.

1. Защита информации в каналах связи и создание защищённых

телекоммуникационных систем

В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

2. Удаленный доступ к информационным ресурсам. Защита

информации, передаваемой по каналам связи

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).

.1 Решения на базе сертифицированных криптошлюзов

Криптошлюзы позволяют осуществить защищенный доступ удаленных абонентов к ресурсам корпоративной информационной системы (рис. 1). Доступ производится с использованием специального программного обеспечения, которое устанавливается на компьютер пользователя (VPN-клиент) для осуществления защищенного взаимодействия удаленных и мобильных пользователей с криптошлюзом. Программное обеспечение криптошлюза (сервер доступа) проводит идентификацию и аутентификацию пользователя и осуществляет его связь с ресурсами защищаемой сети.

Рисунок 1. - «Удаленный доступ по защищенному каналу с

С помощью криптошлюзов можно формировать виртуальные защищенные каналы в сетях общего пользования (например, Internet), гарантирующие конфиденциальность и достоверность информации и организовывать виртуальные частные сети (Virtual Private Network - VPN), которые представляют собой объединение локальных сетей или отдельных компьютеров, подключенных к сети общего пользования в единую защищенную виртуальную сеть. Для управления такой сетью обычно используется специальное программное обеспечение (центр управления), которое обеспечивает централизованное управление локальными политиками безопасности VPN-клиентов и криптошлюзов, рассылает для них ключевую информацию и новые конфигурационные данные, обеспечивает ведение системных журналов. Криптошлюзы могут поставляться как программные решения, так и как аппаратно-программные комплексы. К сожалению, бол

СОДРЕЖАНИЕ
ВВЕДЕНИЕ
ГЛАВА 1 ЗАЩИТА ИНФОРМАЦИИ В КАНАЛАХ СВЯЗИ И СОЗДАНИЕ ЗАЩИЩЕННЫХ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ 3
ГЛАВА 2 УДАЛЕННЫЙ ДОСТУП К ИНФОРМАЦИОННЫМ РЕСУРСАМ. ЗАЩИТАИНФОРМАЦИИ, ПЕРЕДАВАЕМОЙ ПО КАНАЛАМ СВЯЗИ 4
2.1 Решения на базе сертифицированных криптошлюзов 5
2.2 Решения на базе протокола IPSec 7
ГЛАВА 3 ТЕХНОЛОГИИ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ ВИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ (ИТС) 11
ЗАКЛЮЧЕНИЕ

Защита (безопасность) информации является неотъемлемой составной частью общей проблемы информационной безопасности, роль и значимость которой во всех сферах жизни и деятельности общества и государства на современном этапе неуклонно возрастают.
Производство и управление, оборона и связь, транспорт и энергетика, банковское дело, финансы, наука и образование, средства массовойинформации все больше зависят от интенсивности информационного обмена, полноты, своевременности, достоверности и безопасности информации.
В связи с этим проблема безопасности информации стала предметом острой озабоченности руководителей органов государственной власти, предприятий, организаций и учреждений независимо от их организационно-правовых форм и форм собственности.
Бурное развитие средстввычислительной техники открыло перед человечеством небывалые возможности по автоматизации умственного труда и привело к созданию большого числа разного рода автоматизированных информационно-телекоммуникационных и управляющих систем, к возникновению принципиально новых, так называемых информационных технологий.
При выработке подходов к решению проблемы компьютерной, информационной безопасности следует всегдаисходить из того, что защита информации и вычислительной системы не является самоцелью. Конечной целью создания системы компьютерной безопасности является защита всех категорий субъектов, прямо или косвенно участвующих в процессах информационного взаимодействия, от нанесения им ощутимого материального, морального или иного ущерба в результате случайных или преднамеренных воздействий на информацию исистемы ее обработки и передачи.

ГЛАВА 1 ЗАЩИТА ИНФОРМАЦИИ В КАНАЛАХ СВЯЗИ И СОЗДАНИЕ ЗАЩИЩЕННЫХ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ

В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а такжеобеспечение высокого уровня безопасности информационных потоков между ними.
Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешнихканалов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.
Защита информации при передаче между виртуальными подсетями реализуется наалгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.ГЛАВА 2 УДАЛЕННЫЙ ДОСТУП К ИНФОРМАЦИОННЫМ РЕСУРСАМ. ЗАЩИТАИНФОРМАЦИИ, ПЕРЕДАВАЕМОЙ ПО КАНАЛАМ СВЯЗИ

При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных.

Методы защиты информации в канале связи можно разделить на две группы:

· методы, основанные на ограничении физического доступа к линии и аппаратуре связи

· методы, основанные на преобразовании сигналов в линии к форме, исключающей (затрудняющей) для злоумышленника восприятие или искажение содержания передачи.

Методы первой группы в рассматриваемом варианте построения защищенной связи имеют весьма ограниченное применение, так как на основном протяжении линия связи находится вне ведения субъекта, организующего защиту. В то же время, по отношению к аппаратуре терминала и отдельных участков абонентской линии применение соответствующих мер необходимо.

Ограничение физического доступа предполагает исключение (затруднение):

• непосредственного подключения аппаратуры злоумышленника к электрическим цепям аппаратуры абонентского терминала;

• использования для перехвата информации электромагнитных полей в окружающем пространстве и наводок в отходящих цепях, сети питания и заземления;

• получение злоумышленником вспомогательной информации об используемом оборудовании и организации связи, облегчающей последующее несанкционированное вмешательство в канал связи.

Методы преобразования речевого сигнала, препятствующий перехвату информации:

-А. Частотные преобразования

-А2.2.Переменная перестановка под управлением криптоболоков

-Б. Временные преобразования

-Б2.2.Переменная перестановка под управлением криптоблока

-B.Преобразование в код с последующим шифрованием:

-B1.Кодирование звука со скоростью 32-64Кб/сек.

-В2.Кодирование голоса со скоростью 1,2-4,8Кб/сек.

АБ – комбинированные мозаичные преобразования = связь А1 и Б1, связь А2.2. и АБ, Б2.2. и АБ


24. Способы и средства защиты информации в функциональных каналах связи. Защита речевой информации в канале связи путем преобразования сигнала. Защита цифровой информации.

Способы защиты от утечки по радиоэлектронному каналу:

Для защиты информации, передаваемой по функциональным каналам связи наиболее эффективным является применение информационных методов скрытия информации, а именно шифрования. Следует отметить, что для защиты информации, передаваемой по радиоканалу, из технических методов защиты именно информационные будут единственно приемлемы. Это объясняется тем, что носитель информации (электромагнитная волна) не имеет четких границ в пространстве и локализовать ее какими либо техническими средствами невозможно.

Для защиты информации, передаваемой по проводным линиям связи возможно применить методы энергетического скрытия. Это возможно из-за того, что проводник имеет четкие границы в пространстве. Для защиты от бесконтактного съема из пассивных способов применяют экранирование кабелей с заземлением экрана, из активных – линейное зашумление.

Для защиты от утечки информации по электрическому каналу из пассивных способов применяют фильтрация, ограничение опасных сигналов, защитное отключение, а также экранирование линий, выходящих за пределы контролируемой зоны с заземлением экранирующей оболочки. В отличие от защиты проводного функционального канала связи, в этом случае экранируются участки проводника, проходящие рядом с техническими средствами и другими проводниками, несущими информацию ограниченного доступа, с целью исключения взаимного влияния и наведения в проводнике, выходящем за пределы контролируемой зоны информационного сигнала.




Средства защиты.

Фильтры - электронные устройства, которые пропускают сигналы одного диапазона (диапазонов) частот и не пропускают другого (других) диапазонов. Если фильтр пропускает сигналы низких частот и не пропускает сигналы высоких частот, то такие фильтры называются фильтры низких частот (ФНЧ). Если наоборот, то фильтры высоких частот (ВФЧ). ФНЧ используют для исключения (ослабления) просачивания информационных сигналов ТСПИ(технические средства приема, обработки, хранения и передачи информации), имеющих более высокие частоты, в цепи электропитания, заземления, в линии, выходящие за пределы контролируемой зоны.

Фильтр сетевой ФАЗА-1-10 предназначен для предотвращения утечки информации от ПЭВМ и других технических средств передачи информации по линиям питающей сети, выходящими за пределы выделенного помещения или за границы контролируемой зоны, за счет подавления наводок опасных (информативных) сигналов.

Активным способом защиты является линейное зашумление. Системы линейного зашумления (СЛЗ) применяются в случаях:

· недостаточных уровней переходных затуханий между влияющими и подверженными влиянию кабелями и соединительными линиями;

· воздействия на цепи, провода и устройства вспомогательной аппаратуры низкочастотных электромагнитных полей основной аппаратуры;

· наличия электроакустических преобразований во вспомогательной аппаратуре.

Изделие Соната-РК1 предназначено для активной защиты объектов ЭВТ (объектов информатизации) от утечки информации в форме информативных электрических сигналов и наводок по сети электропитания, системе заземления, инженерным коммуникациям, а также за счет паразитных электромагнитных излучений. Зашумление цепей электропитания и заземления осуществляется путем непосредственной подачи электрического сигнала в линии и (или) возникновения шумового сигнала от излучения, создаваемого изделием.

К мероприятиям защиты информации от утечки по электромагнитному каналу с использованием пассивных средств относятся локализация излучений путем экранирования и заземления технических средств, а также экранирование целых помещений.

Изделие обеспечивает снижение уровней ПЭМИН от устанавливаемых технических средств в широком диапазоне частот и предназначены для экранирования рабочих мест и помещений для обработки режимной информации и проведения испытаний (мониторинга) различной радиоэлектронной на наличие ПЭМИН (Побочные ЭлектроМагнитные Излучения и Наводки).

К техническим мероприятиям с использованием активных средств относятся пространственное зашумление.

Системы пространственного электромагнитного зашумления коллективные (СПЗ-К) или индивидуальные (СПЗ-И) применяются для создания маскирующих помех в окружающем ОТСС(Основные технические средства и системы) или ВТСС(Вспомогательные технические средства и системы) пространстве.

В состав СПЗ, как правило, входит следующее оборудование:

· усилители, обеспечивающие необходимую мощность маскирующих шумов в заданном диапазоне частот;

· согласующие и коммутирующие устройства;

· пульты контроля токов и напряжений в оконечных устройствах.

Устройство активной защиты информации ВЕТО-М предназначено для радиоэлектронного подавления технических средств негласного съема информации и систем дистанционного управления, использующих радиоканал, а также маскировки побочных электромагнитных излучений технических средств и систем, обрабатывающих конфиденциальную информацию и (или) установленных в помещениях, предназначенных для проведения секретных совещаний. Помимо задач противодействия техническим средствам разведки прибор может использоваться для блокирования каналов дистанционного управления радиоуправляемых взрывных устройств.

Защита речевой информации в канале связи путем преобразования сигнала.

Существует несколько типов преобразования.

1. Преобразования с инверсией спектра и статическими перестановками спектральных компонент речевого сигнала

Процесс инверсии спектра сигнала при передаче и его восстановления при приеме иллюстрируется на рисунке 2.


Схема инвертора представляет собой балансный смеситель. При частоте гетеродина (маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр.) Fг, равной сумме граничных частот Fн и Fв преобразуемого сигнала (3700 Гц для стандартного телефонного канала с Fн = 300 Гц и Fв = 3400 Гц) нижняя полоса частот после смесителя воспроизводится в исходной полосе частот, т.е. в полосе канала в инверсном виде. При приеме производится повторная инверсия и исходный сигнал восстанавливается.

Качество восстановленной речи зависит от качества (на передающей и на приемной сторонах) смесителей, фильтров, ограничивающих спектр входного сигнала и выделяющих нижнюю полосу частот преобразованного сигнала, а также от коррекции на приемной стороне частотных искажений канала, влияние которых также сказывается инверсно: затухание канала в высокочастотной части спектра на приеме сказывается в низкочастотной части сигнала и наоборот.

При перехвате сигнал с инвертированным спектром может быть легко восстановлен любым аналогичным аппаратом, а при соответствующей тренировке — воспринят человеком непосредственно.

Для повышения стойкости защиты некоторые изготовители вводят переменную частоту гетеродина, устанавливаемую партнерами по договоренности в форме числового кода-пароля, вводимого в аппарат при переходе в защищенный режим.

Возможности такого дополнительного частотного сдвига, приводящего к несовпадению спектра передаваемого сигнала и номинальной частотной полосы канала связи и, соответственно, к ухудшению качества восстановленной речи, ограничены несколькими сотнями герц. Достигаемый эффект весьма условен. При прослушивании восстановленного сигнала, в случае неравенства частот гетеродинов на передаче и на приеме, в первый момент возникает ощущение неестественной и непонятной речи, которое, однако, почти не мешает воспринимать ее смысл после некоторой адаптации.

Наиболее существенным положительным качеством рассматриваемого преобразователя) является её автономность, т.е. отсутствие необходимости во взаимной синхронизации передающего и приемного аппарата и, соответственно, отсутствие задержки связи на время проведения синхронизации и возможных срывов защищенного режима из-за качества канала, недостаточного для проведения синхронизации. Если удалось установить связь в открытом режиме после включения партнерами инверторов будет реализован и защищенный режим.

Положительными качествами такой аппаратуры также являются:

• дешевизна (цены инверторов спектра порядка 30 — 50 USD);

• возможность построения схем, не вносящих задержку сигнала;

• малая критичность к качеству используемого канала связи и предельная простота в управлении.

Аппаратура может включаться между телефонным аппаратом и линией в стандартный двухпроводной стык между телефонным аппаратом и микротелефонной трубкой, может использоваться в виде накладки на микротелефонную трубку с акустической передачей преобразованного сигнала. Переход в защищенный режим происходит по взаимной договоренности партнеров после установления соединения. Переход происходит немедленно после нажатия соответствующей клавиши (или другого управляющего действия). Включение и выключение защищенного режима осуществляется каждым партнером самостоятельно, синхронизация действий не требуется.
При разговоре в линии прослушивается характерный сигнал, по структуре полностью повторяющий передаваемую речь. Восстановленный сигнал имеет высокое качество. В дешевых аппаратах с недостаточной фильтрацией возможно наличие свистящих тонов и изменение тембра голоса говорящего. Наличие посторонних шумов в помещении, из которого ведется передача, сказывается на качестве восстановленного сигнала так же, как в открытом режиме, на стойкость защитного преобразования почти не влияет.

2. Преобразования с временными перестановками (скремблированием) и временной инверсией элементов речевого сигнала со статическим законом перестановки.

Данный класс аппаратуры требует наличия в своем составе блока запоминания сигнала с управляемым доступом по записи и считыванию. Временная перестановка элементарных отрезков речевого сигнала и восстановление их последовательности на приеме занимают соответствующий интервал времени. Поэтому обязательным свойством такой аппаратуры является заметная задержка сигнала на приемной стороне. Процессы преобразования сигнала показаны на рисунке 4.


Чем меньше длительность элементарных отрезков, на которые разбивается исходный речевой сигнал и чем больше элементов участвуют в операции перестановки, тем сложнее процесс восстановления речи по перехваченному линейному сигналу.

Однако при передаче по каналу связи возникают краевые искажения элементарных отрезков. При восстановлении речи на приемной стороне это приводит к появлению “сшивок”, ухудшающих качество восстановленного сигнала. С учетом характеристик реальных телефонных каналов длительность элементарных отрезков сигнала ограничена снизу на уровне 15 — 20 миллисекунд.

Увеличение числа перемешиваемых элементов мозаики — увеличение “глубины перестановки” — ограничено возрастанием задержки восстановленного сигнала на приеме. При диалоге заметные неудобства возникают при задержке более 0,3 сек, а при задержке более 1 сек диалог становится невозможным. Оба указанных фактора определяют глубину перестановки на уровне 16 — 64 элементарных отрезков речи.

Маскирующее воздействие на структуру сигналов в линии связи может быть достигнуто временной инверсией (воспроизведением в обратном направлении по отношению к записи) всех или отдельных отрезков. Такое преобразование неэффективно на коротких отрезках (с продолжительностью менее длительности одного элементарного звука речи). Применение длинных отрезков уменьшает возможность их перемешивания. Поэтому временная инверсия применяется исключительно как дополнительное преобразование в комбинации с временными перестановками. При этом наиболее эффективна временная инверсия всех отрезков.

Временные перестановки и временная инверсия при правильном выборе параметров перестановки исключают непосредственное прослушивание речи в канале связи, но при анализе записи или при оперативном анализе сигнала на месте перехвата статическая перестановка, повторяющаяся из кадра в кадр, легко выявляется по спектральным и амплитудным связям отрезков, в результате чего исходная речь может быть восстановлена с применением несложной аппаратуры (ПЭВМ с аудиоплатой).

В то же время по своему составу и сложности алгоритма аппаратура с фиксированными перестановками незначительно отличается от аппаратуры с переменными перестановками, управляемыми криптоблоком. Поэтому в настоящее время для цепей защиты информации применяются почти исключительно аппараты с переменными перестановками.

3. Преобразования с временными или частотными перестановками (скремблированием) с переменными перестановками под управлением криптоблока и комбинированные мозаичные преобразования

Применение переменных перестановок позволяет значительно затруднить восстановление исходной речи по перехвату сигнала в канале. При правильном выборе криптоалгоритма удачный подбор перестановки на одном интервале никак не способствует подбору перестановок на последующих интервалах. Кроме того, введение криптоалгоритма с индивидуальным ключом исключает возможность использования для перехвата однотипного аппарата.

Аппаратура строится на базе сигнальных процессоров, имеет в своем составе АЦП(Аналого-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код), ЦАП(Цифро-аналоговый преобразователь — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал), криптоблок управления перестановкой, систему ввода или формирования ключа. Обязательным этапом рабочего процесса является начальная синхронизация взаимодействующих аппаратов и их последующая подсинхронизация.

Как следствие, эта аппаратура заметно дороже аппаратуры частотной инверсии — 200 - 400 USD за единицу.

Основными положительными качествами аппаратуры мозаичных преобразований — скремблеров — являются:

• относительно высокая стойкость защиты передаваемого речевого сигнала, исключающая его непосредственное прослушивание даже при наличии группы высокотренерованных аудиторов и требующая для восстановления речи значительных затрат времени при использовании специализированных измерительно-вычислительных комплексов, применяемых государственными спецслужбами;

• относительно низкая стоимость;

• простота эксплуатации (для моделей, специально разработанных для непрофессионального пользователя).

К недостаткам данного класса аппаратуры следует отнести:

• задержку восстановленного сигнала на приемной стороне, требующую привыкания и затрудняющую диалог;

Читайте также: