Реферат приближенный решение уравнений графические и численные методы решения уравнений

Обновлено: 02.07.2024

Вид занятия: практическая работа с использованием компьютера.

Продолжительность занятия: два урока.

Цель: Научиться решать уравнения с заданной точностью на заданном отрезке.

  • развитие исследовательской, познавательной деятельности учащихся;
  • развитие умений использовать различные программные средства при решении одной задачи;
  • развитие коммуникативных способностей учащихся.

Методы обучения: наглядный, исследовательский, практический.

  • компьютер;
  • локальная сеть;
  • проектор.
  1. Операционная система Windows;
  2. Microsoft Excel из пакета Microsoft Office;
  3. Microsoft Visual Basic 6.0.
  1. Организационный момент.
  2. Создание проблемной ситуации.
  3. Использование графического метода для приближенного решения уравнений в электронных таблицах.
  4. Изучение метода половинного деления при решении уравнений.
  5. Моделирование листа электронных таблиц для приближенного решения уравнения методом половинного деления.
  6. Моделирование проекта “Приближенное решение уравнения” на объектно-ориентированном языке Visual Basic 6.0.
  7. Компьютерный эксперимент.
  8. Анализ полученных результатов.
  9. Подведение итогов урока.

1. Организационный момент.

2. Создание проблемной ситуации.

– Сегодня нам предстоит решить задачу нахождения приближенного корня уравнения cos(x)=x, используя различные программные средства. Запишите тему урока: “Приближенное решение уравнений разными инструментальными средствами.”

– Пока вы не знаете никаких математических приемов решения этого уравнения, но знаете программу, в которой можно приближенно решить его графическим способом. Какая это программа? (Microsoft Excel.)

3. Использование графического метода для приближенного решения уравнений в электронных таблицах.

– В чем смысл метода? (Нужно построить график функции y = cos(x)–x на некотором отрезке, абсцисса точки пересечения графика с осью OX является корнем уравнения cos(x)=x.)

– Что нужно определить для построения графика? (Отрезок, на котором существует корень.)

– Сделайте это математическим методом. (Множеством значений левой части уравнения, функции y = cos(x), является отрезок [-1; 1]. Поэтому уравнение может иметь корень только на этом отрезке.)

– Итак, найдите приближенный корень уравнения cos(x)=x на отрезке [-1; 1] с шагом, например, 0,1 в программе Microsoft Excel.


– Приближенный корень уравнения х=0,75. Однако это приближение не обладает высокой точностью. Для нахождения приближенного корня уравнения с указанной заранее точностью используются математические методы, в частности, метод половинного деления.

4. Изучение метода половинного деления при решении уравнений.

Рассмотрим непрерывную функцию f(х), такую, что корень данного уравнения является точкой пересечения графика этой функции с осью ОХ.

Идея метода половинного деления состоит в сведении первоначального отрезка [а; b], на котором существует корень уравнения, к отрезку заданной точности h.

Процесс сводится к последовательному делению отрезка пополам точкой с=(а+b)/2 и отбрасыванию половины отрезка ([a; c] или [c; b]), на которой корня нет. Выбирается тот отрезок, на концах которого функция принимает значения разных знаков, т.е. произведение этих значений отрицательно. Функция на этом отрезке пересекает ось абсцисс. Концам этого отрезка вновь присваивают обозначения a, b.

Это деление продолжается до тех пор, пока длина отрезка не станет меньше удвоенной точности, т.е. пока не выполнится неравенство (b-a)/2 = e

Практическая работа

Приближенное решение уравнений

Приближенное решение уравнений

Представить функцию в табличной форме, построить ее график, который позволит определить корни уравнения грубо приблизительно.

Представить заданное уравнение в табличной форме.

Для грубо приближенного определения корня построить диаграмму типа график. По графику грубо приближенно можно определить, что х=0,8.


Для поиска решения с заданной точностью используем метод Подбор параметра. Точность подбора зависит от заданной точности представления чисел в ячейках таблицы (например, до трех знаков после запятой). Методом подбора параметра необходимо определить значение аргумента х (ячейка В14) равно нулю.

Выделить ячейку со значением функции В14 и ввести команду [Сервис-Подбор параметра…].

На панели Подбор параметра в поле Значение ввести требуемое значение функции (в данном случае 0).

В поле Изменяя значение ячейки ввести адрес ячейки $А$14, в которой будет производиться подбор значения аргумента, и щелкнуть по кнопке ОК.


На панели Результат подбора параметра будет выведена информация а величине подбираемого и подобранного значений.


В ячейке аргумента А14 появится подобранное значение 0,929. Таким образом, корень уравнения х=0,929 найден с заданной точностью.

Аналогично определите второй корень уравнения.

Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .


Описание презентации по отдельным слайдам:

Приближенное решение уравнений c помощью электронных таблиц MS EXСEL

1 способ графического решения уравнений с одним неизвестным Пусть дано уравнение f(x)=g(x). Приведем это уравнение к виду f(x)-g(x)=0 Введем функцию у=f(x)-g(x). Построим график этой функции Количество точек пересечения графика с осью абсцисс дает число корней уравнения Абсциссы точек пересечения и есть решения данного уравнения

2 способ графического решения уравнений с одним неизвестным Пусть дано уравнение f(x)=g(x). Введем функции у= f(x) и у =g(x). Построим графики этих функций в одной системе координат. Количество точек пересечения дает число корней уравнения. Абсциссы точек пересечения и есть решения данного уравнения.

Алгоритм использования команды Подбор параметра: Решить нужную задачу с каким – либо начальным значение параметра; Выбрать команду Подбор параметра в меню Сервис; В появившемся окне диалога Подбор параметра в поле Установить в ячейке указывается адрес ячейки, значение в которой нужно изменить (такая ячейка называется целевой); В поле Значение – то числовое значение, которое должно появиться в целевой ячейке; В поле Изменяя значение ячейки ввести ссылку на ячейку с параметром

Использование надстройки Подбор параметра для 1 способа По графику видно, что ближайший аргумент к точке пересечения оси Х с графиком функции равен -1,1. По таблице значений функции можно определить, что этот аргумент функции хранится в ячейке А5 Выделить ячейку В5 со значением функции и выполним команду Сервис-Подбор параметра…. В диалоговом окне в поле Значение: ввести требуемое значение функции (0). В поле Изменяя значение ячейки: ввести адрес $A$5, в который будет производится подбор значения аргумента. Кнопка ОК В ячейке аргумента A5 появится подобранное значение – 1,296. Корень уравнения найден с заданной точностью.

Графическое решение систем уравнений с двумя неизвестными Пусть дана система уравнений f(x,y)=0 и y(x,y)=0 1. Рассмотрим каждое из них в виде y=f(x) и y=u(x); 2. Построим эти кривые на одном графике; 3. Определим координаты точек их пересечения, что будет являться решением исходной системы уравнений.

х1≈-0,5 у1≈5 х2≈1,5 у2≈5




Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .

1 способ графического решения уравнений с одним неизвестным

Пусть дано уравнение

Приведем это уравнение к виду f(x) — g(x) =0 Введем функцию у= f ( x )- g ( x ). Построим график этой функции Количество точек пересечения графика с осью абсцисс дает число корней уравнения

Абсциссы точек пересечения и есть решения данного уравнения 2 способ графического решения уравнений с одним неизвестным

Пусть дано уравнение f(x)=g(x) .

Введем функции у= f ( x ) и у = g ( x ). Построим графики этих функций в одной системе координат. Количество точек пересечения дает число корней уравнения. Абсциссы точек пересечения и есть решения данного уравнения.

  • Барсуков Сергей ВладимировичНаписать 1577 16.01.2015

Номер материала: 306027

Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .

    16.01.2015 2520
    16.01.2015 1574
    16.01.2015 784
    16.01.2015 489
    16.01.2015 383
    16.01.2015 572
    16.01.2015 647

Не нашли то что искали?


Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Сергеева Светлана Александровна

Работа посвящена исследованию методов приближенного решения уравнений. Рассмотрены следующие методы приближенногорешения уравнений: метод половинного деления, метод хорд, метод касательных, комбинированный метод, построены компьютерные модели всех изученных методов на языке программирования Free Pascal. Модели позволили провести сравнительный анализ изученных методов и выбрать среди них оптимальный.

ВложениеРазмер
start_v_nauku.docx 161.16 КБ

Предварительный просмотр:

Городская научно – практическая конференция

Исследование методов приближенного решения уравнений

Секция: современное программирование

Автор: Сергеева Мария Сергеевна,

Руководитель: Сергеева Светлана Александровна

Учитель информатики 1 категории,

  1. Теоретическая часть 4
  1. Метод половинного деления 5
  2. Метод хорд 7
  3. Метод касательных 8
  4. Комбинированный метод хорд и касательных 9
  1. Практическая часть 11
  1. Компьютерная модель построения графика функции на языке программирования Free Pascal 11
  2. Компьютерная модель метода половинного деления 13
  3. Компьютерная модель метода хорд 14
  4. Компьютерная модель метода касательных 15
  5. Компьютерная модель комбинированного метода хорд и касательных 16
  6. Сравнительный анализ методов 17

На уроке алгебры при решении уравнений возникают ситуации, когда путем алгебраических преобразований уравнение решить невозможно. Для решения данной проблемы, существуют методы приближенного решения уравнений.

Актуальность темы обоснована тем, что с развитием компьютерной техники методы решения уравнений, основанные на большом количестве повторов, получают возможность широкого применения.

Цель : нахождение оптимального метода приближенного решения уравнения.

  1. Изучить методы приближенного решения уравнения:
  1. метод половинного деления
  2. метод хорд
  3. метод касательных
  4. комбинированный метод
  1. Создать компьютерные модели приближенного решения уравнений с помощью всех методов на языке программирования Free Pascal.
  2. Провести сравнительный анализ методов.

Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.) называются трансцендентными.

Методы решения нелинейных уравнений делятся на две группы:

  1. точные методы;
  2. итерационные методы (за счет последовательных приближений получить решение уравнения с необходимой точностью).

Точные методы решения уравнений основываются на поиске равносильных преобразований алгебраических выражений, например, перенос слагаемых из одной части уравнения в другую с противоположным знаком, деление обеих частей уравнения на одинаковое число не равное 0, а также точные способы решений позволяют записать корни уравнения в виде некоторого конечного соотношения (формулы). Точные решения существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.), поэтому для большинства уравнений приходится использовать методы приближенного решения с заданной точностью (графические или численные). В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение выше четвертой степени.

Точные методы решения Приближенные методы решения

Например, уравнение x3+cos x=0 нельзя решить путем равносильных алгебраических преобразований. Но это уравнение можно решать приближенно графическими и численными методами.

Решение уравнения проводят численно в два этапа. На первом этапе производится отделение корней - поиск интервалов, на которых содержится только по одному корню. Второй этап решения связан с уточнением корня на выбранном интервале (определением значения корня с заданной точностью). Далее будут рассмотрены несколько численных методов и приведены алгоритмы нахождения корней уравнений.

Отделение корней уравнения может проводиться графически, т.е. путем построения графика функции y=f(x). Для уравнения вида f (x) = 0 , где f(x) – некоторая непрерывная функция, корень (или корни) этого уравнения являются точкой (или точками) пересечения графика функции с осью абсцисс.

Решение уравнений с заданной точностью

Метод половинного деления

f(x)=0,
где f(x) - непрерывная функция

Отделение корней уравнения можно осуществить путем построения компьютерных моделей:

  1. построение графика функции с помощью одного из языков программирования (в данном случае Free Pascal);
  2. построение графика функции в электронных таблицах Microsoft Excel путем построения диаграммы типа График .

Рассмотрим методы уточнения корней и их основные идеи. Отметим следующий момент: при прочих равных условиях, тот метод уточнения корней будет более эффективен, в котором результат с той же погрешностью найден за меньшее число раз вычисления функции f(x).

1.1. Метод половинного деления

Самый простой из них – метод половинного деления, или иначе метод дихотомии. Метод дихотомии получил свое название от древнегреческого слова διχοτομία, что в переводе означает деление надвое. Его мы используем довольно часто. Допустим, играя в игру "Угадай число", где один игрок загадывает число от 1 до 100, а другой пытается его отгадать, руководствуясь подсказками "больше" или "меньше". Логично предположить, что первым числом будет названо 50, а вторым, в случае если оно меньше - 25, если больше - 75. Таким образом, на каждом этапе неопределенность неизвестного уменьшается в 2 раза. Т.е. даже самый невезучий в мире человек отгадает загаданное число в данном диапазоне за 7 предположений вместо 100 случайных утверждений.

Алгоритм метода половинного деления основан на теореме Больцано - Коши о промежуточных значениях непрерывной функции и следствии из неё.

Теорема Больцано - Коши: если непрерывная функция принимает два значения, то она принимает любое значение между ними.

Следствие (теорема о нуле непрерывной функции): если непрерывная функция принимает на концах отрезка положительное и отрицательное значения, то существует точка, в которой она равна 0.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МБОУ Алтайская СОШ №1

Учащаяся 9 а класса

МБОУ Алтайская СОШ №1

Бабаева Галина Яковлевна,

МБОУ Алтайской СОШ №1

С. Алтайское , Алтайский район, 2019 год.

II . Основная часть

2. Как графически решить уравнение________________________стр.4

3. Какие бывают функции ?________________________________стр.4

4. Графическое решение линейного уравнения с одной переменной.стр.5

5. Решение квадратного уравнения графическим способом._____ стр6-8

8. Решение линейных неравенств графическим способом стр 14

IV . Список литературы______________________________________стр.16

I .Введение.

Цель моей работы – изложить графический метод решения уравнений и неравенств, который дает возможность определить корни или доказать ,что уравнение корней не имеет ( или решением неравенства является пустое множество).

Актуальность темы : графический метод, опирающийся на знания элементарных функций, удобно применять при решении задач на нахождение числа корней и на нахождение корней уравнений.

Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решать многие задачи и порой является единственным средством решения. Кроме того, умение строить графики функций представляет большой самостоятельный интерес. В данной исследовательской работе я показала как наиболее удобным способом преобразовывать уравнения . чтобы сводить к построению элементарных функций.

Часто построение графиков связано с исследованием поведения функций. Однако необходимость построения графиков не ограничивается только этим. В ряде случаев графики облегчают нахождение решений уравнений и неравенств, сокращая и упрощая аналитические выкладки, и часто при этом являются единственным методом решения таких задач. Данный метод может использоваться не только для одиночных уравнений, но и для их систем, а также неравенств

II . Основная часть

1.Основные понятия.

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим. Графиком функции y = f(x) называется множество всех точек координатной плоскости.

Заметим , что так как функция f сопоставляет каждому x D(f) одно число f(x) , то график функции f пересекается любой прямой, параллельной оси ординат, не более, чем в одной точке. И наоборот: всякое непустое множество точек плоскости, имеющее со всякой прямой, параллельной оси ординат, не более одной общей точки, является графиком некоторой функции.

Не всякое множество точек координатной плоскости является графиком какой-либо функции. Например, множество точек окружности не может быть графиком функции, поскольку значению абсциссы внутри окружности, соответствует два значения ординаты.

В общем случае уравнение с одной переменой х можно записать в виде f(x)=g(x),где f(x) и g(x) - некоторые функции. Функция f(x) является левой частью , а g(x) - правой частью уравнения.

Тогда для решения уравнения необходимо построить в одной системе координат графики функций f(x) и g(x). Абсциссы точек пересечения будут являться решениями данного уравнения.

Использование монотонности функций при решении уравнений: если функция строго возрастает, а функция строго убывает на некотором множестве, то графики этих функций имеют не более одной точки пересечения, а уравнение на этом множестве имеет не более одного решения. Поэтому, чтобы решить такие уравнения можно подобрать (если это удается) число, которое является их корнем.

2. Как графически решить уравнение.

Иногда уравнения решают графическим способом. Для этого надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Графическим решением уравнения являются абсциссы точек пересечения графиков построенных функций. Графики могут пересекаться в нескольких точках, в одной точке, вообще не пересекаться. Отсюда следует, что уравнение может иметь несколько корней, или один корень, или вообще их не иметь.

3. Какие бывают функции .

Линейная функция задаётся уравнением у = k*x+ b , где k и b – некоторые числа. Графиком этой функции является прямая. Для построения прямой достаточно в таблице значений взять только две точки. Это вытекает из аксиомы планиметрии

Функция обратной пропорциональности у =k/x , где. График этой функции называется гиперболой.

Функция (х– a)^2+ (у – b)^2 = r^2 , где а , b и r – некоторые числа. Это окружность радиуса r с центром в т. А ( а , b ).

Квадратичная функция y = a *х 2 + b*x+ c , где а, b, с – некоторые числа и

а не равно 0. Графиком этой функции является парабола.

Графики линейных функций, содержащих выражение под знаком модуля.

Для построения графиков функций, содержащих выражение под знаком модуля, сначала находят корни выражений, стоящих под знаком модуля. Эти корни разбивают числовую прямую на промежутки. График строят в каждом промежутке отдельно.

В простейшем случает, когда только одно выражение стоит под знаком модуля и нет слагаемых без знака модуля, можно построить график функций,

опустив знак модуля, а затем часть графика, расположенного в области отрицательных значений y , отобразить симметрично оси ОХ.

Элементарная функций, содержащая модуль :

4. Графическое решение линейного уравнения с одной переменной.

Как мы уже знаем, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и уравнение решено. Мы нашли корень .А я покажу , как это сделать графическим способом.

Задание . Решить графическим способом уравнение : 2 x − 10 = 2

1)Перенесем слагаемые следующим образом: 2 x = 12.

2) Построим графики функций: y=2x и y=12.

hello_html_m3d96e5be.jpg

Но можно решать и по-другому.

Для рассмотрения альтернативного решения вернемся к нашему уравнению:

Построим графики функций: y=2 x − 10 y =2

hello_html_m39f4a76a.jpg

5. Решение квадратного уравнения графическим способом.

Задание. Решить уравнение : х 2 + 2 x − 8 = 0

Для этого преобразуем уравнение к виду: х 2 =-2x+8 . Построим графики функций: у = -2x+8 и у = х 2

hello_html_m56ee200d.jpg

Получим точки пересечения графиков данных функций.

В ответ запишем абсциссы этих точек : x = -4 и x =2.

Данное уравнение можно решить , переписав уравнение следующим образом: x^2 – 8 = -2x

Тогда будем строить графики функций: y = x^2 – 8 и y = -2x.

А также уравнение можно решить , переписав следующим образом:

Тогда будем строить графики следующих функций : y = x^2 + 2x и y = 8 .

При этом абсциссы точек пересечения графиков будут одинаковые :

Задание. Решить уравнение: x² – 2x = 0

Перепишем уравнение в виде : x² = 2x

Построим графики функций y = x² и y = 2 и найдем точки их пересечения :

hello_html_5f46f16f.jpg

Задание. Решить уравнение: х 2 +2=0

Преобразуем так: х 2 = -2

Построим графики функций: у=-2 и у= х 2

hello_html_m37717ef6.jpg

Графики функций не пересекаются ,поэтому уравнение решений не имеет.

Ответ : решений нет.

6. Графическое решение смешанных уравнений.

Задание. Решить уравнение: 3/х +2 =х

1)Перенесем слагаемые таким образом: 3/ х = х-2

2) Построим графики функций от каждой части уравнения.

hello_html_m47e95ab.jpg

hello_html_19c3e438.jpg

Найдем координаты точек пересечения графиков данных функций.

Из построения видно, что графики функций пересекаются в точках с координатами : (3;1) и(-1;-3).

Задание. Решить уравнение: 2 х^3 – x - 1=0

Перепишем его так : 2 х 3 = x + 1

Построим графики функций от левой и правой части уравнения:

у= 2 х 3 (графиком этой функции является кубическая парабола) и график от правой части уравнения :у=х+1

hello_html_m20054f1b.jpg

Из построения видно, что абсцисса точки пересечения является х=1. значит, в ответ нужно записать: х=1

Решим графическим способом такое уравнение : х 3 =8.

Строим графики функций: у = х 3 и у=8., затем найдем абсциссу точки пересечения графиков этих функций.

Задание. Решить уравнение: √x – 0.5x = 0

Перепишем так: √x = 0.5x

Построим графики функций: у= 0.5x и у = √x

hello_html_m3c58063c.jpg

Как видно из построения, графики функций пересекаются в двух точках:

Нас интересует только координата x.

Значит уравнение √x – 0.5x = 0 имеет два корня: x 1 = 0 и x 2 = 4.

7. Решение квадратных неравенств графическим способом.

hello_html_m420bf54.jpg

Способ , который нам хорошо известен при изучении данной темы по учебнику.

Я же предлагаю переписать неравенство следующим образом : х^2-4>3х.

Построим графики функций от левой и правой частей неравенства.

Выделим ту часть, где график от левой части выше графика от правой части.

На мой взгляд такое решение более красивое , интересное и более понятное.

hello_html_35f8d5c.jpg

8. Решение линейных неравенств и систем неравенств графическим способом.

hello_html_5da72c49.jpg

,

Называют ся линейными неравенствами .

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения).

Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости.

С помощью математических операций и знака неравенства можно определить множество решений неравенства

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов.

Суть графического способа решения неравенств следующая:

рассматривают функции y = f(x) и y = g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого.

Те промежутки, на которых график функции у = f (х) выше графика функции y = g(х) являются решениями неравенства f(x)>g(x) ;

график функции y = f(х) не ниже графика функции y = g(x) являются решениями неравенства f(x) ≥ g(x) ;

график функции у = f (х) ниже графика функции y = g(х) являются решениями неравенства f(x) ;

график функции y = f(х) не выше графика функции y = g(х) являются решениями неравенства f(x) ≤ g(x) .

Также скажем, что абсциссы точек пересечения графиков функций y = f(x) и y = g(x) , являются решениями уравнения f(x) = g(x) .

III . Заключение.

Мы рассмотрели графический метод решения уравнений и квадратных неравенств; рассмотрели конкретные примеры, при решении которых использовали некоторые свойства функций.

Иногда при графическом решении некоторых уравнений и неравенств корни определяются только приближённо в силу того, что невозможно с высокой точностью построить график функции, измерить абсциссы или ординаты точек пересечения графика с осями координат или с другими графиками. Тем не менее, той точности, которую обеспечивает графический метод, бывает вполне достаточно для практических нужд.

Построение графиков основывается на знании основных элементарных функций, и на основные методы построения графиков функций. В работе представлено достаточное количество примеров, раскрывающих графический метод решения линейных и квадратных уравнений и неравенств, который доступен для понимания .

Работа может быть использована для углубления и расширения знаний в области построения графиков функций и использовании графического метода при решении некоторых видов уравнений и неравенств. Теорию можно использовать так же при подготовки к экзаменам , к олимпиадам.

Это и закрепление изученных свойств функций, и прекрасная демонстрация их применения на практике.

В старших классах я буду ещё знакомиться с другими функциями , с другими уравнениями и неравенствами и м не интересно будет продолжить свой проект.

где f(x) — заданная алгебраическая или трансцендентная функция.

Решить уравнение — значит найти все его корни, то есть те значения x , которые обращают уравнение в тождество.
Если уравнение достаточно сложно, то задача точного определения корней является в некоторых случаях нерешаемой. Поэтому ставится задача найти такое приближенное значение корня xПP , которое отличается от точного значения корня x* на величину, по модулю не превышающую указанной точности (малой положительной величины) ε , то есть

│x* – xпр │ ε также называют допустимой ошибкой , которую можно задать по своему усмотрению.

Этапы приближенного решения нелинейных уравнений

Приближенное решение уравнения состоит из двух этапов:

  • Отделение корней, то есть нахождение интервалов из области определения функции f(x) , в каждом из которых содержится только один корень уравнения f(x)=0 .
  • Уточнение корней до заданной точности.

Отделение корней

Отделение корней можно проводить графически и аналитически.
Для того чтобы графически отделить корни уравнения, необходимо построить график функции f(x) . Абсциссы точек его пересечения с осью Ox являются действительными корнями уравнения.

Для примера рассмотрим задачу решения уравнения

где угол x задан в градусах. Указанное уравнение можно переписать в виде

Для графического отсечения корней достаточно построить график функции

Из рисунка видно, что корень уравнения лежит в промежутке x∈(6;8) .

Аналитическое отделение корней


Аналитическое отделение корней основано на следующих теоремах.
Теорема 1 . Если непрерывная функция f(x) принимает на концах отрезка [a; b] значения разных знаков, т.е.

то на этом отрезке содержится по крайней мере один корень уравнения.
Теорема 2 . Если непрерывная на отрезке [a; b] функция f(x) принимает на концах отрезка значения разных знаков, а производная f'(x) сохраняет знак внутри указанного отрезка, то внутри отрезка существует единственный корень уравнения f(x) = 0 .

Уточнение корней

Для уточнения корней может использоваться один из следующих методов:

Метод последовательных приближений (метод итераций)

x=f(x)

Метод итерации — численный метод решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Суть метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным). Метод позволяет получить решение с заданной точностью в виде предела последовательности итераций. Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения решения.
Функциональное уравнение может быть записано в виде

Функцию f(x) называют сжимающим отображением .

xn=f(xn-1)

Последовательность чисел x0, x1 ,…, xn называется итерационной , если для любого номера n>0 элемент xn выражается через элемент xn-1 по рекуррентной формуле

а в качестве x0 взято любое число из области задания функции f(x) .

Реализация на C++ для рассмотренного выше примера

Уравнение может быть записано в форме

Метод Ньютона (метод касательных)

Если известно начальное приближение x0 корня уравнения f(x)=0, то последовательные приближения находят по формуле

Графическая интерпретация метода касательных имеет вид

Реализация на C++
Для заданного уравнения

производная будет иметь вид

Метод Ньютона

Результат выполнения

Метод секущих (метод хорд)

Если x0 , x1 - приближенные значения корня уравнения f(x) = 0 и выполняется условие

то последующие приближения находят по формуле

Методом хорд называют также метод, при котором один из концов отрезка закреплен, т.е. вычисление приближения корня уравнения f(x) = 0 производят по формулам:

Геометрическая интерпретация метода хорд:

Реализация на C++
В отличие от двух рассмотренных выше методов, метод хорд предполагает наличие двух начальных приближений, представляющих собой концы отрезка, внутри которого располагается искомый корень.

Реализация метода хорд

Результат выполнения

Метод половинного деления (метод дихотомии)

Если x0 , x1 - приближенные значения корня уравнения f(x) = 0 и выполняется условие

то последующие приближения находятся по формуле

и вычисляется f(xi) . Если f(xi)=0 , то корень найден. В противном случае из отрезков выбирается тот, на концах которого f(x) принимает значения разных знаков, и проделывается аналогичная операция. Процесс продолжается до получения требуемой точности.

Метод дихотомии

Геометрическая интерпретация метода дихотомии

Реализация на C++

Метод дихотомии


Результат выполнения

Для численного поиска решения также можно использовать генетические алгоритмы.

Читайте также: