Реферат по материаловедению цементация

Обновлено: 02.07.2024

При цементации сталь науглероживается на глубину 0,5—2 мм до содержания углерода в поверхностном слое 0,75—1,2%. Цементацию можно проводить в твердых, жидких или газообразных карбюризаторах.

Цементация в твердом карбюризаторе. Известно много составов карбюризаторов. Один из них представляет порошкообразную смесь, состоящую из древесного угля (около 70% по массе), углекислого бария (около 20—25% по массе) и углекислого кальция (до 2,5—3,5% по массе). Этой смесью пересыпают обрабатываемые детали, уложенные в металлические ящики. Эффективность цементации в значительной степени зависит от правильной укладки и засыпки смесью обрабатываемых деталей, а также от хорошей герметизации ящика до установки его в печь. Обычно на дно ящика насыпают слой карбюризатора толщиной 25—30 мм, на который укладывают первый ряд деталей. Эти детали засыпают новым слоем карбюризатора толщиной 15—20 мм и утрамбовывают его, а затем укладывают второй ряд деталей и т. д. Между деталями и стенками ящика оставляют расстояние 15—25 мм. Верхний слой карбюризатора имеет толщину 30—40 мм. Ящик закрывают сверху металлической крышкой. Кромки между крышками и стенками ящика обмазывают огнеупорной глиной, которая препятствует проникновению воздуха и печных газов внутрь ящика.

Подготовленные ящики загружают в горячую печь периодического или непрерывного действия и нагревают примерно до 900—950°С. Продолжительность этого нагревания определяется массой загруженных деталей; продолжительность цементации зависит от требуемой глубины слоя: как правило, за 1 ч углерод проникает на глубину примерно 0,1 мм.

Цементация стали в твердом карбюризаторе является сложным процессом и фактически происходит при участии газообразной фазы, которая формируется в ящике под действием высоких температур. В ящике остается воздух, абсорбированный древесным углем и заполняющий пространство между зернами карбюризатора. При 900—950°С кислород воздуха и углерод карбюризатора реагируют, образуя окись углерода

В присутствии железа окись углерода может частично диссоциировать с образованием атомарного углерода по реакции


Последний в момент выделения обладает большой активностью и легко диффундирует в γ-железо, насыщая его углеродом вплоть до образования в поверхностных слоях максимальной растворимости углерода в стали.

Рис 1. Глубина и микроструктура цементированного слоя стали по зонам

(схема структуры цементированной стали )
Углекислые соли, добавляемые к древесному углю, активизируют процесс науглероживания железа, регулируя давление и состав газовой фазы внутри ящика. Например, углекислый барий при высоких температурах разлагается по реакции

и является источником углекислого газа. Последний в свою очередь вступает во взаимодействие с древесным углем, увеличивая количество окиси углерода в ящике.

Глубина цементированного слоя и распределение углерода по сечению детали определяется по микроструктуре (рис. 1).
При газовой цементации над обрабатываемыми изделиями пропускают газы, которые при нагревании до высоких температур выделяют атомарный углерод. К газообразным карбюризаторам относят природный газ, светильный газ и смеси метана, этила, пропана и иных газов, получаемых при пиролизе керосина и других жидких нефтепродуктов.

Изделия, подлежащие цементации, укладывают в герметически закрытые ящики или муфели печей с температурой нагрева до 900— 950°С. Газ-карбюризатор пропускают в течение нескольких часов: при этом получают науглероженный слой необходимой толщины.

Газовая цементация, по сравнению с цементацией в твердых карбюризаторах, обеспечивает повышение скорости процесса, а следовательно, производительности труда, более точное регулирование процесса насыщения стали углеродом, упрощение механизации и автоматизации процесса, улучшение санитарно-гигиенических условий труда. После газовой цементации сразу возможно производить закалку.

При скоростной газовой цементации изделия нагревают токами высокой частоты до 1080—1100°С. В результате за 40—50 мин можно получить науглероженный слой толщиной 0,8—1 мм. После охлаждения до 870°С изделия сразу подвергают закалке.
Цементация стали в жидких средах. Эта цементация осуществляется весьма редко, обычно в расплавленных солях. Чаще всего применяют следующий состав солей: 83—84% кальцинированной соды, 8—10% поваренной соли, 7—8% черного корунда. В ванну такого состава погружают стальные детали и получают слой толщиной до 0,2 мм за 30—40 мин. Для получения слоя большей толщины часто применяют карбюризатор из четырех компонентов: 78—81% кальцинированной соды, 5—6% поваренной соли, 7—8% хлористого алюминия и 6—8% черного корунда.

Цементацию в жидких средах применяют для малоуглеродистой, среднеуглеродистой и малолегированной стали. Цементация протекает при 870—890°С для малоуглеродистых сталей, 820—840°С для среднеуглеродистых и 850—870°С для малоуглеродистых легированных сталей. Время выдержки зависит от заданной глубины слоя; ориентировочно 25—45 мин.

Цементация в жидких средах имеет ряд преимуществ по сравнению с цементацией в твердом карбюризаторе: более высокая скорость процесса, лучшая точность регулировки, возможность термообработки сразу после цементации; весь процесс в три-четыре раза экономичнее.

Цементация стали Образец 89281

Цементация металла – это вид термической обработки металлов с использованием дополнительного химического воздействия. Атомарный углерод внедряется в поверхностный слой, тем самым его насыщая. Насыщение стали углеродом, приводит к упрочнению обогащенного слоя.

Цементации подвергают низкоуглеродистые (обычно до 0,25 % C) и легированные стали, процесс в случае использования твёрдого карбюризатора проводится при температурах 900—950 °С, при газовой цементации (газообразный карбюризатор) — при 850—900 °С.

Актуальность темы реферата заключается в том, что одним из часто применяемых способов химико-термической обработки металла является цементация стали, которая может осуществляться в разных средах при достаточно высоких температурах.

Цель работы – более полное изучение цементации стали.

Для достижения поставленной цели необходимо решить несколько задач: рассмотреть сущность обработки, процесс цементации, свойства металла после обработки, недостатки цементации, методы цементации стали – цементация в твердой, жидкой, газовой средах, цементация в вакууме, а также процесс проведения цементации пастами и другие моменты.

Структура реферата включает в себя несколько частей: введение, основную часть (две главы), заключение и библиографический список, состоящий из семи источников литературы.

Фрагмент работы для ознакомления

1.1 Сущность обработки

Цементация стали – это высокотемпературный процесс, сопровождающийся насыщением поверхности атомарным углеродом. В результате повышаются качественные характеристики верхнего слоя изделия, в частности крепость, что увеличивает стойкость к различным нагрузкам. Метод начал применяться еще с середины девятнадцатого века: сталь производили путем сквозной цементации железа.

По технологии обработки цементация схожа с азотированием, с одним отличием – вторая технология насыщает верхний слой азотом, придавая обработанным изделиям антикоррозийные свойства. Азотирование применяют при работе со сталью, содержащей такие элементы, как хром, алюминий, титан и другие. Это связано с тем, что соединения данных металлов отличаются прочностью и высокой устойчивостью к температурным воздействиям.

1.2 Процесс цементации

Целью цементация стали является повышение эксплуатационных характеристик детали. Они должны быть твердыми, износостойкими снаружи, но внутренняя структура должна оставаться достаточно вязкой.

Для достижения данных требований требуется высокая температура, среда, выделяющая свободный углерод. Процесс цементации применим к сталям с содержанием углерода не больше двух десятых долей процента.

2.1 Цементация в твердой среде

В качестве твердого карбюризатора берется смесь древесного угля (береза, дуб) и соли угольной кислоты с кальцием и другими щелочными металлами. Количество древесного угля может достигать 90%. Для приготовления смеси компоненты дробятся для улучшения выхода углерода. Размер частиц не должен превышать 10 мм. Так же не должно быть микроскопических частей в виде пыли и крошек, поэтому смесь просеивается.

2.2 Цементация в газовой среде

Для газовой цементации (впервые была осуществлена Аносовым П.Д. на Златоустовском заводе) в качестве карбюризатора используют природный газ, жидкие углеводороды (керосин, бензин и т. д.) или контролируемые атмосферы с определенным углеродным потенциалом. При нагреве образуется атомарный углерод.

ЗАКЛЮЧЕНИЕ

В ходе проделанной работы выполнены все задачи для достижения поставленной цели: рассмотрены сущность обработки, процесс цементации, свойства металла после обработки, недостатки цементации, методы цементации стали – цементация в твердой, жидкой, газовой средах, цементация в вакууме, а также процесс проведения цементации пастами и другие моменты.

Список литературы [ всего 7]

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

В 1906 А. Вильм (Германия) на изобретённом им дуралюмине открыл старение после закалки — важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась термомеханическая обработка стареющих медных сплавов, а в 50- — термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам термической обработки относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства.

2.ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ

Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория термической обработки металлов.

Под термической обработкой понимают изменение структуры, а следовательно, и свойств стали при нагреве до заданной температуры, выдержке при этой температуре и охлаждении с заданной скоростью.

Классификация видов термической обработки основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии.

Термическая обработка металлов подразделяется на:

-собственно термическую, заключающуюся только в тепловом воздействии на металл,

-химико-термическую, сочетающую тепловое и химическое воздействия,

-термомеханическую, сочетающую тепловое воздействие и пластическую деформацию.

2.1. ОСНОВНЫЕ ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Собственно термическая обработка включает следующие виды:

-закалку без полиморфного превращения и с полиморфным превращением

Термической обработкой называют процессы теплового воздействия на сплавы (нагрев и охлаждение) с целью изменения их структуры и свойств. Это один из самых распространённых в технике и самых эффективных способов изменения структуры и свойств сталей и сплавов, обусловленных протеканием различных фазовых превращений.

Термическая обработка может быть как промежуточной операцией, предназначенной для улучшения технологических свойств (облегчения ковки, штамповки, прокатки), так и окончательной – для обеспечения в материале или изделиях требуемого комплекса свойств

Так как основными факторами любого вида термической обработки являются температура и время, то любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени.

При рассмотрении разных видов термообработки железо-углеродистых сплавов (стали, чугуны) используются следующие условные обозначения критических точек этих сплавов (рис. 1.1).


Рис. 1.1 . Обозначение критических точек стали

Критические точки А1 лежат на линии PSK (727 °C). Критические точки А2 находятся на линии МО (768 °C). Критические точки А3 лежат на линии GS, а критические точки Аcm — на линии SE.

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.


Рис.2.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1 ).

Рассмотрим следующие виды термической обработки:

2.2 Отжиг 1 рода

– возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

· отжиг для снятия напряжения после ковки, сварки, литья.

2.3 Отжиг II рода

– отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

2.4 Закалка

– проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

– проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.


Характеризуется нагревом до температуры ниже критической А (рис. 2.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

Термическую обработку подразделяют на предварительную и окончательную .

Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).

Окончательная – формирует свойство готового изделия.

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии.


Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA ), мартенсита (FM ), перлита (FП )


1. Превращение перлита в аустенит , происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.



2. Превращение аустенита в перлит, происходит при охлаждении ниже А1 , минимальной свободной энергией обладает перлит:



3. Превращение аустенита в мартенсит, происходит при быстром охлаждении ниже температуры нестабильного равновесия



4. Превращение мартенсита в перлит ; – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.


3.ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ

Химико-термической обработкой (ХТО) называется термическая обработка, заключающаяся в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали, такие как: цементация, азотирование, нитроцементация, цианирование, борирование, силицирование, диффузионная металлизация стали и др.

Химико-термическая обработка является одним из наиболее распространенных видов обработки материалов с целью придания им эксплуатационных свойств. Наиболее широко используются методы насыщения поверхностного слоя стали углеродом и азотом как порознь, так и совместно. Это процессы цементации (науглероживания) поверхности, азотирования — насыщения поверхности стали азотом, нитроцементации и цианирования — совместного введения в поверхностные слои стали углерода и азота. Насыщение поверхностных слоев стали иными элементами (хромом — диффузионное хромирование, бором — борирование, кремнием — силицирование и алюминием — алитирование) применяются значительно реже.

Процесс химико-термической обработки представляет собой многоступенчатый процесс, который включает в себя три последовательные стадии:

1. Образование активных атомов в насыщающей среде вблизи поверхности или непосредственно на поверхности металла. Мощность диффузионного потока, т. е. количество образующихся в единицу времени активных атомов, зависит от состава и агрегатного состояния насыщающей среды, которая может быть твердой, жидкой или газообразной, взаимодействия отдельных составляющих между собой, температуры, давления и химического состава стали.

2. Адсорбция (сорбция) образовавшихся активных атомов поверхностью насыщения. Адсорбция является сложным процессом, который протекает на поверхности насыщения нестационарным образом. Различают физическую (обратимую) адсорбцию и химическую адсорбцию (хемосорбцию). При химико-термической обработке эти типы адсорбции накладываются друг на друга. Физическая адсорбция приводит к сцеплению адсорбированных атомов насыщающего элемента (адсорбата) с образовываемой поверхностью (адсорбентом) благодаря действию Ван-дер-Ваальсовых сил притяжения, и для нее характерна легкая обратимость процесса адсорбции — десорбция. При хемосорбции происходит взаимодействие между атомами адсорбата и адсорбента, которое по своему характеру и силе близко к химическому.

3. Диффузия — перемещение адсорбированных атомов в решетке обрабатываемого металла. Процесс диффузии возможен только при наличии растворимости диффундирующего элемента в обрабатываемом материале и достаточно высокой температуре, обеспечивающей энергию необходимую для протекания процесса.

Толщина диффузионного слоя, а следовательно и толщина упрочненного слоя поверхности изделия, является наиболее важной характеристикой химико-термической обработки. Толщина слоя определяется рядом таких факторов, как температура насыщения, продолжительность процесса насыщения, состав стали, т. е. содержание в ней тех или иных легирующих элементов, градиент концентраций насыщаемого элемента между поверхностью изделия и в глубине насыщаемого слоя



Глубина диффузионного слоя в зависимости от продолжительности процесса и температуры

Под цементацией принято понимать процесс высокотемпературного насыщения поверхностного слоя стали углеродом. Так как углерод в α-фазе практически нерастворим, то процесс цементации осуществляется в интервале температур 930–950 °С — т. е. выше α → γ-превращения. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных — эксплуатационных — свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске; температурно-временные параметры режима термической обработки назначаются в зависимости от химического состава стали, ответственности, назначения и геометрических размеров цементованного изделия. Обычно применяется закалка с температуры цементации непосредственно после завершения процесса химико-термической обработки или после подстуживания до 800–850 °С и повторного нагрева выше точки АС3 центральной (нецементованной) части изделия. После закалки следует отпуск при температурах 160–180 °С.

Цементация как процесс химико-термической обработки, в основном, применяется для низкоуглеродистых сталей типа Ст2, СтЗ, 08, 10, 15, 20, 15Х, 20Х, 20ХНМ, 18ХГТ, 25ХГТ, 25ХГМ, 15ХГНТА, 12ХНЗА, 12Х2Н4А, 18Х2Н4ВА и др., однако в ряде случаев может быть использована при обработке шарикоподшипников — стали ШХ15, 7Х3 и коррозионностойких сталей типа 10Х13, 20Х13 и т. д. Стали, рекомендуемые для цементации, должны обладать хорошей прокаливаемостью и закаливаемостью цементованного слоя, которые должны обеспечить требуемый уровень прочности, износостойкости и твердости. Прокаливаемость сердцевины должна регулироваться в весьма узком диапазоне твердостей, который составляет 30–43 HRCЭ. Учитывая длительность процесса цементации и высокую температуру процесса, рекомендуется при этом виде химико-термической обработки использовать наследственно мелкозернистые стали, размер зерна которых не должен превышать 6–8 баллов. В противном случае в ходе цементации отмечается значительный рост зерна сердцевины изделия, что приводит к снижению его эксплуатационных свойств.

Цементация производится в углероднасыщенных твердых, жидких или газообразных средах, называемых карбюризаторами.

При твердофазной цементации процесс ведут следующим образом. Цементуемые детали упаковываются в цементационные ящики таким образом, чтобы их объем, в зависимости от сложности конструкции детали, занимал от 15 до 30 % объема цементационного ящика. Ящики загружают в печь, нагретую до температур от 600–700 °С и нагревают до температуры цементации — 930–950 °С. По окончании процесса цементации ящики вынимаются из печи — охлаждение деталей ведется внутри цементационных ящиков на воздухе. К числу недостатков цементации в твердых карбюризаторах относятся: невозможность регулирования степени насыщения и невозможность проведения закалки непосредственно после цементации, дополнительный непродуктивный расход энергии на прогрев цементационных ящиков и т. п. Однако простота метода, возможность проводить процесс на стандартном печном оборудовании без установки дополнительных устройств делают этот метод весьма распространенным в условиях мелкосерийного производства в ремонтных цехах и на участках крупных предприятий. Цементация в жидкофазном карбюризаторе применяется для мелких деталей. К недостаткам этого процесса относятся неравномерность глубины цементованного слоя и необходимость частых регенераций углероднасыщенного расплава. В случае серийного и крупносерийного производства цементованных изделий наибольшее распространение получила цементация в газообразных карбюризаторах. Этот метод обеспечивает наибольшую равномерность по толщине и свойствам цементованного слоя, снижает время, затрачиваемое на процесс химико-термической обработки, а в ряде случаев позволяет производить закалку изделий непосредственно после цементации. В последнее время получил распространение процесс вакуумной цементации. Печи для вакуумной цементации состоят из нагревательной камеры, снабженной вентилятором для обеспечения интенсивной циркуляции воздуха, закалочного бака и транспортных устройств. Подготовленные для вакуумной цементации детали помещают в нагревательную печь, вакуумируют и нагревают до 1000–1100 °С, затем в печь подается газообразный карбюризатор — очищенный природный газ, пропан или бутан. Этот метод позволяет ускорить процесс цементации, повысить качество получаемого слоя.

Качество процесса цементации оценивается по эффективной толщине цементованного слоя, которая определяется по одному из двух показателей — твердости или структуре слоя. Структура поверхностного слоя цементованной стали состоит из нескольких зон: поверхностной — заэвтектоидной (перлит + цементит), эвтектоидной — перлитной и доэвтектоидной — перлитоферритной. Эффективную толщину цементованного слоя по структуре принято измерять на металлографических шлифах в отожженном состоянии при увеличениях от 100 до 500 раз.

В случае, когда за критерий оценки толщины цементованного слоя принимается твердость или микротвердость после цементации, то оценка ведется на термически обработанных образцах, а за конец цементованного слоя принимается зона с твердостью 50 HRCЭ или 540–600 Н

Под азотированием подразумевается процесс диффузионного насыщения поверхностного слоя стального изделия или детали азотом при нагреве в соответствующей среде. Целью азотирования являются повышение твердости поверхности изделия, выносливости и износостойкости, стойкости к появлению задиров и кавитационным воздействиям, повышение коррозионной стойкости в водных средах и атмосфере.

Азотированию подвергаются самые разнообразные по составу и назначению стали — конструкционные и инструментальные, жаропрочные и коррозионностойкие, спеченные порошковые стали, а также ряд тугоплавких материалов (табл. 2).

Азотирование проводится при температурах значительно ниже температур цементации и температур фазовых превращений, поэтому иногда этот процесс называют низкотемпературной химико-термической обработкой или низкотемпературным азотированном. Температура процесса азотирования обычно не превышает 600 °С. Однако следует отметить, что в последние годы все большее распространение получает процесс высокотемпературного азотирования (600–1200 °С). Этот процесс применяют для насыщения азотом поверхностей деталей из ферритных и аустенитных сталей, ряда тугоплавких металлов — титана, молибдена, ниобия, ванадия и т. д.

Таблица 2. Составы основных насыщающих сред и режимы химико-термической обработки при азотировании

При цементации происходит поверхностное насыщение стали углеродом, в результате чего получается высокоуглеродистый поверхностный слой. Так как для цементации берут низкоуглеродистую сталь, то сердцевина остается мягкой и вязкой, несмотря на то что после цементации сталь подвергается закалке.

Различают два вида цементации: твердую и газовую.

При твердой цементации детали запаковывают в ящик, наполненный карбюризатором — науглероживающим веществом. Карбюризатором является древесный уголь с различными добавками. В ящике, в промежутках между кусочками угля, имеется воздух, кислород которого при температуре процесса (900 - 950˚ С) соединяется с углеродом, образуя окись углерода СО .

Однако при температурах процесса окись углерода неустойчива и при контакте с железной поверхностью разлагается по реакции

с образованием атомарного углерода, который поглощается поверхностью.

Таким образом, и при твердой цементации процесс протекает с образованием газовой фазы, т. е. цементация осуществляется газом, образовавшимся в ящике из карбюризатора.

Добавление к углю углекислых солей ВаСО3, NaCO3 (сода); K3CO3 (поташ) активизирует карбюризатор, вследствие образования углекислого газа при разложении солей и реакции с углем (ВаСО3→ ВаО + СО2; СО2 + С → 2СО и т.д.) Применяемые на производстве карбюризаторы обычно содержат 10 – 30% углекислых солей.

Процесс твердой цементации — продолжительная операция и занимает в зависимости от требуемой глубины цементации часто не один десяток часов. Даже для образования слоя малой глубины, например в 1 мм, продолжительность цементации составляет несколько часов. Такая большая продолжительность процесса объясняется главным образом малой скоростью прогрева ящика, наполненного нетеплопроводным карбюризатором.

Увеличение скорости цементации достигается применением цементации в газовых средах.

При газовой цементации герметически закрытая камера печи наполнена цементирующим газом. Время на прогрев ящика и карбюризатора при этом способе цементации не затрачивается, и скорость цементации (получение заданной глубины слоя) возрастет в тем большей относительной степени, чем меньшей глубины слой требуется получить.

Сейчас газовая цементация является для массового производства основным процессом цементации, и только для мелкосерийного или единичного производства экономически целесообразен более простой способ твердой цементации.

Газовая цементация осуществляется в стационарных или методических (непрерывно действующих) конвейерных печах. Цементирующий газ приготавливают отдельно и подают в цементационную реторту.

Цементирующими газами являются окись углерода и газообразные углеводороды. Разложение этих соединений приводит к образованию активного атомарного углерода:

Наибольшее распространение в качестве газовых карбюризаторов получили предельные углеводороды СН2n+2 )—метан, этан, пропан, бутан и др., а из них — метан в виде естественного газа (92 – 96 % CH4).

Кроме естественного газа, применение получила цементация бензолом, который в виде капель подают в цементационную реторту, где образуется газ, состоящий главным образом из метана, окиси углерода и свободного водорода.

Как видно из приведенных выше реакций (2), (3), в результате распада углеводородных соединений образуется свободный углерод. Если поверхность стали не поглощает весь выделяющийся углерод (абсорбция отстает от диссоциации), то свободный углерод, кристаллизуясь из газовой фазы, откладывается в виде плотной пленки сажи на детали, затрудняя процесс цементации.

Поэтому для рационального ведения процесса газовой цементации нужно иметь газ определенного состава и регламентировать его расход.

Практически цементацию проводят при 900 - 930˚ С, но имеется тенденция повысить температуру цементации до 950 - 970˚ С и выше.

Повышение температуры цементации, как следует из общих представлений о процессе диффузии, резко увеличивает глубину.

Содержание углерода в поверхностном слое определяется при данной температуре пределом растворимости углерода в аустените (т. е. с линией SE диаграммы железо—углерод). Следовательно, чем выше температура цементации, тем больше содержание углерода на поверхности (но оно не превосходит 2 %).

Таким образом, на поверхности содержание углерода отвечает проекции точки, лежащей на линии SE диаграммы железо—углерод при данной температуре, и затем постепенно падает с удалением от поверхности в глубину изделия, доходя до исходного содержания углерода в цементуемой стали. Другими словами, при температуре цементации мы получим в диффузионном слое аустенит переменной концентрации от 1,2 – 1,3% С (при температуре процесса 900˚ С) до 0,1 – 0,15%. При охлаждении от температуры цементации до нормальной произойдет превращение в соответствии с содержанием углерода в данном слое.

Структура цементированного слоя после медленного охлаждения от температуры цементации показана на рис. 259. Поверхностная зона, в которой углерода больше 0,8 – 0,9 %, имеет структуру перлит + цементит; это так называемая заэвтектоидная зона; затем следует зона с содержанием углерода около 0,8 % — это эвтектоидная зона и, наконец, доэвтектоидная зона, содержащая углерода менее 0,7 %, плавно переходящая в структуру сердцевины.

Цементацию рекомендуется проводить так, чтобы содержание углерода в наружном слое не превышало 1,1 -1,2 %. Более высокое содержание углерода приводит к образованию значительных количеств вторичного цементита, сообщающего слою повышенную хрупкость.



Задача цементации — получить высокую поверхностную твердость и износоустойчивость при вязкой сердцевине — не решается одной цементацией. Цементацией достигается лишь выгодное распределение углерода по сечению.

Окончательно формирует свойства цементованной детали последующая закалка, при которой на поверхности получается высокоуглеродистый мартенсит, а в сердцевине сохраняется низкая твердость и высокая вязкость.

Типичные режимы термической обработки показаны на рис. 261.


Обычно закалку производят с цементационного нагрева, иногда после некоторого подстуживания и обработки холодом (рис. 261, а)

Хотя этот режим самый экономичный в смысле продолжительности процесса и расхода топлива, он сохраняет крупнозернистость поверхностного слоя и сердцевину, зерно аустенита выросло в процессе длительного нагрева при цементации.

Во всех случаях цементированные детали после закалки для снятия внутренних напряжений подвергают отпуску при низкой температуре (150 - 200˚ С). В результате такой обработки (закалка + низкий отпуск) поверхность должна иметь твердость 58 – 62 HRC, а сердцевина - 25 - 35 HRC для легированных и менее 20 HRC для углеродистых сталей.

В сердцевине цементированной детали из легированной глубоко-прокаливающейся стали образуется мартенсит (рис. 263). Ввиду низкого содержания углерода в таком мартенсите он не обладает хрупкостью.


3.2 Азотирование стали

Азотированием называют процесс диффузионного насыщения поверхностного слоя стали азотом. Азотирование очень сильно повышает твердость поверхностного слоя, его износостойкость, предел выносливости и сопротивление коррозии в таких средах, как атмосфера, вода, пар и др. Твердость азотированного слоя заметно выше, чем твердость цементованного, и сохраняется при нагреве до высоких температур (450-500 °С), тогда как твердость цементованного слоя, имеющего мартенситную структуру, сохраняется только до 200-225 °С.

Азотирование ведут в диссоциированном аммиаке NH8

На обрабатываемой поверхности происходит диссоциация NH3 с образованием ионов азота, которые адсорбируются поверхностью и диффундируют в глубь металла.

Если проце c се азотирования ведут при температуре ниже эвтектоидной температуры (рис. 150), то азот первоначально диффундирует в α -фазу (азотистый феррит), а после достижения предела растворимости образуются нитриды Fe 4 N ( γ* -фаза) и Fe 2-8 N (ε-фазы). При температуре насыщения азотированный слой состоит из ε → γ* → α -фазы, а после охлаждения вследствие распада ε и α - фаз (рис. 150) из ε + γ* → γ* →α + γ* - фазы (рис. 151). Когда азотирование ведут при температуре выше 591 °С(рис. 150), образуется азотистый аустенит (γ - фаза), который при охлаждении распадается на смесь азотистого феррита ( α - фаза) и нитрида Fe 4 N ( γ* - фаза). Поэтому в диффузионном слое под слоем нитридов ( ε и γ* - фаз) образуется слой γ - фазы, который при охлаждении испытывает эвтектоидное превращение (рис. 151, б). Переход от одной фазы к другой сопровождается резким перепадом концентрации азота (рис. 152). Твердость азотированного слоя на железе невелика ⁓ 300 – 350 HV. Поэтому азотированию подвергают среднеуглеродистые стали, легированные Cr, Mo, V, Al, которые приобретают высокую твердость и износостойкость при азотировании. В легированной стали на поверхности образуются легированные ε- и γ* - фазы: (Fe, M)2-3N и (Fe, M)4N. Такие элементы, как Cr и другие, растворенные в феррите (подслой), повышают растворимость азота в α - фазе и образуют специальные нитриды MN и M2N (см. рис. 151, в).



При низких температурах азотирования в α-твердом растворе первоначально образуются сегрегации типа зон Гинье—Престона. При более высоких температурах возникают дисперсные нитриды легирующих элементов (Cr, Mo, V) . Зоны Гинье—Престона и обособленные выделения нитридов препятствуют движению дислокаций и тем самым повышают твердость азотированного слоя. Наиболее сильно повышают твердость Cr, Mo, V. Толщину cлоя легирующие элементы уменьшают.

Если главными требованиями, предъявляемыми к азотированному слою, являются высокие твердость на поверхности и износостойкость, то применяют сталь 38X2МЮА, содержащую 0,35 – 0,42% C, 1,35 – 1,65 % Cr, 0,7 – 1,10 % Al, 0,15 – 0,25 % Mo остальное Fe Одновременное присутствие алюминия, хрома и молибдена позволяет повысить твердость азотированного слоя на поверхности до 1200 HV. Молибден, кроме того, устраняет отпускную хрупкость, которая может возникнуть при медленном охлаждении от температуры азотирования.


Однако алюминий придает азотированному слою повышенную хрупкость. Поэтому все шире применяют стали, легированные Cr (1 – 3 %), Mo (0,2 – 0,4 %), V (до 1,0 – 1,2 %). Эти стали имеют пониженную твердость на поверхности 700 – 950 HV, но при прочих равных условиях большую эффективную толщину азотированного слоя (до 400 – 500 HV), что позволяет сократить длительность процесса. Для повышения коррозионной стойкости можно азотировать и углеродистые стали.

Износостойкость азотированной стали выше, чем износостойкость цементованной и закаленной. В азотированном слое возникают остаточные напряжения сжатия, величина которых на поверхности составляет 600-800 МПа. Это повышает предел выносливости и переносит очаг усталостного разрушения под азотированный слой. Предел выносливости гладких образцов возражает на 30 – 40 %, а при наличии концентраторов напряжений (острых надрезов) — более чем на 100 %.

3.3 Цианирование стали

Цианированием называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при температуре 820 – 950 ˚ С в расплавленных солях, содержащих группу NaCN.

Среднетемпературное цианирование . В этом процессе изделие нагревают до 820-860 °С в расплавленных солях, содержащих NaCN. Для получения слоя небольшой толщины (0,15-0,35 мм) процесс ведут при температуре 820 – 860 ˚ С в ваннах (20 – 25% NaCN, 25 – 50% NaCl, 25 – 50% Na2CO3). Продолжительность процесса обусловлена требуемой толщиной слоя и составляет 30—90 мин.

Цианистый натрий в процессе цианирования окисляется кислородом воздуха, и происходят следующие реакции:

Выделяющийся атомарный углерод и азот диффундируют в сталь. Цианированный слой, полученный при температуре 820— 860 °С, содержит 0,7 % С и 0,8 – 1,2% N.

Цианирование при указанных сравнительно невысоких температурах позволяет выполнять закалку непосредственно из цианистой ванны. После закалки следует низкотемпературный отпуск (180 – 200 ˚ C). Твердость цианированного слоя после термической обработки HRC 58 – 62. Цианированный слой по сравнению с цементованным обладает более высокой износостойкостью и эффективно повышает предел выносливости. Этот вид цианирования применяют для упрочнения мелких деталей.

Высокотемпературное цианирование . Для получения слоя большей толщины 0,5 – 2,0 мм) применяют высокотемпературное или глубокое цианирование при 930-950 °С в ванне, содержащей 8% NaCN, 82% BaCl2 и 10% NaCl (состав ванны до расплавления). Зеркало ванны покрывают слоем графита во избежание больших потерь теплоты и угара цианистых солей. Время выдержки изделий в ванне для получения слоев указанной толщины составляет 1,5 – 6 ч.

При цианировании в ванне протекают следующие реакции:

Выделяющийся атомарный углерод и азот диффундируют в железо. При указанных высоких температурах сталь с поверхности в большей степени насыщается углеродом (до 0,8 – 1,2 %) и в меньшей — азотом (0,2 – 0,3%). Строение цианированного слоя аналогично цементованному. После высокотемпературного цианирования детали охлаждают на воздухе, а затем для измельчения зерна закаливают с нагревом в соляной ванне или печи и подвергают низкотемпературному отпуску.

Процесс цианирования по сравнению с процессом цементации требует меньшего времени для получения слоя заданной толщины,

характеризуется значительно меньшими деформациями и короблением деталей сложной формы и более высоким сопротивлением износу и коррозии.

Недостатком цианирования является высокая стоимость, ядовитость цианистых солей и необходимость в связи с этим принятия специальных мер по охране труда.

3.4 Диффузионная металлизация

Диффузионная металлизация — процесс диффузионного насыщения поверхностных слоев стали различными металлами. При насыщении хромом этот процесс называется хромированием, алюминием — алитированием, кремнием - силицированием и т. д. Комбинированные процессы, заключающиеся в одновременном насыщении хромом и алюминием, или хромом и вольфрамом, называют хромоалитированием, хромовольфрамированием и т. д.

Наиболее обстоятельно изучены процессы диффузионного насыщения хромом и алюминием, а также и бором. Процессы насыщения молибденом, бериллием и другими элементами исследованы в значительно меньшей степени.

Как и при других видах химико-термической обработки, диффузионную металлизацию можно проводить в твердых, жидких и газообразных средах.

При твердой диффузионной металлизации металлизатором является ферросплав с добавлением хлористого аммония (NH4Cl). В результате реакции металлизатора с HCl или Cl2 образуется летучее соединение хлора с металлом (AlCl3, CrCl2, SiCl4), которое в результате контакта с металлической поверхностью диссоциирует с образованием свободных атомов.

Жидкую диффузионную металлизацию проводят погружением детали в расплавленный металл (например, алюминий).

Газовую диффузионную металлизацию проводят в газовых средах, являющихся хлоридами различных металлов.

Диффузия хрома, алюминия и других металлов протекает значительно медленнее, чем углерода и азота, потому что азот и углерод образуют с железом растворы внедрения, а металлы — растворы замещения. При одинаковых температурах и временных условиях это приводит к тому, что диффузионные слои при металлизации получаются в десятки и сотни раз более тонкими, чем при цементации.

Такая малая скорость диффузии препятствует широкому распространению процессов диффузионной металлизации в промышленности, так как процесс является дорогостоящим и его проводят при высоких температурах (1000-1200 °С) длительное время. Только особые свойства слоя и возможность экономии легирующих элементов при использовании процессов диффузионной металлизации обусловили некоторое их применение в промышленности.

Различают два основных способа термомеханической обработки.

По первому способу, называемому высокотемпературной термомеханической обработкой (ВТМО), сталь деформируют при температуре выше Ас3 (рис. 140, а), при которой сталь имеет аустенитную структуру. Степень деформации составляет 20-30 % (при большей деформации развивается рекристаллизация, снижающая механические свойства). После деформации следует немедленная закалка во избежание развития рекристаллизации.



По второму способу (получившему гораздо меньшее распространение), называемому низкотемпературной термомеханической обработкой (НТМО), сталь деформируют в температурной зоне существования переохлажденного аустенита в области его относительной устойчивости (400-600 °С); температура деформации должна быть выше точки Мн, но ниже температуры рекристаллизации (рис. 140, б). Степень деформации обычно составляет 75-95 %. Закалку осуществляют сразу после деформации.

После закалки в обоих случаях следует низкотемпературный отпуск (100-300 °С). Такая комбинированная ТМО позволяет получить очень высокую прочность (σв = 2200 – 3000 МПа), при хорошей пластичности и вязкости (δ = 6 – 8 %, φ = 50 – 60%).

После обычной закалки и низкого отпуска σв = 2000 – 2200 МПа, δ = 3 – 4 %.

Очень важно, что одновременно с повышением прочности после ТМО возрастают пластичность и сопротивление разрушению.

Чаще применяют ВТМО, которая обеспечивает наряду с высокой прочностью высокое значение К (см. рис. 166), работу распространения трещины КСТ, сопротивление усталости, сниженную критическую температуру хрупкости t50 чувствительность к концентраторам напряжений и необратимой отпускной хрупкости. Высокая конструктивная прочность после ВТМО объясняется наследственной передачей развитой дислокационной структуры горячедеформированиого аустенита, образующегося при последующей закалке мартенситу и образованием фрагментированной субструктуры 6 дислокационными границами. ВТМО осуществляется в цехах прокатного производства на металлургических заводах. Например, ВТМО применяют при упрочнении прутков для нефтенасосных штанг, рессорных полос, труб и пружин.

Помощь студентам

Химико-термической обработкой (ХТО) называют поверхностное насыщение стали соответствующими элементами путем их диффузии в атомарном состоянии из внешней среды при высоких температурах.

ХТО следует рассматривать как физико-химический процесс взаимодействия металла с газовой средой. Он включает три элементарные стадии:

  1. образование атомарного диффундирующего элемента;
  2. контактирование его с поверхностью стального изделия и проникновение в кристаллическую решетку;
  3. диффузия атомов насыщающего элемента в глубь металла.

Глубина проникновения зависит от температуры и продолжительности процессов. Диффузионные процессы протекают легче при образовании твердых растворов внедрения (углерод, азот) по сравнению с твердыми растворами замещения. В результате в поверхностном слое могу образовываться твердые растворы переменной концентрации или химические соединения.

Целью ХТО является повышение прочности, твердости, коррозионной стойкости и износостойкости поверхностного слоя. Основными видами ХТО являются цементация, азотирование, нитроцементация, цианирование, борирование.

Цементацией называется процесс насыщения поверхностного слоя стали углеродом.

Цементацию проводят при температурах выше точки Ас3 (930… 950 0 С), когда аустенит может растворять углерод в большом количестве. Окончательные свойства достигаются в результате закалки и низкого отпуска, выполняемых после цементации.

Для цементации обычно используют низкоуглеродистые стали (0,10… 0,23 % С), которые практически не упрочняются закалкой. Толщина цементованного слоя обычно составляет 0,5…1,8 мм. Концентрация углерода в поверхностном слое должна составлять 0,8…1,2 %; твердость слоя 50…62 НRС.

Цементацию можно проводить в твердом и газовом карбюризаторе.

Цементация твердым карбюризатором

Этот процесс проводится в древесном угле или каменноугольном полукоксе и торфяном коксе, к которым добавляют активаторы. Широко применяемый карбюризатор состоит из древесного угля, 20…35 % ВаСО3 и 3,5 % СаСО3, который добавляют для предотвращения спекания частиц карбюризатора.

Детали, подлежащие цементации, после предварительной очистки укладывают в ящики. На дно ящика насыпают и утрамбовывают слой карбюризатора толщиной 20…30 мм, на который укладывают первый ряд деталей. Их засыпают слоем карбюризатора толщиной 10…15 мм, а на него укладывают следующий слой деталей и т.д. Последний ряд деталей засыпают слоем карбюризатора толщиной 35…40 мм. Ящик закрывают крышкой, кромки которой обмазывают огнеупорной глиной или смесью глины и речного песка. После этого ящик помещают в печь. Нагрев до температуры цементации составляет от 7 до 9 мин на каждый сантиметр минимального размера ящика. Время выдержки может достигать 14 часов. После цементации ящики охлаждают на воздухе до 400…500 0 С и затем открывают.

Цементация стали осуществляется атомарным углеродом. Кислород, который находится в ящике взаимодействует с углеродом карбюризатора, образуя оксид углерода СО (из-за недостатка кислорода), который в присутствии железа диссоциирует:

Этот атомарный углерод диффундирует в аустенит. Добавление углекислых солей активизирует карбюризатор, обогащая атмосферу оксидом углерода:

ВаСО3 + С -> ВаО + 2СО.

Газовая цементация

Процесс осуществляется нагревом изделия в среде газов, содержащих углерод. В качестве карбюризатора используют природный газ, состоящий почти полностью из метана (СН4) и пропанбутановых смесей, а также жидких углеводородов (керосина, бензола), из которых пиролизом получает СО. Основными реакциями получения атомарного углерода являются диссоциация оксида углерода или метана:

В печах непрерывного действия для цементации применяют эндотермическую атмосферу, состоящую из 95…97 % эндогаза (20 % СО, 40 % Н2 и 40 % N2) и 3…5 % природного газа.

Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твердом карбюризаторе: можно получить заданную концентрацию углерода в слое; сокращается длительность процесса; обеспечивается возможность полной механизации и автоматизации процесса; значительно упрощается последующая термическая обработка деталей, так как закалку можно проводить непосредственно из цементационной печи.

Читайте также: