Линейный коэффициент корреляции реферат

Обновлено: 02.07.2024

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции. Коэффициент корреляции – двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных. Таким образом, корреляционный анализ это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками.

Содержание работы
Файлы: 1 файл

referat_po_kompam.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Тема: Корреляционный анализ

  1. Введение………………………………………………………… ……….…3
  2. Реферативная справка……………………………………………………. 5
  3. Отбор факторов для корреляционного анализа……………………..…. 9
  4. Постановка задачи………………………………………………………. 11
  5. Пример……………………………………………………………… …..…12
  6. Выводы……………………………………………………………… ….…19
  7. Список использованной литературы………………………………….…20

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. Одним самых из распространенных методов статистики является корреляционный анализ.

Термин "корреляция" впервые применил французский палеонтолог Ж. Кювье, который вывел "закон корреляции частей и органов животных" (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел английский биолог и статистик Ф. Гальтон (не просто связь – relation, а "как бы связь " – corelation).

Корреляционный анализ – это проверка гипотез о связях между переменными с использованием коэффициентов корреляции. Коэффициент корреляции – двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных. Таким образом, корреляционный анализ это совокупность методов обнаружения корреляционной зависимости между случайными величинами или признаками. Корреляционный анализ для двух случайных величин заключает в себе:

1) построение корреляционного поля и составление корреляционной таблицы;

2) вычисление выборочных коэффициентов корреляции и корреляционных отношений;

3) проверка статистической гипотезы значимости связи.

Основное назначение корреляционного анализа – выявление корреляционной связи между двумя или более изучаемыми переменными. Корреляционная связь это совместное согласованное изменение двух изучаемых характеристик. Данная изменчивость обладает тремя основными характеристиками: формой, направлением и силой.

Корреляционный анализ - совокупность основанных на математической теории корреляции методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. Корреляционный анализ экспериментальных данных заключает в себе следующие основные практические приёмы: 1) построение корреляционного поля и составление корреляционной таблицы; 2) вычисление выборочных коэффициентов корреляции или корреляционного отношения; 3) проверка статистической гипотезы значимости связи. Дальнейшее исследование заключается в установлении конкретного вида зависимости между величинами. Зависимость между тремя и большим числом случайных признаков или факторов изучается методами многомерного корреляционного анализа. (вычисление частных и множественных коэффициентов корреляции и корреляционных отношений).

Корреляционное поле и корреляционная таблица являются вспомогательными средствами при анализе выборочных данных. При нанесении на координатную плоскость выборочных точек получают корреляционное поле. По характеру расположения точек поля можно составить предварительное мнение о форме зависимости случайных величин (например, о том, что одна величина в среднем возрастает или убывает при возрастании другой). Для численной обработки результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке корреляционной таблицы приводятся численности гц; тех пар (х, у), компоненты которых попадают в соответствующие интервалы группировки по каждой переменной.

Предполагая длины интервалов группировки (по каждому из переменных) равными между собой, выбирают центры xi (соответственно yj) этих интервалов и числа nij в качестве основы для расчётов.

Коэффициент корреляции и корреляционное отношение дают более точную информацию о характере и силе связи, чем картина корреляционного поля. Выборочный коэффициента корреляции определяют по формуле:

При большом числе независимых наблюдений, подчиняющихся одному и тому же распределению, и при надлежащем выборе интервалов группировки коэффициент ρ̂ близок к истинному коэффициенту корреляции ρ. Поэтому использование ρ̂ как меры связи имеет четко определённый смысл для тех распределений, для которых естественной мерой зависимости служит ρ (т. е. для нормальных или близких к ним распределений). Во всех др. случаях в качестве характеристики силы связи рекомендуется использовать корреляционное отношение η, интерпретация которого не зависит от вида исследуемой зависимости.

Коэффициенты корреляции является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от -1 до +1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение +1 свидетельствует о согласованности переменных.

Различают следующие коэффициенты корреляции:

- дихотомический - показатель связи признаков (переменных) измеряемых по дихотомическим шкалам наименований;

- Пирсона (Pearson product-moment correlation) - коэффициент корреляции, используемый для континуальных переменных;

- ранговой корреляции Спирмена (Spearmen's rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах;

- точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа отношения переменных, одна из которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;

- j - коэффициент корреляции, используемый в случае, если обе переменные измерены в дихотомической шкале наименований.

- тетрахорический ( четырехпольный) (tetrachoric) - коэффициент корреляции, используемый в случае, если обе переменные измерены в континуальных шкалах[4].

Линейная связь между переменными Xi и Xj оценивается коэффициентом корреляции:

где Xi и Xj – исследуемые переменные; mXi и mXj – математические ожидания переменных; σX и σX – дисперсии переменных.

Выборочный коэффициент корреляции определяют по формуле:

или по преобразованной формуле:

где i =1, 2, ., n, j = 1, 2, ., m, u = 1, 2, ., N; N – число опытов(объем выборки); xi, xj – оценки математических ожиданий; SXi, SXj – оценки среднеквадратических отклонений.

Только при совместной нормальной распределенности исследуемых случайных величин Xi и Xj коэффициент корреляции имеет определенный смысл связи между переменными. В противном случае коэффициент корреляции может только косвенно характеризовать эту связь[5].

Применение корреляционного анализа позволяет решить следующие задачи:

2) установить относительную степень зависимости результативного показателя от каждого фактора.

Исследование корреляционных зависимостей имеет огромное значение в АХД. Это проявляется в том, что значительно углубляется факторный анализ, устанавливаются место и роль каждого фактора в формировании уровня исследуемых показателей, углубляются знания об изучаемых явлениях, определяются закономерности их развития и как итог — точнее обосновываются планы и управленческие решения, более объективно оцениваются итоги деятельности предприятий и более полно определяются внутрихозяйственные резервы.

Отбор факторов для корреляционного анализа

Отбор факторов для корреляционного анализа — очень важный момент: от того, насколько правильно отобраны факторы, зависят конечные результаты анализа. Главная роль при отборе факторов принадлежит теории, а также практическому опыту анализа. При этом необходимо придерживаться следующих правил.

1. В первую очередь следует учитывать причинно-следственные связи между показателями, ибо только они раскрывают сущность изучаемых явлений. Анализ же таких факторов, которые находятся только в математических соотношениях с результативным показателем, не имеет практического смысла.

2. При создании многофакторной корреляционной модели необходимо отбирать самые значимые факторы, которые оказывают решаюшее воздействие на результативный показатель, так как охватить все условия и обстоятельства практически невозможно. Факторы, которые имеют критерий надежности по Стьюденту меньше табличного, не рекомендуется принимать в расчет.

3. В корреляционную модель линейного типа не рекомендуется включать факторы, связь которых с результативным показателем имеет криволинейный характер.

4. Нельзя включать в корреляционную модель взаимосвязанные факторы. Если парный коэффициент корреляции между двумя факторами больше 0,85, то по правилам корреляционного анализа один из них необходимо исключить, иначе это приведет к искажению результатов анализа.

5. Не рекомендуется включать в корреляционную модель факторы, связь которых с результативным показателем носит функциональный характер.

Большую помощь при отборе факторов для корреляционной модели оказывают аналитические группировки, способ сравнения параллельных и динамических рядов, линейные графики. С их помощью можно определить наличие, направление и форму зависимости между изучаемыми показателями. Отбор факторов можно производить также в процессе решения задачи корреляционного анализа на основе оценки их значимости по критерию Стьюдента.

Учитывая перечисленные требования и используя названные способы отбора факторов, для многофакторной корреляционной модели уровня рентабельности (Y) подобраны следующие факторы, оказывающие наиболее существенное влияние на ее уровень:

x1 - материалоотдача, руб.;

x2 - фондоотдача, коп.;

x3 - производительность труда (среднегодовая выработка продукции на одного работника), млн руб.;

x4 - продолжительность оборота оборотных средств предприятия, дни;

x5 - удельный вес продукции высшей категории качества, %.

Поскольку корреляционная связь достаточно полно проявляется только в массе наблюдений, объем выборки данных должен быть достаточно большим, так как только в массе наблюдений сглаживается влияние других факторов. Чем большая совокупность объектов исследуется, тем точнее результаты анализа.

Имеется матрица наблюдений вида(пример 1 ,2)

Необходимо определить оценки коэффициентов корреляции для всех или только для заданных пар параметров и оценить их значимость. Незначимые оценки приравниваются к нулю.

  • Выборка имеет достаточный объем. Понятие достаточного объема зависит от целей анализа, требуемой точности и надежности оценки коэффициентов корреляции, от количества факторов. Минимально допустимым считается объем, когда количество наблюдений не менее чем в 5–6 раз превосходит количество факторов;
  • выборки по каждому фактору являются однородными. Это допущение обеспечивает несмещенную оценку средних величин;
  • матрица наблюдений не содержит пропусков.

Если необходима проверка значимости оценки коэффициента корреляции, то требуется соблюдение дополнительного условия – распределение вариант должно подчиняться нормальному закону.

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований — от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

- планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

- планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

- планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

- планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

- планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.


Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак[1].


Рисунок 2 – Прямая корреляция


Рисунок 3 – Обратная корреляция


Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

- сильная, или тесная при коэффициенте корреляции r>0,70;

Рассчитываем эмпирическую величину коэффициента корреляции по формуле расчета коэффициента корреляции Браве–Пирсона:


Определяем критические значения для полученного коэффициента корреляции по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как f = n – 2 = 8. rкрит =0,72 > 0,54 , следовательно, гипотеза Н1 отвергается и принимается гипотеза H0 , иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана[1].

1.7 Коэффициент ранговой корреляции Спирмена


Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ():


где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.


Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi .

Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений xi и yi совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy) 2 . Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:


- если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

- когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi ,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

yi , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:


где: dx и dy — ранги показателей х и у ;

n — число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

Таблица 2 – Данные тестирования

xi dx yi dy

55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0





= 0

= 186,5


Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции(rф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.

Исключительный интерес для широкого класса задач представляет обнаружение взаимных связей между двумя и более случайными величинами. Например, существует ли связь между курением и ожидаемой продолжительностью жизни, между умственными способностями и успеваемостью и т.п. В инженерных исследованиях такие задачи, обычно, сводятся к установлению связи между некоторым предполагаемым возбуждением и наблюдаемым откликом изучаемой физической системы.

Существование таких взаимосвязей и их относительную силу можно измерить коэффициентом корреляции.

Основная задача корреляционного анализа состоит в выявлении связи между случайными переменными путем точечной и интервальной оценки различных (парных, множественных, частных) коэффициентов корреляции .

Коэффициент корреляции определяется через корреляционный момент (ковариацию) по формуле:

Величина характеризует тесноту связи между случайными переменными и в генеральной совокупности. Из свойств коэффициента корреляции известно, что является показателем тесноты связи лишь в случае линейной зависимости между двумя переменными. Для линейно независимых случайных величин . Но даже и для зависимых СВ может быть равен 0. В этом случае СВ и называют некоррелированными.

Пусть получена выборка пар СВ и . Тогда коэффициент корреляции можно оценить по выборочным данным следующим образом:

Вспомним несмещённые, состоятельные и эффективные оценки:

Тогда эмпирический коэффициент корреляции определяется по формуле:

Как и выборочный коэффициент корреляции принимает значения в интервале , причем одно из граничных значений принимается только при наличии идеальной линейной связи между наблюдениями. Нелинейная связь и (или) разброс данных, вызванных ошибками измерений или же неполной коррелированностью СВ, приводит к уменьшению абсолютного значения (рис. 1 0 .1).

Рис. 10.1. Различные степени корреляции: a ) – точная линейная корреляция;
b ) – умеренная линейная корреляция; c ) – нелинейная корреляция;
d ) – отсутствие корреляции.

Эмпирический коэффициент корреляции дает состоятельную, но смещённую оценку. Смещение равно . Однако при величина смещения составляет менее 1%. Для оценки точности выборочного значения удобно использовать некоторую функцию от :

Показано, что распределение случайной величины можно аппроксимировать нормальным распределением со средним значением и дисперсией:

Даже для независимых случайных величин эмпирический коэффициент корреляции может быть отличен от "0" вследствие случайного рассеивания результатов измерения. Т.е. из-за выборочной изменчивости необходимо проверять, свидетельствует ли не нулевые значения выборочного коэффициента корреляции о существовании статистически значимой корреляции между исследуемыми случайными величинами и . Сделать это можно, проверив гипотезу , причем отклонение гипотезы будет свидетельствовать о принятии альтернативной гипотезы значимости корреляции.

Из формулы (10.9) следует, что при выборочное распределение будет нормальным со средним и дисперсией . Поэтому область принятия гипотезы о нулевой корреляции будет иметь вид:

Здесь уровень значимости, стандартное нормальное распределение .

Пример ЛИНЕЙНЫЙ КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Имеются данные о росте и массе , выбранных наугад студентов. Есть ли основание считать, что рост и масса студентов коррелированны при уровне значимости ? Пусть рост, а
масса студента. Все данные приведены в таблице:

По данным таблицы получим: , по формуле (10.8) получим , а . По таблицам стандартного нормального распределения получим . Таким образом, гипотеза должна быть отвергнута, следовательно, имеются основания считать, что между ростом и массой студентов существует значимая корреляция.

Ранговая корреляция

До сих пор нами рассматривались и анализировались зависимости между количественными переменными, измеренными в так называемых количественных шкалах. Эти шкалы с непрерывным множеством значений позволяют выявить на сколько (или во сколько раз ) проявление признака у одного объекта больше (меньше), чем у другого (например, производительность труда, заработная плата, накладные расходы и т.п.).

Наряду с этим на практике часто возникает необходимость изучения связи между ординальными ( порядковыми ) переменными, измеренными в так называемой порядковой шкале. В этой шкале можно установить лишь порядок , в котором объекты выстраиваются по степени проявления признака (например, уровень благоустроенности жилья, класс гостиницы, тестовые баллы, экзаменационные оценки и т.п.). Если, скажем, по некоторой дисциплине два студента имеют оценки "отлично" и "удовлетворительно", то можно утверждать, уровень подготовки по этой дисциплине первого студенты выше (больше), чем второго, но нельзя сказать , на сколько или во сколько раз больше.

Оказывается, что в таких случаях проблема оценки тесноты связи разрешима, если упорядочить, или ранжировать, объекты анализа по степени выраженности измеряемых признаков. При этом каждому объекту присваивается определенный номер, называемый рангом . Например, объекту с наименьшим проявлением (значением) присваивается ранг 1, следующему за ним – ранг 2 и т.д. Объекты можно располагать и в порядке убывания значений (проявлений) признака. Если объекты ранжированы по двум признакам, то появляется возможность оценить тесноту связи между признаками, основываясь на рангах, т.е. ранговые корреляции .

Коэффициент ранговой корреляции Спирмена находится по формуле:

где и - ранги i -го объекта по переменным и – число пар наблюдений.

Если ранги всех объектов равны () то , т.е. при полной прямой связи коэффициент ранговой корреляции Спирмена равен единице.

При полной обратной связи, когда ранги объектов по двум переменным расположены в обратном порядке, можно показать, что
и по формуле (10.11) . Во всех остальных случаях .

число групп неразличимых рангов у переменных и ;

число рангов, входящих в группу неразличимых рангов переменных и .

При проверке значимости p воспользуемся тем, что в случае справедливости нулевой гипотезы об отсутствии корреляционной связи между переменными при статистика


имеет распределение Стьюдента с степенями свободы. Поэтому значим на уровне , если фактически наблюдаемое значение будет больше критического (по абсолютной величине), т.е. , где табличное значение критерия Стьюдента, определенное на уровне значимости при числе степеней свободы .

Определение. Корреляционным моментом mxy случайных величин Х и Y называется математическое ожидание произведения отклонений этих величин.


Практически используются формулы:

Для дискретных случайных величин:


Для непрерывных случайных величин:


Корреляционный момент служит для того, чтобы охарактеризовать связь между случайными величинами. Если случайные величины независимы, то их корреляционный момент равен нулю.

Корреляционный момент имеет размерность, равную произведению размерностей случайных величин Х и Y. Этот факт является недостатком этой числовой характеристики, т.к. при различных единицах измерения получаются различные корреляционные моменты, что затрудняет сравнение корреляционных моментов различных случайных величин.

Для того, чтобы устранить этот недостаток применятся другая характеристика – коэффициент корреляции.

Определение. Коэффициентом корреляции rxy случайных величин Х и Y называется отношение корреляционного момента к произведению средних квадратических отклонений этих величин.


Коэффициент корреляции является безразмерной величиной. Коэффициент корреляции независимых случайных величин равен нулю.

Свойство: Абсолютная величина корреляционного момента двух случайных величин Х и Y не превышает среднего геометрического их дисперсий.


Свойство: Абсолютная величина коэффициента корреляции не превышает единицы.


Случайные величины называются коррелированными, если их корреляционный момент отличен от нуля, и некоррелированными, если их корреляционный момент равен нулю.

Если случайные величины независимы, то они и некоррелированы, но из некоррелированности нельзя сделать вывод о их независимости.

Если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными.

Часто по заданной плотности распределения системы случайных величин можно определить зависимость или независимость этих величин.

Наряду с коэффициентом корреляции степень зависимости случайных величин можно охарактеризовать и другой величиной, которая называется коэффициентом ковариации. Коэффициент ковариации определяется формулой:


Пример. Задана плотность распределения системы случайных величин Х и Y.


Выяснить являются ли независимыми случайные величины Х и Y.

Для решения этой задачи преобразуем плотность распределения:


Таким образом, плотность распределения удалось представить в виде произведения двух функций, одна из которых зависит только от х, а другая – только от у. Т.е. случайные величины Х и Y независимы. Разумеется, они также будут и некоррелированы.

Рассмотрим двумерную случайную величину (X, Y), где X и Y – зависимые случайные величины.

Представим приближенно одну случайную величину как функцию другой. Точное соответствие невозможно. Будем считать, что эта функция линейная.


Для определения этой функции остается только найти постоянные величины a и b.

Определение. Функция g(X) называется наилучшим приближением случайной величины Y в смысле метода наименьших квадратов, если математическое ожидание


принимает наименьшее возможное значение. Также функция g(x) называется среднеквадратической регрессией Y на X.

Теорема. Линейная средняя квадратическая регрессия Y на Х вычисляется по формуле:



mx=M(X), my=M(Y), коэффициент корреляции величин Х и Y.


Величина называется коэффициентом регрессии Y на Х.

Прямая, уравнение которой


,

называется прямой сренеквадратической регрессии Y на Х.


Величина называется остаточной дисперсией случайной величины Y относительно случайной величины Х. Эта величина характеризует величину ошибки, образующейся при замене случайной величины Y линейной функцией g(X)=aХ + b.

Видно, что если r=±1, то остаточная дисперсия равна нулю, и, следовательно, ошибка равна нулю и случайная величина Y точно представляется линейной функцией от случайной величины Х.

Прямая среднеквадратичной регрессии Х на Y определяется аналогично по формуле:


Прямые среднеквадратичной регрессии пересекаются в точке (тх, ту), которую называют центром совместного распределения случайных величин Х и Y.

Если две случайные величины Х и Y имеют в отношении друг друга линейные функции регрессии, то говорят, что величины Х и Y связаны линейной корреляционной зависимостью.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то Х и Y связаны линейной корреляционной зависимостью.

1. Дайте определение закона распределения, функцией распределения системы случайных величин.

2. Что такое условные законы распределения, условные числовые характеристики системы случайных величин?

3. Что такое функция регрессия между случайными величинами ?

4. Что такое корреляционная связь между случайными величинами?

5. Найти условное математическое ожидание составляющей Y при

X= x2=3 и Х= х3=4 для дискретной двумерной случайной величины, заданной таблицей:

Y X
x1=1 x2=3 x3=4 x4=8
y1=3 0,15 0,06 0,25 0,04
y2=6 0,30 0,10 0,03 0,07

6. Задана плотность распределения системы случайных величин Х и Y.


Выяснить являются ли независимыми случайные величины Х и Y.

Тема 1.6. Предельные теоремы теории вероятностей

1. Неравенства Чебышева.

2. Закон больших чисел и его следствия.

3. Предельные теоремы теории вероятностей.

величина распределение вероятность корреляция

На практике сложно сказать какое конкретное значение примет случайная величина, однако, при воздействии большого числа различных факторов поведение большого числа случайных величин практически утрачивает случайный характер и становится закономерным.

Этот факт очень важен на практике, т.к. позволяет предвидеть результат опыта при воздействии большого числа случайных факторов.

Однако, это возможно только при выполнении некоторых условий, которые определяются законом больших чисел. К законам больших чисел относятся теоремы Чебышева (наиболее общий случай) и теорема Бернулли (простейший случай), которые будут рассмотрены далее.

Рассмотрим дискретную случайную величину Х (хотя все сказанное ниже будет справедливо и для непрерывных случайных величин), заданную таблицей распределения:

X x1 x2 xn
p p1 p2 pn

Требуется определить вероятность того, что отклонение значения случайной величины от ее математического ожидания будет не больше, чем заданное число e.


Теорема. (Неравенство Чебышева) Вероятность того, что отклонение случайной величины Х от ее математического ожидания по абсолютной величине меньше положительного числа e, не меньше чем .


Доказательство этой теоремы не приводим, т.к. оно имеется в литературе ОЛ [ 3], [4].

2.Закон больших чисел и его следствия

Теорема. (Теорема Чебышева) Если Х1, Х2, …, Хn- попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышаю постоянного числа С), то, как бы мало не было положительное число e, вероятность неравенства


будет сколь угодно близка к единице, если число случайных величин достаточно велико.

Т.е. можно записать:


Часто бывает, что случайные величины имеют одно и то же математическое ожидание. В этом случае теорема Чебышева несколько упрощается:


Дробь, входящая в записанное выше выражение есть не что иное как среднее арифметическое возможных значений случайной величины.

Теорема утверждает, что хотя каждое отдельное значение случайной величины может достаточно сильно отличаться от своего математического ожидания, но среднее арифметическое этих значений будет неограниченно приближаться к среднему арифметическому математических ожиданий. Отклоняясь от математического ожидания как в положительную так и в отрицательную сторону, от своего математического ожидания, в среднем арифметическом отклонения взаимно элиминируют.

Таким образом, величина среднего арифметического значений случайной величины уже теряет характер случайности.

Переходим к следующей теореме закона больших чисел.

Пусть производится п независимых испытаний, в каждом из которых вероятность появления события А равно р.

Теорема (Теорема Бернулли). Если в каждом из п независимых испытаний вероятность р появления события А постоянно, то сколь угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний р достаточно велико.



Здесь т – число появлений события А. Из всего сказанного выше не следует, что с увеличением число испытаний относительная частота неуклонно стремится к вероятности р, т.е. (сходимость поточечная). В теореме имеется в виду только сходимость по вероятности, т.е. приближения относительной частоты к вероятности появления события А в каждом испытании.

В случае, если вероятности появления события А в каждом опыте различны, то справедлива следующая теорема, известная как теорема Пуассона.

Теорема (Теорема Пуассона). Если производится п независимых опытов и вероятность появления события А в каждом опыте различна и равна рi, то при увеличении п частота события А сходится по вероятности к среднему арифметическому вероятностей рi.

Теорема даёт возможность определить примерно относительную частоту появления события А.

Раздел: Экономика
Количество знаков с пробелами: 86945
Количество таблиц: 23
Количество изображений: 25

Читайте также: