Реферат новые технологии в науке

Обновлено: 04.07.2024

Естествознание как основа научно-технического прогресса, направления и сферы использования его современных достижений. Принципы биотехнологии, генной инженерии. Использование информационных и навигационных технологий, математического моделирования.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 16.12.2015
Размер файла 43,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современное естествознание и высокие технологии

Введение

естествознание технический навигационный биотехнология

В данной работе рассмотрены наиболее существенные достижения научно-технического прогресса, приводящие к новому пониманию природы, ее закономерностей и принципов развития, а так же представлены научные достижения, которые расширяют методологическую основы естествознания в целом.

Объектом исследования естествознания является природа, а так же вся совокупность процессов и закономерностей, проявляющаяся в природных системах. Естественные законы характеризуют постоянные системы, встречающиеся в природе, и являются всеобщими для определенной категории явлений и отображают необходимость их проявления при обусловленных, точно выраженных условиях.

Целью настоящей работы было раскрыть сущность высоких технологий, а так же определить их взаимоотношения с естественными науками. Для этого был определен ряд задач:

- изучить естественнонаучные основы современных технологий;

1. Естествознание как основа научно-технического прогресса

Объектом исследования естествознания является природа, а так же вся совокупность процессов и закономерностей, проявляющаяся в природных системах. В классическом понимании природа рассматривается как совокупность интегрированных законов, выступающих отражением разума и по которым существует материальный мир в пространстве и времени. Жизнь природы находится в непрерывном поиске более совершенных самоорганизованных моделей, имеющих способность к формированию разумной самоорганизации.

В процессе познания законов природы человек применяет научные достижения, извлекая при этом материальную выгоду. Исследуя природу, накапливая знания об отдельных случайных ее явлениях, выводятся законы их функционирования. Для создания научных основ охраны природы главное значение имеет обнаружение связей между элементами природы, связи между природой и человеческим обществом.

И в последующем, особенно после формирования электродвигателя, освоения электрической энергии, развитие производства в существенной степени определял научный прогресс. Таким образом, особенностью второго этапа научно-технического прогресса являлось взаимное стимулирование развития друг друга в непрерывно ускоряющемся темпе.

Третий этап научно-технического прогресса сопряжен с современной научно-технической революцией, которая началась в середине 20 века. Для этого этапа характерно превращение науки в естественную производительную силу. Отчетливее становится главенствующая роль науки в отношении к технике. Зачастую некоторые отрасли производства появляются вслед за новыми научными течениями и открытиями: атомная энергетика, радиоэлектроника, химия синтетических материалов, производство ЭВМ и др.

Естествознание, сложившееся в начале 20 века, позволило с новой стороны отнестись к сущности и роли техники в человеческой культуре. Согласно этому новому подходу особенности взаимоотношений человека и природы обусловливаются эффективностью их энергообмена. В природных условиях представители животного мира в незначительной степени обмениваются энергией, поэтому отдельный организм и природа могут считаться слабо взаимодействующими подсистемами, находящимися рядом с состоянием равновесия.

Природа развивается по принципу постоянного усложнения систем (т.е. неизбежного возникновения систем более высокого уровня), при условии способности к воспроизводству.

В 21 в. становится очевидным, что развитие общества обусловлено прогрессом в науке и технике, что именно на науке базируется сложное устройство современного развития. Постоянность научно-технического прогресса определяется фундаментальными и прикладными исследованиями, выявлениями новых закономерностей развития природы и общества, внедрением научных идей в технику и производство, она связана с разработкой целевых комплексных программ по решению научно-технических проблем.

2. Естественнонаучные основы современных технологий

Предметом естествознания как науки является природа. Природа включает весь информационный и материально-энергетический мир Вселенной. Современные технологии являются не только достижением науки и техники, но и представляют собой природные процессы или явления, представляющие объект изучения естествознания.

Наиболее распространенными технологиями являются достижения в следующих направлениях: биотехнологии, генной инженерии, нанотехнологии, медицине и т.д.

Появление определенной технологии свидетельствует о высоком уровне зрелости соответствующей ей сфере естествознания, когда она начинает развиваться быстро и становится прикладной, т.е. оказывается полезной обществу. В современном обществе развиваются многие виды технологий.

Биотехнологии

Современные биотехнологии основаны на применении живых организмов и биологических процессов в промышленном производстве. На основе биотехнологии постигнуто масштабное производство искусственных белков, питательных и многих других веществ. Успешно формируются микробиологический синтез витаминов, ферментов, аминокислот, антибиотиков и т.д. Представляет практический интерес синтез других биологически активных веществ - гормональных препаратов и соединений, стимулирующих иммунитет - с использованием естественных биологических материалов.

Для увеличения продуктов питания особую роль играют искусственные вещества, включающие белки, необходимые для жизнедеятельности живых организмов.

Благодаря существенным достижениям биотехнологии в настоящее время изготовляется в промышленных масштабах целый спектр искусственных питательных веществ, по многим качествам превосходящих продукцию естественного генезиса. Современные методы биотехнологии позволяют преобразовать большие количества отходов древесины, соломы и прочих остатков растительного происхождения в ценные питательные белки. Такой способ включает процесс гидролиза промежуточного продукта - целлюлозы - с последующей нейтрализацией образующейся глюкозы и введением солей. Полученный раствор глюкозы является питательным субстратом для микроорганизмов - дрожжевых грибов.

Промышленное производство белков полностью автоматизировано, и скорость роста дрожжевых культур в тысячи раз выше, чем крупного рогатого скота. 1 т пищевых дрожжей позволяет произвести около 800 кг свинины, 1,5 - 2,5 т птицы или 15-30 тыс. яиц и сэкономить при этом до 5 т зерна. Искусственные белковые питательные вещества - продукция бурно развивающейся микробиологической промышленности.

Значимым событием следует считать разработку промышленного производства пенициллина, получения аминокислот. Затем стали производить антибиотики, препараты ферментов, витаминно-белковые добавки к продуктам питания, ростовые вещества (например, гибберелин), бактериологические удобрения, средства защиты растений. Стало возможным производство бактериологического оружия.

Ученые расшифровали механизм рекомбинации ДНК в ходе синтеза ферментов, и в результате чего биотехнологи получили возможность изготовлять многие ферменты при относительно их невысокой себестоимости.

Совершенствуются способы усовершенствования технологии получения биокатализаторов, отсутствующих в природе. Например, кукурузный, пшеничный крахмал и сахар подходят для ферментации. Они свободно переходят в глюкозу, и далее - фруктозу.

Достижения генной инженерии

Генная инженерия содержит методы генетики и молекулярной биологии, связанные с направленным созданием новых, отсутствующих в природе комбинаций генов. Главная операция генной технологии сводится к извлечению из клетки организма гена (кодирующего нужный продукт) или группы генов и совмещение их с молекулой ДНК, которая способна проникать в клетки других организмов и там размножиться.

На начальных этапах развития генной инженерии получены биологически активные соединения - инсулин, интерферон и др. Современные генные технологии включают химию нуклеиновых кислот и белков, генетику, микробиологию, биохимию и открывают новые возможности разрешения многих проблем медицины, биотехнологии и сельского хозяйства.

Одним из самых современных и перспективных методов генной инженерии для получения новых микробных штаммов является генетическое копирование (клонирование).

В 2000 году появились сведения о клональном размножении потомства приматов путем деления зародыша. Американские ученые смоги получить генетически идентичные эмбрионы обезьяны посредством разделения бластомеров зародыша на стадии деления. Из эмбриона родилась вполне нормальная обезьянка Тетра - генетический близнец первоначально зачатой особи. Такой тип клонирования предполагает генетически идентичное потомство и в последствии можно получить двойню, тройню и сколько угодно генетических близнецов. Другими словами, появилась возможность воспроизводить сложные научные эксперименты на абсолютно генетически идентичных особях, имплантируя последовательно зародыш одной и той же суррогатной матери можно исследовать влияние ее организма и внешних факторов на развитие плода.

В ходе экспериментирования в клонировании отмечается высокая смертность и высокая доля уродств новорожденных.

Еще не в полной мере изучены многие механизмы клонирования и развития животных из соматической клетки. Однако, успех, достигнутый на данный момент, показал теоретическую возможность создания генетических копий даже человека из отдельной клетки, взятой из какого-либо органа. Многие ученые с энтузиазмом восприняли идею клонирования человека.

Однако, многие ученые и общественные деятели озабочены потенциальной опасностью (в том числе моральной) и, высказываются против клонирования человеческих особей. Имеется и биологическая проблема. Установлено, что в процессе культивирования клеток в пробирках и получения соматоклонов способны возникать различного рода мутации в геноме, вредоносные для организма. К тому же, как установлено, клональные особи обладают особенностью быстрого старения и угнетения многих жизненных функций за недолгий промежуток времени. Таким образом, клонирование человека способно привести к росту в человеческой популяции генетически неполноценных, в т.ч. психически больных людей. Так же, возникает целый ряд этических, моральных и даже юридических проблем, связанных с манипуляциями над эмбрионом человека.

Нанотехнологии

Нанотехнология - междисциплинарная область фундаментальной и прикладной науки и техники, обобщающая теоретическое обоснование, практические методы исследования, анализ и синтез, а также методы производства и использования продуктов с определенной атомарной структурой путём контролируемого манипулирования отдельными атомами и молекулами. [6]

На современном этапе проявляется все больше интереса разработке новых тонкопленочных материалов. Тонкопленочные защитные, полупрозрачные, упрочняющие, диэлектрические, магнитные и т.п. покрытия, тонкопленочные элементы интегральных схем современной микро- и наноэлектроники являются примерами использования тонкопленочных материалов. В зависимости от исполняемой задачи толщина слоя может колебаться в границах от нескольких ангстрем до нескольких десятков микрометров.

В настоящее время налажена технология формирования микроэлектронного элемента с размером до нескольких десятых долей микрометра. Для получения тонкопленочных слоев и элементов используются многообразные технологии:

- механическое и термическое напыление;

- вакуумное ионно-плазменное осаждение и др.

Наряду с перспективной микроэлектронной технологией в настоящее время активно внедряется биотехнология, сформированная на видоизменении структуры молекулы ДНК (сшивание нитями ДНК и т.д.).

В микроэлектронной технологии помимо уменьшения элементов интегральных схем до нанометровых размеров, необходимо соединять их между собой и с микроэлектродами. В реализации такой операции могут помочь нуклеиновые кислоты, поскольку в них четко проявляется молекулярная самосборка. В лаборатории уже удалось нитями ДНК связать наночастицы из золота в трехмерную решетку. Кроме того, из отрезка ДНК построили мостик, связывающий два электрода, а затем его использовали как матрицу, на которую из раствора осаждали серебро, так что получился проводящий металлический провод диаметром 100 нм, что значительно меньше размера широко применяемых сейчас в микроэлектронике электропроводящих полос. Приведенный пример показывает, как удачно могут сочетаться совершенно разные биотехнология и зарождающаяся наноэлекронная технология.

Микроэлектронные технологии оказали и будут оказывать огромное влияние на индустриальный мир и общество в целом. Наиболее широко известная продукция, изготавливаемая на основе микроэлектронной технологии - микропроцессор, представляющий собой устройство обработки информации, выполненное в виде одной или нескольких больших интегральных схем. Эта удивительно сложная и функционально интегрированная электрическая цепь построена на небольшой пластине, называемой чипом. Некоторые современные микропроцессоры, в том числе и отдельные чипы машинной памяти большой емкости, содержат миллионы транзисторов или других электронных компонентов, расположенных на кремниевой пластине площадью в несколько квадратных сантиметров.

Читайте также: