Реферат на тему вирощування кристалів солей

Обновлено: 05.07.2024

Тема выращивания кристаллов становится все более актуальной для всего человечества. В настоящее время кристаллы буквально вошли в каждый дом.

В сердце каждого телевизора, сотового телефона, компьютера находится кристалл. Выращивание кристаллов сохраняет природные богатства и ускоряет научно-технический прогресс. Сейчас мы знаем, что даже некоторые части нашего организма кристалличны, например, роговица глаза. Мир кристаллов и мир людей стали неразрывны.

Цель работы :

Вырастить кристаллы и определить, что влияет на рост кристалла.

1. Собрать информацию о кристаллах.

2. Вырастить кристаллы поваренной соли и медного купороса.

3. Выявить наиболее благоприятные условия для роста кристаллов в домашних условиях.

4. Провести работу по анализу выполненных экспериментов, сделать выводы и представить результаты.

Что такое кристалл?

Что такое кристалл? Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве.

Строение кристаллов.

Все кристаллы состоят из отдельных частиц: молекул и атомов, располагающихся в строгом порядке. Они образуют кристаллическую решетку. Каждому атому отведено место в определенном узле решетки, при этом образуются правильные многогранники. Кристалл может иметь от трех до нескольких сотен граней. Но при этом они обладают замечательным свойством. Все плоские грани пересекаются друг с другом под определенными углами. Углы между соответствующими гранями всегда одинаковы. Например, у кристаллов поваренной соли ( NaCl ) всегда их грани пересекаются под прямым углом. Кристаллы красивы и разнообразны. Секрет их красоты - в симметрии.

Виды кристаллов.

Кристаллические тела могут быть монокристаллами и поликристаллами.

Если в кристаллическом теле кристаллизация началась одновременно во многих точках вещества и скорость ее была достаточно высока, то мы получим поликристалл. Растущие кристаллики являются препятствием друг другу и мешают правильному огранению друг друга.

Нам удалось вырастить один такой поликристалл. .

Но в данной работе речь пойдет в основном о монокристаллах.

Выращивание кристаллов.

Существуют различные способы выращивания кристаллов. Часто этот процесс требует высоких температур и огромных давлений, но некоторые кристаллы можно выращивать в домашних условиях.

Выращивание кристаллов можно осуществить, постепенно удаляя воду из насыщенного раствора, то есть путем испарения.

Для этого нам потребуется кристаллический порошок, специальная посуда.

Этап 1: Приготовление пересыщенного раствора. Растворить соль, из которой будет расти кристалл, в подогретой воде (подогреть нужно для того, чтобы соль растворилось немного больше, чем может раствориться при комнатной температуре). Растворять соль до тех пор, пока не будете уверены, что соль уже больше не растворяется , то есть раствор насыщен!

Этап 2: Фильтрация раствора. Готовый раствор процеживают через фильтр, сделанный из обычной бумажной салфетки. Насыщенный раствор перелить в другую ёмкость, где можно производить выращивание кристаллов (с учётом того, что он будет увеличиваться).

Этап 3: Помещение затравок. Когда раствор остынет до комнатной температуры, в него добавляют маленькие затравочные кристаллы. Нитку с затравкой привяжите, например, к спичке и положите спичку на края стакана (ёмкости), где налит насыщенный раствор. Кристаллик опустите в насыщенный раствор.

Этап 4: Перенесите ёмкость с насыщенным раствором и кристалликом в место, где нет сквозняков, вибрации и сильного света (выращивание кристаллов требует соблюдения этих условий).

Этап 5: Наблюдение за ростом и формой кристаллов. Теперь нужно подождать. С каждым днём кристаллы будут увеличиваться.

Накройте чем-нибудь сверху ёмкость с кристалликом от попадания пыли и мусора.

Анализ выполненных работ.

Мы провели ряд экспериментов по выращиванию кристалла в домашних условиях.

Наблюдать за ростом кристаллов очень интересно и познавательно.

Сделали вывод: для роста кристалла необходимо, чтобы с поверхности кристалла шло хорошее испарение жидкости.

2. Следующей опыт был выполнен с целью может ли примесь какого - либо вещества изменить кристалл поваренной соли.

Приготовили насыщенный раствор поваренной соли , добавили акварельной краски красного цвета, затравку и выращивали кристалл.

Исследовали полученный кристалл с помощью лупы и увидели, что углы между гранями у них равные и равны 90 0 т. е. прямые.

Сделали вывод -примесь только окрашивает кристалл, но не изменяют его структуру. Кристаллы поваренной соли (NaCl) вырастают так, что их грани пересекаются под прямым углом. Что мы и наблюдали.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Почти весь мир кристалличен.

В мире царит кристалл и его

Данную тему считаю актуальной, т.к. в природе часто встречаются твердые тела, имеющие форму правильных многогранников. Такие тела назвали кристаллами. Изучение физических свойств кристаллов показало, что геометрически правильная форма – не главная их особенность.

Что такое кристаллы? Какими свойствами они обладают? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали меня, и я попыталась найти на них ответы сама.

Результаты своей работы я предлагаю вашему вниманию.

Цель работы: изучение процесса роста кристаллов в природе, в промышленности и в домашних условиях; выращивание кристаллов соли, сахара, железного и медного купороса в домашних условиях; исследование области применения кристаллов.

Задачи: 1. Познакомиться с представлениями ученых о твердых кристаллах на протяжении нескольких столетий

2. Рассмотреть промышленные и лабораторные способы выращивания кристаллов и выбрать способ, приемлемый для выращивания кристаллов в домашних условиях

3. Изучить физические свойства кристаллов

4. Рассмотреть области применения кристаллов.

Объект исследования: кристалл

Предмет исследования: процесс кристаллизации.

Гипотеза: Я предполагаю, что в домашних условиях можно вырастить кристаллы.

Методы: изучение литературы; проведение экспериментов; наблюдение

Глава 1: Природа кристаллов

Понятие кристалл

Рассмотрим всем известную горную породу гранит, состоящую из зерен полевого шпата, кварца и слюды. Все эти зерна – кристаллы, однако их извилистые контуры не сохранили никаких следов прямолинейности и плоскогранности. Гранит возник из огненно-жидкого глубинного расплава – магмы. В процессе остывания расплава из него выпадало множество кристалликов полевого шпата, кварца, слюды. Металлы и сплавы, каменные строительные материалы, цемент и кирпич – все это состоит из кристаллических зерен.

Значит, для образования хорошо ограненных кристаллов необходимо, чтобы ничто не мешало им свободно и всесторонне развиваться, не теснило бы их и не препятствовало их росту. Что касается отношения человека к кристаллам, то можно сказать, что он придает им большое значение, преклоняясь перед этим чудом природы.

1.2 Форма кристаллов

Кристаллографы всегда подчеркивают, что форма кристалла прежде всего зависит от его внутреннего строения, т.е. от кристаллической структуры (пространственного расположения атомов, молекул, ионов слагающих кристалл). Вместе с тем не стоит забывать о том, что на формирование кристаллического тела накладывает свой отпечаток и питающая его среда.

Кристаллы могут иметь всевозможные формы. Все известные в мире кристаллы могут быть разделены на 32 вида, которые в свою очередь могут быть сгруппированы в шесть видов. Кристаллы могут иметь форму различных призм, основанием которых могут быть правильный треугольник, квадрат, параллелограмм и шестиугольник (рис 1).

Рисунок 1 – формы кристаллов.

Кристаллы могут иметь и разные размеры. Некоторые минералы образуют кристаллы, которые разглядеть можно только с помощью микроскопа. Другие же образуют кристаллы, вес которых составляет несколько сотен фунтов.

Кристаллическими считаются вещества, атомы которых расположены регулярно, так, что образуют правильную трёхмерную решётку, называемую кристаллической. Кристаллам ряда химических элементов и их соединений присущи замечательные механические, электрические, магнитные и оптические свойства. Кристаллические решётки металлов часто имеют форму гранецентрированного (медь, золото) или объёмно-центрированного куба (железо), а также шестигранной призмы (цинк, магний) (Приложение 1).

Глава 2: Выращивание кристаллов

2.1. Образование кристаллов в природе В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, газовой или твердой фазы. Значительная часть минеральных видов произошла путем кристаллизации из водных растворов.

Огромные количества горячих и расплавленных горных пород глубоко под землей в действительности представляют из себя растворы минералов. Когда массы этих жидких или расплавленных горных пород выталкиваются к поверхности земли, они начинают остывать. Минералы превращаются в кристаллы, когда переходят из состояния горячей жидкости в холодную твердую форму. Например, горный гранит содержит кристаллы таких минералов, как кварц, полевой шпат и слюда.

Кристаллизоваться могут не только водяные пары, но и пары других веществ. Например - на фумаролах образуются кристаллы из газов.

Перекристаллизация связана с таким явлением как метосамотоз - преобразование горной породы или минерала в другую горную породу или минерал под воздействием приноса или выноса вещества. Перекристаллизация - это процесс, при котором структура одних веществ разрушается, и образуются новые кристаллы с другой структурой. Например, известняк под действием высоких температур и давления становится мрамором (Приложение 2).

2.2Методы выращивания кристаллов

Синтез драгоценных ювелирных и технических камней по способу М. А. Вернейля считается классическим и является пер­вым промышленным методом выращивания кристаллов корун­да, шпинели и других синтетических кристаллов (Приложение 3).

Метод кристаллизации из раствора в рас­плаве с использованием флюсов.

Охлаждение насыщенного горячего раствора. Если охлаждение вести быстро, избыток вещества выпадет в осадок. Если раствор охлаждать медленно, зародышей образуется немного, и, обрастая постепенно со всех сторон, они превращаются в краси­вые кристаллики правильной формы.

Выращивание кристаллов из расплавленных веществ при медленном охлаждении жидкости. Наилучшие результаты получаются, если используется затравка. Таким способом получают, например, кристаллы рубина.

Самый простой способ - испарение растворителя. По мере испарения в сосуд подливались новые порции раствора. Способ выращивания таких кристаллов разработан С. Киропулосом.

2.3 Выращивание кристаллов в домашних условиях 2.3.1 Приготовление раствора

Необходимо приготовить раствор из тёплой воды. Воду лучше брать дистиллированную. Банку на половину объёма наполняют водой и небольшим количеством соли (морской соли, сахара, железного или медного купороса), которую постоянно перемешивают. Добавляем ещё вещества и снова перемешиваем. Повторяем этот этап до тех пор, пока вещество не будет растворяться, и станет оседать на дно сосуда. Получился насыщенный раствор. Готовый раствор необходимо профильтровать и перелить во вторую банку, в которой будет происходить рост кристаллов. Банку накрыть листком бумаги, чтобы не попадали инородные тела, и ждать появления первых кристалликов.

2.3.2 Фильтрация раствора

Конечно же, для фильтрации раствора лучше всего использовать хороший, лабораторный фильтр из фильтровальной бумаги и стеклянную воронку. Если готового фильтра нет, то его можно сделать из обычной промокашки. В своих опытах, в домашних условиях, я использовала вату. Вату плотно вставляют в горлышко воронки и затем фильтруют раствор.

2.3.3 Выращивание крупных одиночных кристаллов

Для того чтобы кристалл вырос крупным и геометрически ровным, т. е. имел природную форму, необходимо довольно много времени. Обычно кристалл вырастает на 0,1-0,8мм в сутки. Выращивание крупного одиночного кристалла - очень длительный и сложный процесс, требующий терпения и осторожности.

Для начала потребуется затравка - маленький кристаллик, который и будет центром кристаллизации. Для того чтобы получить затравку, нужно приготовить максимально концентрированный раствор вещества. Через несколько дней на дне стакана появляются первые кристаллики, имеющие разную форму. Из этих кристалликов отбираю те, которые имеют более правильную форму.

Раствор, в который собираются погрузить затравку, желательно приготовить заранее и оставить на пару дней для выпадения первых кристалликов (чтобы быть уверенным, что затравка не растворится). Раствор фильтрую от выпавших кристалликов, переливаю в чистый стакан и погружаю туда затравку. Стакан накрываю бумагой и оставляю на полке. Уже через неделю можно заметить, что кристалл заметно подрос.

2.3.4 Выращивание сростков кристаллов (друз)

Выращивание сростков кристаллов - это один из самых быстрых способов выращивания кристаллов. Если выращивание одиночных кристаллов занимает много времени и рассчитано на постепенный, правильный рост кристаллов, то выращивание друзы гораздо легче, потому что оно ориентируется на быстрое, хаотическое выпадение кристаллов.

Сначала готовим перенасыщенный раствор соли (сахара, медного купороса) в горячей воде. После охлаждения раствора - вносим затравку. Уже через 5-10 часов видим большое количество кристалликов на нитке, на затравке, на дне стакана. Раствор оставляем в покое в течение 3-5 дней, затем вынимаем нитку с кристаллом, раствор нагреваем, добавляем воды и снова делаем максимально концентрированным. После охлаждения в него вновь вносим нитку с уже подросшим кристаллом и оставляем на 3-5 дней. Эту процедуру повторяем до тех пор, пока кристалл не достигнет необходимого размера.

Глава 3. Мои эксперименты

3.1. Мои опыты по выращиванию кристаллов в домашних условиях

Чтобы вырастить кристаллы в домашних условиях, нужно приготовить перенасыщенный раствор соли. В качестве исходных веществ я выбрала те соли, которыми пользуется человек более или менее часто: медный купорос (для обра­ботки растений от вредителей) и поваренную соль и сахар (для употреб­ления в пищу).

Второй способ, которым я воспользовалась – охлаждение насыщенного горячего раствора, т.е. метод выпаривания. На стеклянные пластинки наносила по несколько капель раствора и затем нагревала пластинки над пламенем. Раствор очень быстро испарялся, а на пластинках оставались кристаллики (Приложение 4).

3.2. Наблюдение за ростом кристаллов

На­блюдала за ростом каждый день. Изучив литературу, я знала, что вырастить монокристалл очень сложно. Для этого нужно строго соблюдать все условия технологии, начиная со специаль­ной посуды, чистоты раствора и заканчивая соблюдением стро­жайшего температурного режима. Но я занималась экспери­ментальной работой в зимнее время, раствор очень быстро ос­тывал, поэтому поддерживать температуру постоянной не удавалось. Также приходилось периодически подогревать со­держимое и добавлять еще вещества в раствор. Все эти отклоне­ния от технологии привели к тому, что кристаллы выросли сросшимися, т. е. у меня в основном получились поликристаллы с выра­женными плоскими гранями отдельных кристаллов.

Я периодически измеряла размеры некоторых граней и заметила следующее: грани изме­няют свои размеры - растут, но форма их остается неизменной, углы между соответственными гранями тоже остаются постоян­ными. Но, возможно, эта закономерность характерна только данному кристаллу? Поэтому я вырастила два разных кри­сталла медного купороса, сравнила формы граней и измерила их углы. Оказалось, что и для другого кристалла эта закономер­ность тоже справедлива. Это дает право говорить о том, что в различных кристаллах одного и того же вещества и форма гра­ней, и их взаимные расстояния, и их число могут изменяться, но углы при этом остаются постоянными (Приложение 5).

3.3. Исследование физических свойств кристаллов

Конечно, не все физические свойства можно исследовать в домашних условиях. Расколов кристалл медного купороса на множество ма­леньких кристалликов я убедилась, что они представляют собой одинаковой формы геометрические тела, отличающиеся только размерами. Большой поликристалл при механическом воз­действии может дробиться на части, ограниченные плоскими поверхностями, пересекающимися под острыми и тупыми угла­ми. Способность кристалла раскалываться в определенных на­правлениях называется спайностью.

А затем я исследовала самые крупные кристаллы на теп­лопроводность. Я наносила каплю парафина на разные грани кристаллов и давала ей застыть. Затем дотрагивалась до этих граней хорошо прогретой спицей и наблюдала за формой таявшей капельки па­рафина. В одних случаях форма была круглая, а в других - вы­тянутая, а это значит, что в первом случае тепло распространя­лось по всем направлениям одинаково, а во втором - тепло рас­пространялось в одних направлениях медленнее, в других быстрее и форма проталинки была уже не круглой (Приложение 6).

Кроме этого я проверила кристалл медного купороса на электропроводимость, светопроницаемость и намагничиваемость. Вывод: кристалл медного купороса проводит электрический ток; очень слабо пропускает свет; и совсем не обладает магнитными свойствами, т. е не примагничивает тела (Приложение 7).

Затем я сравнила формы полу­ченных кристаллов с формами их кристаллических решеток. Мне это удалось сделать для кристаллов поваренной со­ли. Выращенный мною кристалл относится к кубической сингоиии – куб (гексаэдр).

Но мне не удалось найти формы решеток железного и медного купороса. Я воспользовалась предыдущим соответстви­ем формы кристалла и его решетки и предположила следующее: что форма кристаллов медного купороса соответствует ромбоэдру (средние сингонии), а форма кристаллов железного купороса - ромбиче­ской призме (низшие сингонии) (Приложение 8).

Глава 4. Применение кристаллов

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить, ограничимся несколькими примерами. Самый твердый и самый редкий из природных минералов - алмаз. Алмазными пилами распиливают камни. Алмаз используется при бурении горных пород, в граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

На искусственных рубинах работает часовая промышленность. Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. Кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные ла­зеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др. Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.Основная масса кристаллов сапфира идет в полупроводниковую промышленность.Кремень, аметист, яшма, опал, халцедон— все это разновидности кварца.Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.

Пьезоэлектрические кристаллы применяются для воспроизведения, записи и передачи звука. Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигателей при взрыве в них горячих газов. В технике также нашел своё применение поликристаллический материал поляроид. Поляроидные пленки применяются в поляроидных очках.

Заключение

Живя на Земле, сложенной кристаллическими породами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же "кристальной души человек" о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз … И если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей.

Таким образом, в ходе выполнения работы я сделал следующие выводы: 1. Представления о кристаллах, их строении и свойствах развивались на протяжении нескольких веков

Все физические свойства, благодаря которым кристаллы так широко применяются, зависят от их строения - их простран­ственной решетки.

Я выбрала наиболее приемлемый способ для выращи­вания кристаллов в

домашних условиях и вырастила кристаллы медного и железного купороса, а также кристаллы поваренной соли и сахара. По мере роста кристаллов проводила наблюдения. Определила типы кристаллических решеток для медного и железного купороса.

Список литературы

Желудов И.С. Физика кристаллов и симметрия. – М.: Наука, 1987

Кабардин О.Ф. Физика: учебник 10 класса для школ с углубленным изучением физики. – М.: Просвещение, 2001

Рыбалкина М. Нанотехнологии для всех. – М.: Большое в малом, 2005

Шафрановский И.И. Симметрия в природе. – Ленинград: Недра, 1985

Энциклопедический словарь юного физика/сост. В.А. Чуянов.-2-е изд., испр. И доп. – М.: Педагогика, 1991

Материалы из ИНТЕРНЕТ

Приложения:

Приложение 1 (модели кристаллических решеток)

КР золота (Au) КР железа (Fe) КР меди (Cu) КР Поваренной соли

Приложение 2 Кристаллы в природе

Приложение 3 Схема аппарата Вернейля и монокристалл корунда, полученный этим методом.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выращивание кристаллов в домашних условиях.

Научный руководитель:

Оралова Галина Николаевна

1.1 Кристаллы в природе . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Жидкие кристаллы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.3 Многообразие жидких кристаллов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II . Идеальная форма кристаллов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 III . Симметрия кристаллов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

IV . Применение кристаллов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

V . Как растут кристаллы и способы их выращивания . . . . . . . . . . . . . . . . . .15

5.1 Приготовление насыщенного раствора вещества . . . . . . . . . . . . . . . . . . .17

5.2 Выращивание кристаллических тел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

В земле иногда находят камни такой формы, как будто их кто-то тщательно выпиливал, шлифовал, по­лировал. Кристаллы – это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые.

Есть среди них скромные кристаллы каменной соли природного хлористого натрия, то есть обычной поваренной соли. Они встречаются в природе в виде прямоугольных параллелепипедов или кубиков.

Трудно поверить, что такие иде­альные многогранники образовались сами, без помо­щи человека.

Каких только кристаллических тел не создала природа. Стол­бики, кубы, пирамиды, таблички, пластинки, звезды, иглы, лепестки, сростки, сложные сплетения… Поражает разнообразие причудливых форм и цветов кристаллов!

Цель моей работы: научиться выращивать кристаллические тела из водных растворов и исследовать явления, которые возникают при этом процессе.

познакомиться с методами выращивания кристаллов;

освоить методику выращивания кристаллических тел из водных растворов;

провести наблюдения за возникающими при выращивании кристаллов физическими явлениями;

объяснить некоторые явления;

выработать рекомендации по выращиванию кристаллических тел для заинтересовавшихся нашим исследованием учащихся.

I . Кристаллы

1.1. Кристаллы в природе

Реальный кри­сталл — это огромная совокупность одинаковых структурных элементов (молекул, атомов, ионов), которые во всех трех измерениях расположены в стро­гом порядке, образуя кристаллическую решетку.

Часть атомной структуры кристалла, параллельными переносами которой (трансляциями) в трех измерениях можно построить всю кристаллическую решетку называют элементарной ячейкой. Как правило, элементарная ячейка имеет форму прямоугольного параллелепипеда. Длину ребра этого элементарного параллелепипеда называют периодом кристаллической решетки.

Одним из первых, кто выдвинул идею существования кристалличе­ской решётки, был Ньютон. "Нельзя ли предположить, — писал он, — что при образовании. кристалла части­цы. установились в строй и в ряды?" Его современник, нидерландский физик Христиан Гюйгенс, увидел в этом причину правильной формы кристаллов. "Правильность, обнару­живаемая в этих образованиях, — от­мечал он, — по-видимому, проис­ходит от расположения маленьких невидимых и одинаковых частичек, из которых они состоят".

Большинство твердых веществ на Зем­ле являются кристаллическими. Вопрос о происхождении минералов в природе тесно связан с происхождением и развитием Земли. Считается, что многие минералы и горные породы образовались при охлаждении земной коры по­добно тому, как образуется лед при замерзании воды. Магма, вещество земной коры в расплавленном состоянии, представляет собой сложный расплав различных веществ, насыщенный различ­ными горячими газами и парами. При охлаждении магмы снача­ла в ней образовались кристаллы того вещества, температура кристаллизации которого самая высокая.

По мере дальнейшего охлаждения происходила кристаллизация других минералов, обладающих меньшей температурой кристаллизации, и так до тех пор, пока вся магма не затвердела. При затвердевании объем земной коры уменьшался, и в ней появлялись трещины и пустоты. В таких пустотах рост кристаллов происходит беспрепятственно. В них часто находят крупные и хорошо ограненные кристаллы кварца, пластинчатые кристаллы слюды площадью в несколько квадратных метров и многие другие.

hello_html_m65d908ef.jpg

Многие минералы возникли из пересыщенных водных раство­ров. Первым среди них следует назвать каменную соль N аСl, являющуюся одним из наиболее знакомых каждому человеку ми­нералов. Толщина пластов каменной соли, образовавшихся при испарении воды соленых озер, достигает в некоторых месторож­дениях нескольких сотен метров.

Близ Солт-Лейк-Сити (США) находится Долина Смерти, покрытая бесконечными белыми полями соляных многогранников - такыров, естественных образований, формирующихся при высыхании соляных озер (рис. 1). А у подножия восточных склонов этой Долины Смерти образуются мощные соляные "торосы" (рис. 2).

В России в Астраханской области находится безжизненное соленое озеро Баскунчак, площадь которого 106 км 2 . Каменная соль, кристаллизуясь, образует поликристаллические структуры, напоминающие заснеженные ветви кустарника. На рисунке 3 показан "осколок" такой ветви.

Всё чаще мы стали встречаться с термином “жидкие кристаллы”. Мы все часто с ними общаемся, и они играют немаловажную роль в нашей жизни. Многие современные приборы и устройства работают на них. К таким относятся часы, термометры, дисплеи, мониторы и прочие устройства. Что же это за вещества с та­ким парадоксальным названием “жидкие кристаллы” и почему к ним проявляется столь значительный интерес? В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материаль­ного производства. В этом отношении не являются ис­ключением и жидкие кристаллы. Интерес к ним, прежде всего, обусловлен возможностями их эффективного при­менения в ряде отраслей производственной деятельно­сти. Внедрение жидких кристаллов означает экономиче­скую эффективность, простоту, удобство.

1.3. Многообразие жидких кристаллов

В то время существование жидких кристаллов пред­ставлялось каким-то курьезом, и никто не мог предполо­жить, что их ожидает почти через сто лет большое буду­щее в технических приложениях. Поэтому после некото­рого интереса к жидким кристаллам сразу после их от­крытия о них через некоторое время практически за­были.

Самые “кристаллические” среди жидких кристаллов — смекатические. Для смекатических кристаллов характерна двумерная упорядоченность. Молекулы размещаются так, чтобы их оси были параллельны. Более того, они “понимают” команду “равняйся” и размещаются в стройных рядах, упакованных на смекатических плоскостях, и в шеренгах - на нематических, что поясняет рис. 38а. Смекатическим жидким кристаллам свойственно многое из того, о чем пойдет речь ниже, и нечто особенное - долговременная память. Записав, например, изображение на такой кристалл, можно затем долго любоваться “произведением”. Однако эта особенность смекатических кристаллов для воспроизводящих элементов индикационных устройств, телевизоров и дисплеев не слишком удобна. Тем не менее, они находят применение в промышленности, к примеру, в индикаторах давления.

Упорядоченность нематических сред ниже, чем у смекатических. Молекулам дозволено смещаться относительно длинных осей, поэтому упорядоченность становится “односторонней”, а реакция на внешнее воздействие относительно быстрой, память - короткой. Смекатические плоскости отсутствуют, а вот нематические сохраняются. Эту особенность нематиков поясняет .

Термин “холестерические жидкие кристаллы” не случаен, поскольку наиболее характерным и на практике самым используемым кристаллом этого класса является холестерин. Молекулы холестерина и аналогов размещаются в нематических плоскостях. Особенность молекул холестерического типа в том, что при достаточно сильном боковом притяжении их вершины отталкиваются. Холестерин - доступный и достаточно дешевый материал, сырьем для которого богата любая скотобойня. Очень сложные жидкокристаллические структуры образуют растворы мыла в воде. Здесь можно получить слоистые, дисковые и даже шарообразные структуры. Словом, выбор материала широк.

В достаточно больших объёмах кристаллической жидкости образуются домены, физические свойства которых подобны кристаллам. Однако в целом она проявляет свойства, подобные обычным жидкостям. Доменная структура жидких кристаллов образуется по тем же причинам и законам, что в сегнетоэлектриках и ферромагнетиках. Ситуация резко меняется в плёнках, толщина которых сопоставима с радиусом взаимодействия молекул жидкости и пластин, формирующих слой.

Правильная многогранная форма кристалла, прежде всего, бросается в глаза наблюдателю, и она, конечно же, не составляет главную особенность кристаллического тела.

Форму, которую принимает монокристалл тогда, когда при его росте устранены все случайные факторы называют идеальной. Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми рёбрами и обладает симметрией. Как и всякий многогранник, кристалл имеет некоторое число граней P , рёбер R , вершин E , причём эти числа связаны между собой соотношением P + E = R +2. например, у куба 6 граней, 8 вершин и 12 рёбер (6+8=12+2). Для октаэдра (рис.5), додекаэдра (рис.6) это соотношение также справедливо.

Куб, октаэдр, додекаэдр представляют собой простые правильные многогранники. В форме правильных многогранников кристаллизуется сравнительно небольшое число кристаллов. В форме куба кристаллизуется поваренная соль, сернистый цинк, в форме октаэдров - алмаз, в форме ромбического додекаэдра - гранат.

Чаще всего вещества кристаллизуются в виде сложных многогранников, т.е. они бывают ограничены несколькими сортами равных между собой граней. Так, например, кристалл квасцов (рис.7) имеет обычно 6 восьмиугольных граней, 8 шестиугольных граней и 12 четырёхугольных граней.

III . Симметрия кристаллов

Идеальные формы кристаллов симметричны. По выражению известного русского кристаллографа Евграфа Степановича Фёдорова (1853-1919) , кристаллы блещут симметрией.

Рис.8

В кристаллах можно найти различные элементы симметрии: плоскость симметрии, ось симметрии, центр симметрии.

Рассмотрим симметрию некоторых простейших кристаллических форм.

Кристаллы в форме куба ( NaCl , KCl и др.) имеют девять плоскостей симметрии, три из которых проходят параллельно граням куба, а шесть – по диагоналям. Кроме того, куб имеет три оси симметрии 4-го порядка, четыре оси 3-го порядка и шесть осей 2-го порядка (рис.8), кроме того, он имеет центр симметрии. Всего в кубе 1+9+3+4+6=23 элемента симметрии.

Рис.9 Рис.10 Рис.11

Кристаллы алмаза, калиевых квасцов имеют форму октаэдров. Октаэдры обладают такими же элементами симметрии, что и кубы. На рисунке 9 показаны оси вращения октаэдра.

У кристаллов магния, имеющих форму гексагональной призмы (т.е. призмы, опирающейся на правильный шестиугольник) , 6 плоскостей симметрии и одна ось симметрии 6-го порядка (рис.10) . У кристаллов медного купороса (рис. 11) имеется лишь центр симметрии, других элементов симметрии у них нет.

Из этого небольшого обзора симметрий различных кристаллов можно сделать вывод, что различные кристаллы обладают разной симметрией. Есть формы богатые симметрией (куб, октаэдр), есть бедные (кристаллы медного купороса). У разных кристаллов различны элементы симметрии. Например, кристаллы магния обладают осью симметрии 6-го порядка, а кристаллы NaCl имеют 13 осей симметрии, но ни одна из них не является осью симметрии 6-го порядка и т.д.

Совокупность имеющихся элементов симметрии определяет вид симметрии. Так, можно утверждать, что кристаллы поваренной соли (в виде кубов) и кристаллы калиевых квасцов (в виде октаэдров) обладают одинаковой симметрией и относятся к одному виду симметрии.

Кристаллы магния, медного купороса имеют свои своеобразные виды симметрии.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах "на счастье" и "своих камнях", соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита.
Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.
Большое значение для техники имеют кристаллы сегнетовой соли и кварца, обладающие замечательными свойствами преобразовывать механические действия (например, давление) в электрическое напряжение.
Для часовой промышленности нужны кристаллы рубинов, сапфиров и некоторых других драгоценных камней. Дело в том, что отдельные подвижные части обыкновенных часов делают в час до 20 000 колебаний. Такая большая скорость предъявляет необычайно высокие требования к качеству кончиков осей и подшипников. Истирание будет наименьшим, когда подшипником для кончика оси диаметром 0,07 – 0,15 мм служит рубин или сапфир. Искусственные кристаллы этих веществ очень прочны и очень мало истираются сталью. Замечательно, что искусственные камни оказываются при этом лучше таких же природных камней.
Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.
Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.
Кристаллы используются также в некоторых мазерах для усиления волн СВЧ - диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

V . Как растут кристаллы и способы их выращивания

Кристаллы можно получить из раствора или из расплава данного вещества, а также из его паров.

Наиболее распространенные способы выращивания монокристаллов ― кристаллизация из расплава и кристаллизация из раствора. Эти технологии очень сложны. Однако каждый желающий может вырастить некоторые моно- и поликристаллы в домашних условиях кристаллизацией из водного раствора кристаллического вещества. Именно этим способом выращивания я воспользовалась в своей работе.

Выращивают кристаллы из раствора, в основном, двумя способами. Один из них — охлаждение насы­щенного раствора вещества . С понижением темпе­ратуры растворимость большинства веществ уменьшается, и они, как гово­рят, выпадают в осадок. Сначала в растворе и на стенках сосуда появля­ются крошечные кристаллы-зародыши. Когда охлаждение медленное, а в рас­творе нет твердых примесей (например, пыли), зародышей образуется немного, и постепенно они превращаются в кра­сивые кристаллы правильной формы. При быстром охлаждении центров кри­сталлизации возникает много, сам про­цесс идёт активнее. Правильных кри­сталлов при этом не получится, ведь множество быстро растущих кристал­ликов мешают друг другу.

Другой метод выращивания кри­сталлов — постепенное удаление воды (испарение) из насыщенного раствора. И в этом слу­чае, чем медленнее удаляется вода, тем лучше получаются кристаллы. Можно оставить открытый сосуд с раствором при комнатной температуре на длитель­ный срок — вода при этом будет испа­ряться медленно (особенно если свер­ху положить лист бумаги, который заодно защитит раствор от пыли).

Форма кристалла зависит от формы и размера частиц данного вещества (атомов, ионов или молекул), а также от того, как они друг с другом взаимодей­ствуют.

Для того чтобы получить кристаллы из паров надо собрать установку, служащую для так называемой возгонки кристаллов. Некоторые вещества выкристаллизовываются из пара, получающегося при испарении твердого порошка, например, нашатыря или йода. Порошок нашатыря легко переходит в пар при небольшом нагревании. Поэтому возгонку его вполне возможно производить просто в пробирке.

Нажмите, чтобы узнать подробности

Кристаллы окружают нас повсюду. Кто не рассматривал песчинки на речном берегу или не любовался снежинками? И морозные узоры на стеклах окон и иней, украшающий зимой голые ветки деревьев. В земле иногда находят камни такой формы, как будто их кто-то тщательно выпиливал, шлифовал, полировал. Правильность и совершенство формы этих камней, безукоризненная поверхность - поражают. Трудно поверить, что такие многогранники образовались сами без помощи человека. Вот эти-то камни с природной, то есть не сделанной руками человека, правильной, многогранной формой и называются кристаллами.

Твердые тела, из которых строят дома, делают станки, вещества, которые мы употребляем в быту,- почти все они относятся к кристаллам.

Представление древних о кристаллах было похоже на легенды. Верили, что хрусталь образуется изо льда, а алмаз – из хрусталя. Кристаллы наделялись множеством таинственных свойств: исцелять от болезней, предохранять от яда, влиять на судьбу человека…

Актуальность работы: работа интересная и познавательная. Кристаллы играли и играют до сих пор немаловажную роль в жизни человека. Они обладают оптическими и механическими свойствами, именно поэтому первые линзы, в том числе и для очков, изготавливались из них. Кристаллы до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках XX века.

Кроме того, кристаллы можно выращивать из раствора. Это удивительное свойство кристаллических тел!

Цель работы: провести исследование по выращиванию кристаллов поваренной соли и медного купороса в домашних условиях.

Гипотеза исследования: я предположил, что кристаллы могут появляться при создании определенных условий; значит, если изменить условия кристаллизации и растворить различные вещества, то можно получить кристаллы разной формы и цвета в домашних условиях.

Объектом исследования являются кристаллы.

Предметом исследования–процесс кристаллизации.

Задачи исследования:

Проанализировать текстовый и иллюстративный материал по данной теме.

Изучить условия образования кристаллов, их формы, цвета.

Выполнить опытно-экспериментальную работу по изученным методикам.

Проанализировать полученные результаты.

Методы исследования:

Накопление теоретического материала.

Проведение опытно-экспериментальной деятельности с целью получения кристаллов из поваренной соли и медного купороса.

Анализ полученных результатов исследования.

Теоретическая часть

1 Теория кристаллов

1.1 Что такое кристалл?

Кристалл – это твердое состояние вещества. Он имеет определенную форму и определенное количество граней вследствие расположения своих атомов. Все кристаллы одного вещества имеют одинаковую форму, хоть и могут отличаться размерами.

В природе существуют сотни веществ, образующих кристаллы. Вода – одно из самых распространенных из них. Замерзающая вода превращается в кристаллы льда или снежинки.






Рисунок 1 – Разнообразие снежинок.

Ярой альпийской зимой лед превращается в камень.
Солнце не в силах затем камень такой растопить.

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,
Кристаллом покрывал недвижные струи.

А.С.Пушкин. К Овидию [9],[2]

1.3 Структура кристалла


Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Поэтому кристаллы имеют плоские грани. Например, крупинка обычной поваренной соли имеет плоские грани, составляющие между собой прямые углы. Это можно заметить, рассматривая соль с помощью лупы. А как геометрически правильна форма снежинки! В ней также отражена геометрическая правильность внутреннего строения кристаллического тела – льда.

Не все кристаллы одинаковы. Существуют монокристаллы и поликристаллы. Твердое тело, состоящее из большого числа маленьких кристаллов, называют поликристаллическим. Одиночные кристаллы называются монокристаллами.

Соблюдая большие предосторожности, можно вырастить металлический кристалл больших размеров – монокристалл. В обычных условиях поликристаллическое тело образуется в результате того, что начавшийся рост многих кристаллов продолжается до тех пор, пока они не приходят в соприкосновение друг с другом, образуя единое тело.

К поликристаллам относятся не только металлы. Кусок сахара, например, тоже имеет поликристаллическую структуру. Большинство кристаллических тел – поликристаллы, так как состоят из множества сросшихся кристаллов. Одиночные кристаллы - монокристаллы, так как имеют правильную геометрическую форму, и их свойства различны по разным направлениям.[10],[6]

Кристаллы образуются при охлаждении расплавов или насыщенных растворов (с понижением температуры растворимость обычно уменьшается и при испарении растворителя). Иногда кристаллы образуются непосредственно при охлаждении паров (снег) или на холодных поверхностях (сублимация). Кристаллы растут с ограниченной скоростью, так как частицы вещества отлагаются, образуя грани.[4]

2 Образование кристаллов

2.1 Образование кристаллов в природе

Минеральные кристаллы образуются в ходе определенных породообразующих процессов. Огромные количества горячих и расплавленных горных пород глубоко под землей в действительности представляют из себя растворы минералов. Когда массы этих жидких или расплавленных горных пород выталкиваются к поверхности земли, они начинают остывать.

Они охлаждаются очень медленно. Минералы превращаются в кристаллы, когда переходят из состояния горячей жидкости в холодную твердую форму. Например, горный гранит содержит кристаллы таких минералов, как кварц, полевой шпат и слюда. Миллионы лет тому назад гранит был расплавленной массой минералов в жидком состоянии. В настоящее время в земной коре имеются массы расплавленных горных пород, которые медленно охлаждаются и образуют кристаллы различных видов.

Природа продолжает преподносить нам сюрпризы, создавая все новые чудеса. Совсем недавно, в 2000 году, в мексиканской пустыне Чихуахуа была открыта необычная пещера, где находятся самые большие природные кристаллы, которые когда-либо создавала природа (рис.1). Мегакристаллы селенита были сформированы гидротермальными жидкостями, исходящими от пещер, расположенных ниже.


Рисунок 1 – Пещера кристаллов

Селенит – разновидность гипса, отличающаяся характерным параллельно-волокнистым строением. Свое название селенит получил за красивые желтовато-серебристые лунные переливы на его поверхности (в Древней Греции Селеной называли богиню Луны).[8]

Это самые большие из известных на сегодня природных кристаллов – полупрозрачные лучи неимоверной длины до 15 метров, диаметром 1,2 метра, весом не менее 55 тон каждый – волшебно-причудливым образом переплетены между собой и создают в пещере неимоверной красоты пейзаж. Но полюбоваться этой красотой непросто. Попасть в пещеру без специального обмундирования и оборудования невозможно без риска для жизни. Температура воздуха там составляет около 50 градусов Цельсия, а влажность – практически 100%! Даже в специальном костюме находиться в этих пещерах можно не очень долго – около часа.

Но не только это мешает спелеологам в путешествии по пещере гигантских кристаллов. Нагромождения кристаллов так причудливо сплетены, что порой между ними нельзя пройти человеку, но разрушать эту красоту у ученых и исследователей рука не поднимается.

Исследователи уверены, что подобных пещер в мексиканской пустыне еще несколько, и они ждут своих первооткрывателей![7]

2.2 Выращивание кристаллов в промышленности

Начиная с XIX века появились технологии выращивания искусственных кристаллов. Некоторые из этих ювелирных камней настолько совершенны, что их крайне сложно отличить от натуральных. Синтетические кристаллы востребованы в промышленности и на рынке ювелирных изделий.

Первые успешные попытки синтеза драгоценных камней приходятся на конец XIX века. В 1877 году Эдмон Фреми и Шарль Фейль получили кристаллы рубина.

В 1902 году Огюст Вернейль смог синтезировать рубины методом плавления в пламени, положив начало промышленному синтезу ювелирных камней. Данный метод, с некоторыми изменениями, до сих пор остается одним из самых распространенных способов выращивания кристаллов ювелирного качества.

Схема аппарата Вернейля

и монокристалл корунда, полученный этим методом.

Порошковая шихта, состоящая из оксида алюминия с добавлением 2% оксида хрома, помещается в печь. Под ударами молотка шихта попадает вниз, контактирует с кислородом и водородом, достигая в пламени температуры 2000 о С. Капли расплавленного материала падают на стержень, на котором образуется шарик кристалла, медленно приобретающий грушевидную форму.[5]

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека. Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – искусственные кристаллы, которые внешне очень похожи на бриллианты (рис.2).


Рисунок 2 – Фианит.

Исследователи из США сумели вырастить огромные кристаллы пирофосфата калия. Самый крупный из кристаллов весит 318 килограмм. Он рос в большом баке, где при температуре 65 градусов Цельсия испарялся раствор пирофосфата калия. Молекулы отлагались на затравке размером меньше наперстка, и через 52 дня вырос прозрачный гигант почти без дефектов.

Кристаллы будут использоваться для сооружения сверхмощных лазеров.[9],[2]

Нажмите, чтобы узнать подробности

Нас всегда поражала красота кристаллов. Мы всегда считали, что каждый из них по-своему прекрасен. Они, подобно росе, сверкают на солнце, завораживают красотой своих граней, глубиной цвета, сказочными переливами и игрой неповторимых красок. Мы очень рады, что можем создать нечто столь прекрасное и в то же время столь полезное и незаменимое.

Большинство окружающих нас твёрдых тел представляют собой тела в кристаллическом состоянии. Кристаллы встречаются повсюду: мы ходим по кристаллам, строим из них, выращиваем их в лабораториях, создаём приборы и изделия из кристаллов, широко применяем их в науке и технике, потребляем кристаллы в пищу, используем для лечения, находим кристаллы в живых организмах (молекулы ДНК) и т. п.

Эта тема нас заинтересовала, поэтому мы решили взяться за этот проект.

Цель: Научиться выращивать кристаллы в домашних условиях

1.Изучить литературу о кристаллах.

2.Собрать необходимое оборудование и материалы.

3. Изучить различные методики выращивания кристаллов некоторых веществ

Применить полученные знания о свойствах кристаллов на практике

Объект исследования: кристалл меди

Метод исследования:

Глава 1. Что такое кристаллы?

Большинство окружающих нас твёрдых тел представляют собой тела в кристаллическом состоянии. Кристаллы встречаются повсюду: мы ходим по кристаллам, строим из них, выращиваем их в лабораториях, создаём приборы и изделия из кристаллов, широко применяем их в науке и технике, потребляем кристаллы в пищу, используем для лечения, находим кристаллы в живых организмах (молекулы ДНК) и т. п.

В зависимости от температуры и давления каждое простое или сложной химическое вещество может находиться в твёрдом, жидком или газообразном состоянии. Человек живет на твёрдой поверхности Земли, и мир окружающих его вещей - в основном мир твёрдых тел. На протяжении многих тысячелетий человек использовал, главным образом, одну особенность твёрдых тел - длительное время сохранять неизменными форму и размеры. Твёрдые тела чрезвычайно разнообразны как по типам своего внутреннего строения, так и по физическим свойствам. В настоящее время исключительная роль твёрдых тел в современной технике выдвигает особые задачи перед учёными-физиками, занимающимися исследованием их физических свойств.

Твёрдые тела, однородные по химическому составу и обладающие одинаковыми физическими свойствами в различных своих частях, называются минералами.

Некоторые минералы состоят из атомов одного химического элемента, например: алмаз ©, золото (Au), медь (Си). Но абсолютное большинство минералов - химические соединения нескольких элементов, например: кварц (SiO2), корунд (AI2 ОЗ).

По физическим свойствам минералы делятся на аморфные и кристаллические тела.

Аморфными называются такие твердые тела, все физические свойства которых совершенно одинаковы по всем направлениям (изотропные тела). Аморфные тела в природе встречаются редко.

Кристаллическими называются твёрдые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях. Это свойство кристаллов называется анизотропностью.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов.

Монокристаллы иногда обладают геометрически правильной внешней формой, а поликристаллы, подобно аморфным телам, не имеют присущей данному веществу определённой формы. Но в отличии от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются и гигантские кристаллы массой в несколько тонн.

Почти все твёрдые тела состоят из кристаллов, однако обнаружить их кристаллическое строение путём внешнего осмотра удаётся далеко не всегда. Характерный признак кристалла - наличие плоских граней. Большинство природных и искусственно приготовленных твёрдых тел имеют поликристаллическое строение.

При рассматривании невооруженным глазом заметить их кристаллическое строение трудно. Но если образец со свежей поверхностью излома рассмотреть через лупу, то можно увидеть характерный для кристаллов признак - наличие плоских поверхностей у кристаллических зёрен. Поворачивая образец, можно наблюдать поблескивание таких граней.

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырёх до нескольких сотен граней. Но при этом они обладают замечательным свойством: какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определёнными углами.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения кристаллов с помощью пространственной кристаллической решётки.

Читайте также: