Реферат на тему теория подобия

Обновлено: 02.07.2024

Теория подобия — это учение о подобии явлений. Наиболее простое подобие — геометрическое. У геометрически подобных фигур — сходственные стороны пропорциональны, а соответственные углы равны.

Понятие подобия распространяется на любые физические явления, например подобие движения двух потоков жидкости или подобие распределения температур и тепловых потоков.

Подобие физических явлений возможно только при качественно одинаковых явлениях, которые описываются одинаковыми уравнениями. Если же физическое содержание различно, но явления описываются одинаковыми уравнениями, то эти явления называются аналогичными. Например, процессы теплопроводности и электропроводности.

При этом подобие физических явлений означает подобие всех величин, характеризующих рассматриваемые явления. Обязательной предпосылкой подобия физических явлений должно быть подобие геометрическое.

Из анализа математического описания подобных процессов установлены критерии подобия, которые для подобных явлений сохраняют одно и то же числовое значение. Критерии подобия — это безразмерные комплексы, составленные из величин, характеризующих явление. Критерии подобия названы именами ученых внесших существенный вклад в развитие науки.

Основные положения теории подобия формулируются в виде трех теорем.

Первая теорема подобия — подобные между собой процессы имеют одинаковые критерии подобия.

Вторая теорема — зависимость между переменными, характеризующими процесс, может быть представлена в виде зависимости между критериями подобия.

Эта теорема дает возможность обобщать и представлять данные эксперимента в виде критериальных зависимостей.

Третья теорема подобия — подобны те процессы, критерии которых численно одинаковы.

Эта теорема отвечает на вопрос: какие условия необходимы и достаточны чтобы процессы были подобны.

При изучении процессов теплообмена пользуются критериями определяемыми и определяющими.

В процессах теплообмена в качестве определяемого выступает критерий Нуссельта, характеризующий интенсивность процесса конвективного теплообмена

Здесь a — коэффициент теплоотдачи, Вт/(м 2 ·град);

l — характерный размер стенки (размер, участвующий в процессе, для круглой трубы — d), м;

l — коэффициент теплопроводности среды, омывающей твердую стенку, Вт/(м·град).

Как известно, интенсивность теплообмена зависит от условий омывания твердой стенки жидкостью. Условия омывания определяются характером движения — вынужденной или естественной конвекцией. Вынужденная конвекция характеризуется критерием Рейнольдса, естественная конвекция — критерием Грасгофа. Соответственно определяющим критерием при вынужденной конвекции является критерий Рейнольдса

где V — скорость движения потока жидкости, м/с;

d — характерный размер (при движении внутри труб — внутренний диаметр d), м;

n — кинематическая вязкость текущей жидкости, м 2 /с.

Критерий Грасгофа, который характеризует интенсивность подъемной силы в этих условиях естественной конвекции

где b — температурный коэффициент объемного расширения среды, здесь ;

Т — абсолютная температура среды, К;

g — ускорение свободного падения, g = 9,81 м/с 2 ;

Dt — разность температур между температурой греющей стенки и температурой среды;

l — характерный размер. Для горизонтальной трубы — d, для вертикальной трубы — высота трубы h;

n — кинематическая вязкость среды, м 2 /с.

Кроме критериев Re и Gr в теплотехнических расчетах в качестве определяющего принимает участие критерий Прандтля, который характеризует теплофизические свойства теплоносителя.

где n — кинематическая вязкость теплоносителя, м 2 /с;

a — коэффициент температуропроводности, м 2 /с.

Таким образом, при вынужденном движении теплообмен зависит от режима движения и теплофизических параметров теплоносителя , а при естественной конвекции .

На практике встречаются случаи, когда одновременно с вынужденным движением на теплообмен большое влияние оказывает и свободная конвекция и тогда . Причем влияние естественной конвекции будет тем больше, чем меньше скорость вынужденного потока и чем выше разность температур между стенкой и жидкостью.

В процессе теплообмена меняется температура жидкости, и, следовательно, меняются значения физических свойств жидкости. Как правильно выбрать температуру, по которой будут определяться значения физических параметров? Для этого введено понятие определяющей температуры, при значении которой из таблиц находят величины вязкости, теплопроводности и значение критерия Прандля Pr.

Однозначной рекомендации по выбору определяющей температуры нет. Распространен выбор в качестве определяющей — средней температуры жидкости. Пользуются также значениями, средней температуры стенки (теплообменной поверхности), температуры жидкости на входе в аппарат, и т.д. Универсального способа выбора температур нет. Поэтому целесообразно в качестве определяющей принимать такую, которая либо задана в расчетах, либо легко определяется.

Важен также вопрос выбора определяющего размера, хотя с точки зрения теории подобия любой размер может быть принят в качестве определяющего. Целесообразно выбрать размер, который определяет развитие процесса теплообмена. Например, при теплообмене внутри трубы, определяющий размер — внутренний диаметр трубы, при поперечном обтекании трубы — наружный диаметр, при обтекании плиты — ее длина по направлению движения, при теплообмене в кольцевом зазоре — разность диаметров. Для каналов неправильной формы применяется формула определения эквивалентного диаметра

где F — площадь поперечного сечения канала, м 2 ;

П — периметр канала, м.

13.3. Теплоотдача при обтекании плоской поверхности
(пластины)

Течение жидкости вдоль пластины, после накатывания потока на край пластины, сопровождается образованием гидродинамического пограничного слоя. В нем скорость движения жидкости изменяется от нуля на поверхности пластины, к которой прилипают частички жидкости, до значения скорости невозмущённого потока V0 — на внешний границе этого пограничного слоя (рис. 13.1).


Рис. 13.1. Схема движения жидкости при обтекании пластины

Образование пограничного слоя и падение скорости в нем происходят из-за вязкости жидкости. У передней кромки в начале пластины толщина пограничного слоя минимальна, затем она растет, ее величина зависит от расстояния от передней кромки и степени турбулизации набегающего потока. При небольшой турбулизации потока движение жидкости вдоль пластины сопровождается увеличением толщины пограничного слоя, тормозящее воздействие стенки распространяется на всё более далекие слои жидкости. Режим движения в пограничном слое ламинарный, толщину слоя на расстоянии x от начала пластины можно рассчитать по формуле

Однако при значительной турбулизации набегающего потока, когда Re > 10 5 , в пограничном слое, на некотором критическом расстоянии xкр начинают возникать вихри, и течение жидкости в слое приобретает турбулентный характер. В пограничном слое начинается перемешивание жидкости, которое всё-таки затухает поблизости от поверхности пластины — здесь сохраняется очень тонкий вязкий подслой, изображенный в правой половине рис. 13.1. Толщина турбулентного пограничного слоя также возрастает пропорционально удалению от начального края пластины

При разности температур пластины и набегающего потока между поверхностью пластины и жидкостью возникает теплообмен. Величину удельного теплового потока можно вычислить по формуле Ньютона (13.1) Тепловой поток пропорционален температурному напору (tс - tж), и коэффициенту теплоотдачи, который зависит от гидродинамической картины и режима течения теплоносителя, расстояния x от передней кромки и от теплофизических свойств теплоносителя.

Около поверхности пластины в потоке жидкости, кроме гидродинамического, формируется также тепловой пограничный слой, в пределах которого температура теплоносителя изменяется от tс до tж. Температуру tс имеют частицы жидкости, прилипшие к стенке, температура tж характерна для жидкости, находящейся вдали от поверхности стенки. Характер распределения температур в тепловом пограничном слое зависит от режима движения жидкости в динамическом пограничном слое. Формирование теплового пограничного слоя сходно с характером развития гидродинамического слоя.

При ламинарном пограничном слое перенос тепла в слое осуществляется только за счет теплопроводности.

При турбулентном динамическом слое основное изменение температуры происходит в пределах тонкого вязкого подслоя около поверхности теплообмена. В турбулентном ядре пограничного слоя из-за интенсивного перемешивания жидкости изменение температуры незначительно.

Увеличение разности температур (tс - tж) усложняет процесс, так как изменяются теплофизические параметры теплоносителя. Изменение вязкости, теплопроводности и температуропроводности сказывается на интенсивности теплоотдачи. Например, при охлаждении жидкости (тепловой поток направлен от жидкости к стенке) наиболее интенсивно снижается температура в пограничном слое жидкости, а значит вязкость пограничного слоя возрастает, что приводит к утолщению пограничного слоя, уменьшению скорости в нем, а следовательно, и к уменьшению теплоотдачи.

Коэффициент теплоотдачи при ламинарном режиме течения теплоносителя можно определить из критериального уравнения

Для определения среднего коэффициента теплоотдачи в условиях турбулентного режима жидкости вдоль пластины рекомендуется зависимость

В формулах (3.11) и (3.12):

Prж — критерий Прандтля теплоносителя при его средней температуре;

Prс— критерий Прандтля теплоносителя при температуре стенки.

где l — длина пластины, обтекаемой потоком жидкости, м;

a — средний коэффициент теплоотдачи, Вт/(м 2 ·град);

V — средняя скорость движения потока жидкости, м/с;

l — средняя теплопроводность жидкости при ее средней температуре, Вт/мК;

n — вязкость жидкости, м 2 /с.

Множитель представляет собой поправку, учитывающую направление теплового потока. Если жидкость нагревается в результате процесса теплообмена, то , а при охлаждении жидкости .

Если в качестве теплоносителя используется воздух, или двухатомные газы, то формулы (13.11) и (13.12) упрощаются, так как значение критерия Прандтля для воздуха в широком диапазоне температур практически неизменно и поправка .


Выполнил: | Михеев Алексей Андреевич, студент лесотранспортного факультета очной формы обучения, 4 курс, 143 группа специальность МиОЛК, |
Проверил: | Сивков Е. Н. |

Сыктывкар 2014
Оглавление
1. Теория подобия . 3
2. Основные положения теорииподобия (теоремы подобия) 6
Список литературы 12

1. Теория подобия – это наука о подобных явлениях. Подобными явлениями называются такие физические явления, которые одинаковы качественно по форме и по содержанию, т.е. имеют одну физическую природу, развиваются под действием одинаковых сил и описываются одинаковыми по форме дифференциальными уравнениями и краевыми условиями.
Обязательнымусловием подобия физических явлений должно быть геометрическое подобие систем, где эти явления протекают. Два физических явления будут подобны лишь в том случае, если будут подобны все величины, которые характеризуют их.
Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессыдвижения жидкостей, диффузии, теплопроводности и т.п.), группы подобных явлений.
Подобными называются такие явления, для которых отношения сходственных и характеризующих их величин постоянны.
Различают следующие виды подобия: геометрическое; временное; физических величин; начальных и граничных условий.
Геометрическое подобие соблюдается при равенстве отношений всех сходственных линейных размеровнатуры и модели. Например, при изучении движения жидкости в канале длиной L , диаметромD . В модели сходственные размеры равныl и d . Тогда
L/l =D/d= . = соnst= kl (0)
Безразмерная величина k (а в Дытнерском), называется константой геометрического подобия , или масштабным (переходным) множителем . Константы подобия характеризуют отношение однородных сходственных величин в подобных системах ипозволяют перейти от размеров одной системы (модели) к другой (натуре).
Временное подобие предполагает, что сходственные частицы в геометрически подобных системах, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути за промежутки времени, отношение которых является константой подобия kх , т.е.
(1)
На рис.1. изображен канал (натура) с размерами L и D имодель с размерами l и d . Некая частица в точке А (натура) находится в момент времени τА , в точке В — в момент времени τв . В геометрически подобной модели сходственная частица находится в подобной точке а в момент времени τа , в точке b— в момент времени τ b .

Рис. 1. Условия подобия в натуре (a) и в модели (б)
При соблюдении геометрического и временного подобия константа подобия скоростейkυопределяется из соотношений
(2)
Подобие физических величин предполагает, что для двух любых сходственных точек натуры и модели, размещенных подобно в пространстве и во времени, соотношение физических величин (μ,ρи т.д.) является величиной постоянной:
(3)
и т.д.
Подобие начальных и граничных условий заключается втом, что для начальных и граничных условий должно соблюдаться геометрическое, временное и физическое подобие так же, как и для других сходственных точек натуры и модели.
Рассмотренные константы подобия постоянны для различных сходственных точек подобных систем, но могут изменяться в зависимости от соотношения размеров натуры и модели, т. е. если имеется другая.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Изучить какое-либо явление - значит установить зависимость между величинами, характеризующими его. Для сложных явлений, в которых определяющие величины меняются во времени и в пространстве, установить зависимость между переменными очень трудно. В таких случаях применяют общие законы физики и

ограничиваются установлением связи между переменными (координатами, временем и физическими свойствами), которые охватывают небольшой промежуток времени и элементарный объем пространства. Полученная таким образом зависимость является общим дифференциальным уравнением процесса, рассматривается. После интегрирования этого уравнения получают аналитическую зависимость между величинами для всей области интегрирования и необходимого интервала времени. Такие дифференциальные уравнения могут быть составлены для любого процесса и, в частности, для процесса теплоотдачи. Но эти дифференциальные уравнения описывают процесс теплоотдачи в самом общем виде. При решении конкретных задач конвективного теплообмена в систему указанных дифференциальных уравнений необходимо добавить математическое описание всех отдельных особенностей задачи, рассматривается. Этот дополнительный математическое описание называется краевыми условиями или условиями однозначности. Они включают

1) геометрические условия, определяющие размеры и форму тела или системы тел, где протекает процесс;

2) физические условия, характеризующие физические свойства тел, имеющих существенное значение для явления, рассматриваемой

3) граничные условия, описывающие особенности процесса, который протекает на границах системы с окружающей средой;

4) временные условия, показывающие особенности протекания данного процесса во времени. Для стационарных процессов временные условия не учитываются.

Процесс теплоотдачи является сложным процессом, а коэффициент теплоотдачи является сложной функцией различных величин, характеризующих этот процесс. В общем случае коэффициент теплоотдачи является функцией формы Ф, размеров i1, 1 ", . температуры поверхности нагрева tст, скорости жидкости ю, ее температуры tpид, физических свойств жидкости - коэффициента теплопроводности À, удельной теплоемкости Ср, плотности р, коэффициента в вязкости Ц и других факторов.

Таким образом, теплоотдача определяется не только тепловыми, но и гидродинамическими явлениями. Совокупность этих явлений описывается системой дифференциальных уравнений, в которую входят уравнения теплопроводности, уравнения движения и уравнения сплошности. Аналитически решить задачу по определению количества теплоты, которая передается от стенки к жидкости, методом интегрирования дифференциальных уравнений практически невозможно из-за сложности этих уравнений. Этот метод применяется обычно лишь для отдельных наиболее элементарных задач процесса теплоотдачи и то лишь при целом ряде условий, упрощающих их решения.

Наиболее точно коэффициент теплоотдачи а можно определить практическим путем. Но этот способ определения а представляет собой нелегкую задачу, особенно для сложных и громоздких тепловых устройств, например таких, как паровой котел. Но при проведении эксперимента нельзя быть уверенным в том, что закономерности, найденные для данного теплового агрегата, являются справедливыми для другого, который еще не построен и поэтому недоступен для непосредственного изучения.

В настоящее время практическое определение коэффициента теплоотдачи производится, как правило, не на самих тепловых устройствах, а на их упрощенных моделях, являющихся более удобными для проведения эксперимента. Результаты экспериментов, проведенных на моделях, обобщают, используя тепловую теорию подобия. Индекс, ставится в константы подобия, показывает, до какой величины она относится. Ни от координат, ни от времени к не зависит. При рассмотрении сложных процессов, определяются большим количеством физических величин, выбирать произвольно константы подобия этих величин нельзя. Для таких процессов при выборе констант подобия существуют ограничения, яки находят при исследовании уравнений, описывающих этот процесс.

Таким образом, для всех подобных систем существуют безразмерные комплексы величин, которые сохраняют свое числовое значение. Эти комплексы называют инвариантами, что означает "неизменны", или критериями подобия. Конечно критерии подобия принято обозначать двумя первыми буквами фамилий ученых, много сделавшие для развития соответствующих областей знания, например Re (Reynolds), Nu (Nusselt) и т.. Критерии, которые не имеют таких общепринятых названий, обозначают буквами Ки, К2 и т..

Основные положения теории подобия формулируют в виде трех теорем подобия. Первая теорема подобия доказывает, что подобные явления имеют одинаковые критерии подобия.

Вторая теорема подобия утверждает, что любая завис ^ ть между переменными, яки характеризуют любое явление, может быть предъявлено ^ авлена в форме зависимости ^ и между критериями подобия, яки cкладаюmьcя из этих переменных, т.е. f (К1, К2,. . п) = 0. Подобные зависимости называются критериальным уравнениями или уравнениями подобия.

Третья теорема подобия трактует о тех условиях, которые необходимы и достаточны для подобия двух явлений. Эту теорему сформулированы советскими учеными М.В. Кирпичевим и А.А. Гухман в 1931 году. Согласно ей два явления подобные, если они имеют сходные условия однозначно ^ и и чшельно одинаковые определяющие критерии подобия. Определяющими критериями подобия называются такие критерии, яки состоят из параметров, входящих в условия однозначности.

Естественно, что равенство определяющих критериев подобия приводит к равенству всех других критериев, в состав которых входят величины, яки не предусмотренные условиями однозначности. Последние величины в отличие от определяющих называются невизначальнимы критериям или критериям, которые определяются. Таким образом, каждый из невизначальних критериев подобия представляет собой однозначную функцию совокупности определяющих критериев. Это положение имеет большое значение для обобщения практических данных и представляет собой центральное звено всей теории подобия.

Теоремы подобия позволяют полно ответить на вопрос о том, как надо ставить эксперимент, нужно измерять в ходе исследования, как обрабатывать полученные результаты и какие явления будут подобные тому, что исследуется.

Число Грасгофа Gr характеризует интенсивность свободного конвективного теплообмена, яки обусловлен тем, что более нагретые частицы жидкости (газа) выталкиваются холодными наверх за счет влияния силы тяжести, т.е. число Грасгофа Gr характеризует отношение подъемной силы, возникающей вследствие теплового расширения жидкости (газа), в сил вязкости.

Числа Рейнольдса, Прандтля и Грасгофа являются безразмерными определяющими критериями подобия. Они целиком состоят из величин, яки задаются условиями однозначности, т.е. известны еще до решения задачи. На модели производят серии экспериментов, причем обычно в одной серии условия однозначности изменяют так, чтобы менялось только одно определяющее число. По результатам эксперимента строят графическую зависимость числа Нуссельта от определяющего числа, меняли. В следующих сериях устанавливают зависимость значения показателя степени в критериальные уравнения от других определяющих безразмерных чисел.

В процессе теплообмена температура жидкости (газа) изменяется, и встает вопрос, при какой температуре выбирать теплофизические свойства жидкости (газа), входящих в определяющих чисел. Эта температура называется определяющей температурой. По определяющую принимают температуру, которая характерна для исследуемой системы. Обычно это средняя температура жидкости (газа).

Выбор определяющего размера, входящий в чисел подобия, также достаточно условно. Но стараются брать такой размер, который оказывает наибольшее влияние на исследуемый процесс. В качестве определяющего размера для круглых труб используют их диаметр, для каналов сложного сечения - эквивалентный диаметр, а при обтекании плит - их длину по направлению движения.

Историческое исследование возникновения и развития теории подобия в геометрических системах. Изучение видов и описание теорем подобия. Общая характеристика основных методов исследования и условий дифференциальных уравнений технологических процессов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 22.05.2012
Размер файла 173,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию Российской Федерации

Государственное бюджетное образовательное учреждение высшего профессионального образования

Омский Государственный Технический Университет

Студент группы ТС-210

Методы исследования технологических процессов

Историческое введение

Около ста пятидесяти лет назад возникла новая область научного знания - учение о подобии явлений.

Гениальное предвидение этой науки было высказано Ньютоном в 1686 г. Но только в 1848 г. Член французской академии наук Жозеф Бертран впервые установил основное свойство подобных явлений, сформулировав первую теорему подобия, теорему о существовании инвариантов подобия.

Бертран вывел первую теорему подобия для случая подобия механических явлений.

Если бы физическое уравнение связи можно было бы преобразить так, чтобы оно было составлено из инвариантов подобия, то это было бы общее уравнение, численно одинаковое для всех подобных явлений.

Вторая история подобия устанавливает возможность такого преобразования физических уравнений.

Она была выведена русским ученым А. Федерманом в 1911 г. и несколькими годами позже, в 1914 г., американским ученым Букингэмом.

теорема подобие геометрическая система

Теоремы подобия

Для обеспечения максимальной эффективности (в широком смысле слова) любых экспериментальных исследований эти исследования необходимо организовать так, чтобы можно было определить критерии подобия и представить полученные результаты критериальной функциональной зависимость. Такой подход позволяет при ограниченном числе экспериментов дать оценку хода процесса или поведения системы при разнообразных сочетаниях параметров, их характеризующих, и, следовательно, получить ответы на те дополнительные вопросы, которые обычно возникают уже после окончания экспериментально-исследовательских и испытательных работ.

Рассмотренные положения, однако, относятся к случаю заведомо подобных процессов, т.е. определяют необходимые условия существования подобия. В связи с этим возникает естественный вопрос относительно того, как распознать подобие или специально обеспечить его при построении модели, т. е. вопрос об условиях, не только необходимых, но и достаточных для существования подобия. Такие условия включают в себя наряду с требованием равенства критериев подобия сопоставляемых процессов также и определенные дополнительные требования к условиям однозначности -- требования подобия начальных и граничных условий сопоставляемых процессов (а при соблюдении геометрического подобия -- и подобия геометрических характеристик соответствующих пространственных областей).

Изложенные выше положения относительно необходимых и достаточных условий подобия обычно систематизируются в виде первой, второй и третьей теорем о подобии; первые две теоремы определяют необходимые, третья -- необходимые и достаточные условия подобия (Высказываются соображения, что только вторая теорема подобия может рассматриваться как теорема в том смысле, в каком это понятие употребляется в математике, а первая и третья теоремы являются правилами выявления и обеспечения подобия. В данном изложении сохраняется наиболее распространенная терминология -- введенное еще И. Ньютоном название первой теоремы и предложенное М. В. Кирпичевым и А. А. Гухманом название третьей теоремы).

Первая теорема подобия. В основной современной формулировке, учитывающей возможность существования различных видов подобия, первая теорема имеет следующий вид: явления, подобные в том или ином смысле (полно, приближенно, физически, математически и т. д.), имеют определенные сочетания параметров, называемые критериями подобия, численно одинаковые для подобных явлений. Первая теорема подобия называется также теоремой Ньютона или Ньютона--Бертрана.

Первая теорема подобия утверждает, что для явлений (объектов, процессов), подобных в том или ином смысле, существуют одинаковые критерии подобия -- идентичные по форме алгебраической записи и равные численно безразмерные степенные комплексы (произведения или отношения) определенных групп физических факторов, характеризующих эти явления. Формулируя необходимые условия существования подобия (одинаковые критерии подобия у подобных явлений), первая теорема, однако, не указывает способы установления подобия и способы его реализации при построении моделей.

Вторая теорема подобия. В основной формулировке эта теорема, чаще встречающаяся под названием р-теоремы, имеет следующий вид: всякое полное уравнение физического процесса, записанное в определенной системе единиц, может быть представлено функциональной зависимостью между критериями подобия, полученными из участвующих в процессе параметров.

Эта теорема утверждает, что полное уравнение физического процесса, записанное в определённой системе единиц, может быть представлено зависимостью между критериями подобия, т. е. зависимостью, связывающей безразмерные величины, определенным образом полученные из участвующих в процессе параметров. Так же как и первая, вторая теорема подобия основывается на предпосылке, что факт подобия между процессами известен, и устанавливает число критериев подобия и существование однозначной зависимости между ними. При этом выражения для критериев подобия могут быть получены, если известен состав параметров (факторов), участвующих в рассматриваемом процессе, но неизвестно его математическое описание. Теорема эта, однако, также как и первая, не указывает способов выявления подобия между сопоставляемыми процессами и способов реализации подобия при построении моделей.

Вторая теорема устанавливает возможность представления интеграла дифференциального уравнения физического процесса не как функции параметров процесса и системы, в которой протекают эти процессы, а как функция соответствующим образом построенных некоторых безразмерных величин -- критериев подобия. Если исходное дифференциальное уравнение проинтегрировано, то функциональные связи между критериями подобия будут однозначно определены в соответствии с теми допущениями, которые были приняты при составлении и интегрировании данного уравнения. Если же дифференциальное уравнение отсутствовало или не интегрировалось, то вид функциональных связей между критериями подобия не будет выявлен.

Вторая теорема основывается на исследованиях Букингема, Федермана и Эренфест-Афанасьевой. Возможность представления интеграла как функции от критериев подобия, найденных из дифференциального уравнения, была строго доказана для частного случая Букингемом. В более общем виде это положение как математическая теорема было доказано Федерманом. Эренфест-Афанасье-ва привела доказательство в общем виде, показав условия, при которых интеграл можно представить как функцию критериев подобия. Одновременно было показано, что из соотношений, указывающих на однородность уравнения, связывающего физические величины (одинаковая размерность всех членов уравнения), и из возможности получения безразмерных соотношений после деления этого уравнения на любой из его членов следует важный вывод о существовании определенных соотношений между размерностями физических параметров. Эренфест-Афанасьевой было показано, что критерии подобия можно найти при отсутствии дифференциального уравнения процесса на основе анализа размерностей физических величин, участвующих в этом процессе. Эта возможность была сформулирована и строго доказана в виде теоремы, названной л-теоремой, поскольку упомянутые выше безразмерные параметры (критерии подобия) обозначались буквой л.

Третья теорема подобия. В наиболее распространенной формулировке третья теорема имеет следующий вид: необходимыми и достаточными условиями для создания подобия являются пропорциональность сходственных параметров, входящих в условия однозначности, и равенство критериев подобия сопоставляемых явлений. Третья теорема подобия именуется также обратной теоремой подобия или теоремой Кирпичева--Гухмана.

Напомним понятия условий однозначности. Известно, что дифференциальное уравнение в общем виде описывает бесконечное множество процессов, относящихся к данному классу. Так, например, дифференциальное уравнение u=iR+Ldi/dt описывает изменение тока во времени в цепи с активным сопротивлением R и индуктивностью L при включении ее на u=const. Условия, определяющие индивидуальные особенности процесса или явления и выделяющие из общего класса конкретный процесс или явление, называются условиями однозначности. К ним относятся следующие, не зависящие от механизма самого явления, факторы и условия:

- геометрические свойства системы, в которой протекает процесс;

- физические параметры среды и тел, образующих систему;

- начальное состояние системы (начальные условия);

- условия на границах системы (граничне или краевые условия);

- взаимодействие объекта и внешней среды.

Очевидно, нельзя математически формулировать условия однозначности в общем виде. В каждом конкретном случае они могут быть различны в зависимости от рода решаемой задачи и вида уравнения. Так, для выделения определенного процесса из совокупности процессов, описываемых приведенным уравнением, достаточно знать параметры u, R, L и начальные условия, например, i=i0 при t=t0. В большинстве задач, связанных с исследованием полей, однозначность процессов определяется не только начальными условиями, но и свойствами среды, геометрическими свойствами системы и граничными условиями.

Методы исследования технологических процессов

Исследования процессов, протекающих в технологических установках, установление закономерностей их протекания, нахождение зависимостей, необходимых для их анализа и расчета, можно проводить разными методами: экспериментальным, теоритическим, подобия.

Метод теории подобия позволяет с достаточной для практики точностью изучать сложные процессы на более простых моделях, обобщать результаты опытов и получать закономерности, справедливые не только для данного процесса, но и для всей группы подобных процессов. При моделировании процессов можно вместо дорогостоящих трудоемких опытов на промышленных установках проводить исследования на моделях значительно меньших размеров, а вместо зачастую опасных и вредных веществ использовать безопасные модельные вещества, опыты проводить в условиях, отличных от производственных. Кроме того, материальную модель можно заменить физической схемой (моделью), отражающей существенные особенности данного процесса. Поэтому в данном учебном пособии наиболее подробно будет рассмотрена теория подобия.

Виды подобия

Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессы движения жидкостей, диффузии, теплопроводности и т.п.), группы подобных явлений.

Подобными называются такие явления, для которых отношения сходственных и характеризующих их величин постоянны.

Различают следующие виды подобия: геометрическое; временное; физических величин; начальных и граничных условий.

Геометрическое подобие соблюдается при равенстве отношений всех сходственных линейных размеров натуры и модели. Например, при изучении движения жидкости в канале длиной L, диаметром D. В модели сходственные размеры равны l и d. Тогда

Безразмерная величина k (а в Дытнерском), называется константой геометрического подобия, или масштабным (переходным) множителем. Константы подобия характеризуют отношение однородных сходственных величин в подобных системах и позволяют перейти от размеров одной системы (модели) к другой (натуре).

Временное подобие предполагает, что сходственные частицы в геометрически подобных системах, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути за промежутки времени, отношение которых является константой подобия kх, т.е.

На рис.1. изображен канал (натура) с размерами L и D и модель с размерами l и d. Некая частица в точке А (натура) находится в момент времени фА, в точке В -- в момент времени фв. В геометрически подобной модели сходственная частица находится в подобной точке а в момент времени фа, в точке b -- в момент времени фb.

Рис. 1. Условия подобия в натуре (a) и в модели (б) теория подобие переменная обобщенный

При соблюдении геометрического и временного подобия константа подобия скоростей kх определяется из соотношений

Подобие физических величин предполагает, что для двух любых сходственных точек натуры и модели, размещенных подобно в пространстве и во времени, соотношение физических величин (м,си т.д.) является величиной постоянной:

Подобие начальных и граничных условий заключается в том, что для начальных и граничных условий должно соблюдаться геометрическое, временное и физическое подобие так же, как и для других сходственных точек натуры и модели.

Рассмотренные константы подобия постоянны для различных сходственных точек подобных систем, но могут изменяться в зависимости от соотношения размеров натуры и модели, т. е. если имеется другая модель, подобная натуре, константы подобия будут другими.

Если подобные величины выразить в относительных единицах, т.е. в виде отношений сходственных величин в пределах одной системы (натуры или модели), то получим инварианты подобия:

Инварианты подобия не зависят от соотношения размеров натуры и модели, т.е. для всех моделей, подобных натуре, они будут одни и те же. Инварианты подобия, представляющие собой отношение однородных величин, называются симплексами, или параметрическими критериями, например отношение L/D - геометрический симплекс.

Инварианты подобия, выраженные отношением разнородных величин, называются критериями подобия. Критерии подобия обозначаются начальными буквами имен ученых, которые внесли большой вклад в развитие данной области знаний.

Критерии подобия безразмерны, их значения для разных точек системы могут быть различными, но для сходственных точек подобных систем они одинаковые и не зависят от относительных размеров натуры и модели.

Критерии подобия имеют физический смысл, являясь мерами соотношения между какими-то двумя эффектами, силами и т.п., оказывающими влияние на протекание данного процесса.

Критерии подобия могут быть получены для любого процесса, если известны уравнения, описывающие этот процесс.

Заключение

Таким образом, для исследования технологических процессов методом подобия необходимо:

1. выбрать дифференциальное уравнение и условия однозначности, описывающие данный процесс; затем путем преобразования найти критерии подобия;

2. опытным путем с помощью моделей установить зависимость между критериями подобия; полученное обобщенное уравнение будет справедливым для всех подобных процессов в пределах изменения определяющих критериев подобия.

Преобразование дифференциальных уравнений методом теории подобия проводится в следующем порядке:

1. каждый из членов дифференциального уравнения умножается на соответствующие константы подобия кф, кv, кl и т.д.;

2. полученные коэффициенты перед членами уравнения для соблюдения тождественности приравниваются;

3. в полученных индикаторах подобия константы подобия заменяются соответствующими отношениями величин, и полученные комплексы являются критериями подобия.

Список литературы

1. Теплопередача. Учебник для вузов, Изд. 3-е, перераб. и доп. М., Исаченко В.П. 1981

Подобные документы

Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.

реферат [2,8 M], добавлен 06.06.2011

Основы теории подобия. Особенности физического моделирования. Сущность метода обобщенных переменных или теории подобия. Анализ единиц измерения. Основные виды подобия: геометрическое, временное, физических величин, начальных и граничных условий.

презентация [81,3 K], добавлен 29.09.2013

Условия подобия процессов конвективного теплообмена. Безразмерное дифференциальное уравнение теплоотдачи. Приведение к безразмерному виду уравнения движения. Числа подобия Рейнольдса, Грасгофа, Эйлера. Общий вид решений конвективной теплоотдачи.

презентация [155,3 K], добавлен 18.10.2013

Описание процесса передачи тепла от нагретого твердого тела к газообразному теплоносителю. Определение конвективного коэффициента теплоотдачи экспериментальным методом и с помощью теории подобия. Определение чисел подобия Нуссельта, Грасгофа и Прандтля.

реферат [87,8 K], добавлен 02.02.2012

Жидкости, обладающие свойством сплошности и уравнение неразрывности. Обобщенный закон трения, сопротивление смещению частиц относительно других в жидкостях и газах. Основы теории подобия, получение критериев подобия методом масштабных преобразований.

презентация [281,4 K], добавлен 14.10.2013

Структуризация теплоэнергетической системы в рамках ее модельного представления. Теория подобия в теплопередаче. Анализ пространственно-энергетического состояния децентрализованной системы отопления. Расчет коэффициента эффективности работы конвектора.

дипломная работа [2,8 M], добавлен 15.02.2017

Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.

Читайте также: