Реферат на тему свойства сплавов

Обновлено: 05.07.2024

Сплавы – это смеси двух или более элементов, среди которых преобладают металлы. Металлы, входящие в сплав, называют основой. Часто в сплав добавляют элементы неметаллы, придающие сплавам особые свойства, их называют легирующими или модифицирующими добавками. Среди сплавов наибольшую значимость имеют сплавы на основе железа и алюминия.

Классификация сплавов

Существует несколько способов классификации сплавов:

  • по способу изготовления (литые и порошковые сплавы);
  • по способу получения изделия (литейные, деформируемые и порошковые сплавы);
  • по составу (гомогенные и гетерогенные сплавы);
  • по характеру металла – основы (черные –основа Fe, цветные – основа цветные металлы и сплавы редких металлов – основа радиоактивные элементы);
  • по числу компонентов (двойные, тройные и т.д.);
  • по характерным свойствам (тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие и др.);
  • по назначению (конструкционные, инструментальные и специальные).

Свойства сплавов

Свойства сплавов зависят от их структуры. Для сплавов характерны структурно-нечувствительные (определяются природой и концентрацией элементов, составляющих сплавы) и структурно-чувствительные свойства (зависят от характеристик основы). К структурно-нечувствительным свойствам сплавов относятся плотность, температура плавления, теплоту испарения. тепловые и упругие свойства, коэффициент термического расширения.

Все сплавы проявляют свойства, характерные для металлов: металлический блеск, электро- и теплопроводность , пластичность и др.

Также все свойства, характерные для сплавов можно разделить на химические (отношение сплавов к воздействию активных сред – вода, воздух, кислоты и т.д.) и механические (отношение сплавов к воздействию внешних сил). Если химические свойства сплавов определяют путем помещения сплава в агрессивную среду, то для определения механических свойств применяют специальные испытания. Так, чтобы определить прочность, твердость, упругость, пластичность и другие механические свойства проводят испытания на растяжение, ползучесть, ударную вязкость и др.

Основные виды сплавов

Широкое применение среди всевозможных сплавов нашли различные стали, чугун, сплавы на основе меди, свинца, алюминия, магния, а также легкие сплавы.

Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Сплавы на основе меди называют латунями, в качестве добавок они содержат от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью).

Среди сплавов на основе свинца выделяют двухкомпонентные (сплавы свинца с оловом или сурьмой) и четырехкомпонентные сплавы (сплавы свинца с кадмием, оловом и висмутом, сплавы свинца с оловом, сурьмой и мышьяком), причем (характерно для двухкомпонентных сплавов) при различном содержании одинаковых компонентов получают разные сплавы. Так, сплав, содержащий 1/3 свинца и 2/3 олова — третник (обычный припой) используется для пайки трубо- и электропроводов, а сплав, содержащий 10-15% свинца и 85-90% олова – пьютер, ранее применялся для отливки столовых приборов.

Сплавы на основе алюминия двухкомпонентные – Al-Si, Al-Mg, Al-Cu. Эти сплавы легко получать и обрабатывать. Они обладают электро- и теплопроводностью, немагнитны, безвредны в контакте с пищевыми, взрывобезопасны. Сплавы на основе алюминия нашли применение для изготовления легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.

Понятие о сплавах и методах их получения. Понятие в теории сплавов. Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений. Классификация сплавов твердых растворов, диаграмма состояния.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 13.02.2016
Размер файла 61,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния

1. Понятие о сплавах и методах их получения

2. Основные понятия в теории сплавов

3. Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений

4. Классификация сплавов твердых растворов

5. Кристаллизация сплавов

6. Диаграмма состояния

1. Понятие о сплавах и методах их получения

Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.

Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом. Сплавы обладают более разнообразным комплексом свойств, которые изменяются в зависимости от состава и метода обработки.

сплав кристаллизация химический раствор

2. Основные понятия в теории сплавов

Система - группа тел выделяемых для наблюдения и изучения.

В металловедении системами являются металлы и металлические сплавы. Чистый металл является простой однокомпонентной системой, сплав - сложной системой, состоящей из двух и более компонентов.

Компоненты - вещества, образующие систему. В качестве компонентов выступают чистые вещества и химические соединения, если они не диссоциируют на составные части в исследуемом интервале температур.

Фаза - однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются.

Вариантность (C) (число степеней свободы) - это число внутренних и внешних факторов (температура, давление, концентрация), которые можно изменять без изменения количества фаз в системе.

Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах, без изменения числа фаз.

Если вариантность C = 0 (нонвариантная система), то внешние факторы изменять нельзя без изменения числа фаз в системе

Существует математическая связь между числом компонентов (К), числом фаз (Ф) и вариантностью системы ( С ). Это правило фаз или закон Гиббса

Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится

где: С - число степеней свободы, К - число компонентов, Ф - число фаз, 1 - учитывает возможность изменения температуры.

3. Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений

Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. При образовании сплавов в процессе их затвердевании возможно различное взаимодействие компонентов.

В зависимости от характера взаимодействия компонентов различают сплавы:

1. механические смеси;

2. химические соединения;

3. твердые растворы.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.

Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рис. 1). В сплавах сохраняются кристаллические решетки компонентов.

Рис. 1. Схема микроструктуры механической смеси

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.

Особенности этих сплавов:

1. Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/

2. Образуется специфическая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 2)

3. Ярко выраженные индивидуальные свойства

4. Постоянство температуры кристаллизации, как у чистых компонентов

Рис. 2. Кристаллическая решетка химического соединения

Сплавы твердые растворы - это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами.

Характерной особенностью твердых растворов является:наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.

Твердый раствор состоит из однородных зерен (рис. 3).

Рис.3. Схема микроструктуры твердого раствора

4. Классификация сплавов твердых растворов

По степеням растворимости компонентов различают твердые растворы:

· с неограниченной растворимостью компонентов;

· с ограниченной растворимостью компонентов.

При неограниченной растворимости компонентов кристаллическая решетка компонента растворителя по мере увеличения концентрации растворенного компонента плавно переходит в кристаллическую решетку растворенного компонента.

Для образования растворов с неограниченной растворимостью необходимы:

1. изоморфность (однотипность) кристаллических решеток компонентов;

2. близость атомных радиусов компонентов, которые не должны отличаться более чем на 8…13 %.

3. близость физико-химических свойств подобных по строение валентных оболочек атомов.

При ограниченной растворимости компонентов возможна концентрация растворенного вещества до определенного предела, При дальнейшем увеличении концентрации однородный твердый раствор распадается с образованием двухфазной смеси.

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:

В растворах замещения в кристаллической решетке растворителя часть его атомов замещена атомами растворенного элемента (рис. 4 а). Замещение осуществляется в случайных местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

Рис. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

При образовании растворов замещения периоды решетки изменяются в зависимости от разности атомных диаметров растворенного элемента и растворителя. Если атом растворенного элемента больше атома растворителя, то элементарные ячейки увеличиваются, если меньше - сокращаются. В первом приближении это изменение пропорционально концентрации растворенного компонента. Изменение параметров решетки при образовании твердых растворов - важный момент, определяющий изменение свойств. Уменьшение параметра ведет к большему упрочнению, чем его увеличение.

Твердые растворы внедрения образуются внедрением атомов растворенного компонента в поры кристаллической решетки растворителя (рис. 4 б).

Образование таких растворов, возможно, если атомы растворенного элемента имеют малые размеры. Такими являются элементы, находящиеся в начале периодической системы Менделеева, углерод, водород, азот, бор. Размеры атомов превышают размеры межатомных промежутков в кристаллической решетке металла, это вызывает искажение решетки и в ней возникают напряжения. Концентрация таких растворов не превышает 2-2.5%

Твердые растворы вычитания или растворы с дефектной решеткой. образуются на базе химических соединений, при этом возможна не только замена одних атомов в узлах кристаллической решетки другими, но и образование пустых, не занятых атомами, узлов в решетке.

К химическому соединению добавляют, один из входящих в формулу элементов, его атомы занимают нормальное положение в решетке соединения, а места атомов другого элемента остаются, незанятыми.

5. Кристаллизация сплавов

Кристаллизация сплавов подчиняется тем же закономерностям, что и кристаллизация чистых металлов. Необходимым условием является стремление системы в состояние с минимумом свободной энергии.

Основным отличием является большая роль диффузионных процессов, между жидкостью и кристаллизующейся фазой. Эти процессы необходимы для перераспределения разнородных атомов, равномерно распределенных в жидкой фазе.

В сплавах в твердых состояниях, имеют место процессы перекристаллизации, обусловленные аллотропическими превращениями компонентов сплава, распадом твердых растворов, выделением из твердых растворов вторичных фаз, когда растворимость компонентов в твердом состоянии меняется с изменением температуры.

Эти превращения называют фазовыми превращениями в твердом состоянии.

При перекристаллизации в твердом состоянии образуются центры кристаллизации и происходит их рост.

Обычно центры кристаллизации возникают по границам зерен старой фазы, где решетка имеет наиболее дефектное строение, и где имеются примеси, которые могут стать центрами новых кристаллов. У старой и новой фазы, в течение некоторого времени, имеются общие плоскости. Такая связь решеток называется когерентной связью. В случае различия строения старой и новой фаз превращение протекает с образованием промежуточных фаз.

Нарушение когерентности и обособления кристаллов наступает, когда они приобретут определенные размеры.

Процессы кристаллизации сплавов изучаются по диаграммам состояния.

6. Диаграмма состояния

Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры (рис. 5)

Рис. 5. Диаграмма состояния

Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

Построение диаграмм состояния наиболее часто осуществляется при помощи термического анализа.

В результате получают серию кривых охлаждения, на которых при температурах фазовых превращений наблюдаются точки перегиба и температурные остановки.

Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации - точками солидус.

По кривым охлаждения строят диаграмму состава в координатах: по оси абсцисс -концентрация компонентов, по оси ординат - температура.

Шкала концентраций показывает содержание компонента В. Основными линиями являются линии ликвидус (1) и солидус (2), а также линии соответствующие фазовым превращениям в твердом состоянии (3, 4).

По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава.

Литература

Дриц М.Е., Москалев М.А. Технология конструкционных материалов и материаловедение: Учеб. для студентов немашиностроительных спец. ВУЗов. - М.: Высшая школа, 1990. - 446с., ил.

Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для студентов электротехнических и электромеханических спец. ВУЗов / С.Н. Колесов, И.С. Колесов. - М. Высшая школа, 2004. - 518с.: ил.

Лахтин Ю.М., Леонтьева В.Н. Материаловедение. Учебник для ВУЗов технич. спец. - 3-е изд. - М. Машиностроение, 1990. - 528с.

Материаловедение и технология конструкционных материалов. Учебник для ВУЗов / Ю.П. Солнцев, В.А. Веселов, В.П. Демьянцевич, А.В. Кузин, Д.И. Чашников. - 2-е изд., перер., доп. - М. МИСИС, 1996. - 576с.

Материаловедение и технология металлов: Учебник для ВУЗов по машиностроительным специальностям / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин и др. - М.: Высшая школа, 2000. - 637с.: ил.

Материаловедение: Учебник для ВУЗов, обучающих по направлению подготовки и специализации в области техники и технологии / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. - 5-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. - 646с.: ил.

Технология конструкционных материалов. Учебник для студентов машиностроительных специальностей ВУЗов в 4 ч. Под ред. Д.М. Соколова, С.А. Васина, Г.Г Дубенского. - Тула. Изд-во ТулГУ. - 2007.

Технология конструкционных материалов: Учебник для студентов машиностроительных ВУЗов / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. - 5-е изд., испр. - М. Машиностроение, 2003. - 511с.: ил

Подобные документы

Понятие сплавов, их типы и классификация. Описание физико-химических, механических, технологических и литейных свойств металлов и сплавов. Процесс получения чугуна и стали. Химические элементы, применяемые для легирования. Разновидности сплавов золота.

реферат [32,0 K], добавлен 09.05.2012

Классификация и общая характеристика медно-никелевых сплавов, влияние примесей на их свойства. Коррозионное поведение медно-никелевых сплавов. Термодинамическое моделирование свойств твёрдых металлических растворов. Энергетические параметры теории.

дипломная работа [1,2 M], добавлен 13.03.2011

История возникновения сплавов. Коррозионная стойкость, литейные свойства, жаропрочность и электрическое сопротивление сплавов. Основные свойства сплавов. Раствор одного металла в другом и механическая смесь металлов. Классификация и группы сплавов.

презентация [189,8 K], добавлен 30.09.2011

Сплавы кремния с никелем, их свойства и промышленное применение. Термодинамическое моделирование свойств твердых металлических растворов. Теория "регулярных" растворов. Термодинамические функции образования интерметаллидов. Расчет активностей компонентов.

дипломная работа [1,3 M], добавлен 13.03.2011

Физические свойства металлов и сплавов. Химические свойства металлов и сплавов. Сплавы. Требования к сплавам и виды сплавов. Методы испытания полиграфических сплавов. Металлы и сплавы, применяемые в полиграфии.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Выполнил ученик

Серебренников Данила Андреевич

Учитель химии:

Санкт-Петербург

Цель: Узнать что такое сплавы их виды и свойства.

Сплавы – это материалы с металлической кристаллической решеткой, обладающие характерными свойствами и состоящие из двух и более компонентов.

Сплавы состоят из основы одного или нескольких металлов, малых добавок ,специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей . Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

hello_html_29a4dd1d.jpg

№ 3. Свойства сплавов.

Свойства металлов и сплавов полностью определяются их структурой кристаллической структурой фаз и микроструктурой. Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность металлический блеск и пластичность. Важнейшей характеристикой сплавов является свариваемость.

В глубокой древности люди заметили, что в большинстве случаев сплавы обладают другими, нередко более полезными для человека свойствами, чем составляющие их чистые металлы. Помимо большей прочности многие сплавы обладают большей коррозионной стойкостью и твёрдостью, лучшими литейными свойствами, чем чистые металлы. Помимо более высоких механических качеств сплавам присущи свойства, которых нет у чистых металлов.

hello_html_7175407d.jpg

№ 4. Виды сплавов.

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. По способу получения заготовки изделия различают литейные деформируемые и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным и гетерогенным. Твёрдый раствор является основой сплава. Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений и кристаллиты простых веществ.

hello_html_m1d4ad462.jpg

№ 5. Заключение.

Цель выполнена.

Сплавы – это материалы с металлической кристаллической решеткой, обладающие характерными свойствами и состоящие из двух и более компонентов.

Связь между структурой и свойствами сплавов

При образовании твердого раствора важен предел прочности

Существует четкая взаимосвязь между составом и структурой сплава, которая определяется типом диаграммы состояния и характеристиками сплава.

При образовании твердого раствора прочность на растяжение, предел текучести и твердость увеличиваются, сохраняя при этом достаточно высокую ductility. In при образовании твердого раствора входного типа прочность во много раз больше, чем при образовании замещенного твердого раствора той же концентрации.

Сочетание повышенной прочности и отличной пластичности позволяет использовать твердые растворы в качестве основы для конструкционных сплавов.

Благодаря своей высокой пластичности сплав-твердый раствор легко деформируется, но обработка резанием оказывается недостаточной. Такие сплавы обладают низкой Литейной способностью.

  • За счет образования твердого раствора электрическое сопротивление значительно возрастает. Поэтому сплав-твердый раствор широко используется в производстве проволочных нагревательных элементов и реостатов.

Получения высоких литейных свойств

Для получения высоких литейных свойств концентрация компонентов в сплаве превышает конечную растворимость в твердом состоянии и должна приближаться к эвтектическому составу. Эвтектический сплав обладает хорошей текучестью.

Связь между структурой и свойствами сплавов

Однако, когда эвтектика появляется в структуре сплава, его пластичность значительно снижается. Поэтому в кованых сплавах содержание компонентов не превышает значения предельной растворимости при эвтектической температуре.

  • Соединения, образующиеся в сплаве, имеют значительно отличающиеся свойства от свойств исходного компонента. У них очень высокая твердость, но они рассыпчатые. Соединение очень важно как твердый структурный компонент сплава.

В состав сплава входят металлы (железо, медь, алюминий, никель и др.) и неметаллические элементы (углерод).Соединения, находящиеся в рассматриваемом интервале температур, если они не диссоциируют на составные части, могут быть компонентом. Количество компонентов, составляющих систему (сплав), может быть различным.

Чистые металлы-это однокомпонентные системы.

Техническая ценность материала зависит от структуры и выражается в его свойствах, например, сплав 2 металлов-2 компонента.

Структура материала характеризуется его структурой. Структура-это набор стабильных связующих элементов materials. It обеспечивает его целостность и сохранение основных характеристик, наряду с внешними и внутренними модификациями. Структура материала определяется многими факторами: строением атомов, ионов, молекул, распределением электронов в нем, типами связей между частицами. В зависимости от назначения изделия, металлы и сплавы нуждаются в определенных свойствах.

Сплавы, допускающие горячую и холодную обработку

Эти свойства подразделяются на 4 группы: физические, химические, механические и технические. Чистый металл после кристаллизации всегда состоит из одного и того же типа мелких кристаллов. Из злаков того же химического состава. Ряд частиц (кристаллитов) одного и того же химического состава называется фазой. Все чистые металлы однофазны. В отличие от чистых металлов, процесс формирования сплава значительно сложнее. Результаты кристаллизации редко становятся ясными.

Это обусловлено взаимной растворимостью компонентов, условиями охлаждения и последующей термообработкой. Если сплав состоит из частиц одинакового химического состава, то он однофазный (однородный).

Если образуются кристаллы различного химического состава, то сплав считается многофазным(гетерогенным) и его фазовый состав определяется типом образующихся кристаллов.

Зерно в разных фазах может сосуществовать по-разному. Структура частиц невидима невооруженным глазом, но она доступна только для микроскопического исследования тонких, полированных и вытравленных деталей.

Схема микроструктур сплавов

Существует четкая взаимосвязь между фазовым составом и свойствами сплава. Однофазные сплавы на основе ненасыщенных α-растворов пригодны для холодной и горячей деформации, так как обладают высокой пластичностью при низких и высоких температурах.

  • Поскольку при изменении температуры не происходит фазового превращения, исключается возможность термического упрочнения, и поэтому отверждается только холодная деформация. 。Многофазные сплавы с низкой пластичностью или хрупкими фазами имеют пониженную пластичность.

Фазовый состав и свойства сплавов

Реферат на темуНа заказ Образец и пример
Связь между структурой и свойствами сплавов Большинство различных металлических материалов, используемых в технологии, являются сплавами. Чистые металлы не используются в технологии, поскольку они характеризуются низкой прочностью на растяжение.

Сплавы, содержащие компоненты, растворимость которых изменяется, допускают термическое упрочнение (за счет закалки и последующего старения).

Сплавы с составом, близким к эвтектическому, обладают повышенными литейными свойствами (из-за отсутствия крупных первичных кристаллов используются бывшие эвтектические сплавы).

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: