Реферат на тему просветление оптики

Обновлено: 02.07.2024

Просветле́ние о́птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз.

Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие пленки загрязнений (жир, масло) на поверхности просветляющего покрытия нарушают его работу и резко увеличивают отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем разрушают не только просветление, но и поверхность самого стекла. По методике нанесения и составу просветляющего покрытия просветление бывает физическим (напыление) и химическим (травление).

Содержание

Однослойное просветление


Толщина просветляющего слоя (например, кремниевой кислоты) равняется 1/4 длины световой волны. В этом случае лучи, отражённые от её наружной и внутренней сторон, погасятся вследствие интерференции и их интенсивность станет равной нулю. Для наилучшего эффекта показатель преломления просветляющей плёнки должен равняться квадратному корню показателя преломления оптического стекла линзы. Наиболее подходящим материалом для просветляющей пленки является фторид бария, обладающий весьма низким (n=1,38) показателем преломления. Однако, фторид бария растворим в воде и требует нанесения защитного покрытия.

В настоящее время однослойное просветление часто используется для лазерной оптики, рассчитанной на работу в узком спектральном диапазоне. Используя стекла с относительно высоким показателем преломления и напыляя пленку фторида бария, удается добиться минимальной отражающей способности около 1 %. Главным преимуществом такого просветления является его дешевизна.

Многослойное просветление



Инфракрасная оптика

Некоторые оптические материалы, используемые в инфракрасном диапазоне имеют очень большой показатель преломления. Например у германия показатель преломления близок к 4.1 . Такие материалы требуют обязательного просветления.

Текстурированные покрытия

Добиться уменьшения отражения можно с помощью текстурирования поверхности, то есть создания на ней массива из конусообразных рассеивателей или двумерных канавок. Такой способ был впервые обнаружен при изучении структуры глаза некоторых видов мотыльков. Наружная поверхность роговицы глаза таких мотыльков, играющая роль линзы, покрыта сетью конусообразных пупырышек, называемых роговичными сосками, обычно высотой не больше 300 нм и примерно таким же расстоянием между ними. Поскольку длина волны видимого света больше размера пупырышек, их оптические свойства могут описываться с помощью приближения эффективной среды. Согласно этому приближению свет распространяется через них так же, как если бы он распространялся через среду с непрерывно меняющейся эффективной диэлектрической проницаемостью. Это в свою очередь приводит к уменьшению коэффициента отражения, что позволяет мотылькам хорошо видеть темноте, а также оставаться незамеченными для хищников вследствие уменьшения отражательной способности от глаз.

Текстурированная поверхность обладает антиотражающими свойствами также и в коротковолновом пределе, при длинах волн много меньших характерного размера текстуры. Это связано с тем, что лучи, первоначально отразившиеся от текстурированной поверхности, имеют шанс все же проникнуть в среду при последующих переотражениях. При этом текстурирование поверхности создает условия, при которых прошедший луч может отклониться от нормали, что ведет к эффекту запутывания прошедшего света (англ. - light trapping), используемому, например, в солнечных элементах.

В длинноволновом пределе (длины волны больше размера текстуры) для расчета отражения можно использовать приближение эффективной среды. В коротковолновом пределе (длины волны меньше размера текстуры) для расчета отражения можно использовать метод трассировки лучей. В случае, когда длина волны сопоставима с размером текстуры, отражение можно рассчитать только путем численного решения уравнений Максвелла. Антиотражающие свойства текстурированных покрытий хорошо изучены в литературе для широкого диапазона длин волн [1] [2] . .

См. также

Источники

Литература

Просветление оптики основано на явлении интерференции. На оптически прозрачную поверхность, например линзы, наносят тонкую плёнку с показателем преломления n , меньшим показателя линзы n . Для простоты рассмотрим случай нормального падения света на плёнку (смотри рисунок 19).

Условие того, что отражённые от верхней и нижней поверхностей плёнки световые волны гасят друг друга, запишется (для плёнки минимальной толщины) следующим образом:

где - длина световой волны в плёнке, а 2h - разность хода интерферирующих волн. В случае, когда показатель преломления воздуха меньше показателя преломления плёнки, а показатель преломления плёнки меньше показателя преломления стекла происходит изменение фазы на . В результате эти отражения не влияют на разность фаз волн 1 и 2; она определяется только толщиной плёнки.

Если амплитуды обеих отражённых волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответствующим образом показатель преломления плёнки, так как интенсивность отражённого света определяется отношением коэффициентов преломления двух оптически прозрачных граничащих сред. На линзу при обычных условиях падает белый свет. Выражение (смотри формулу 13) показывает, что требуемая толщина плёнки зависит от длины световой волны. Поэтому осуществить гашение отражённых световых волн всех частот невозможно. Толщину плёнки подбирают так, чтобы полное гашение при нормальном падении света имело место для длин световых волн средней части спектра видимого света (т.е. для света зелёного цвета, длина волны которого л3=550 нм) она должна быть равна четверти длины световой волны в плёнке:

Следует заметить, что на практике наносят слой, толщина которого на целое число длин световых волн больше, так как это гораздо удобнее. Промышленный метод нанесения тонких прозрачных плёнок на прозрачные поверхности был разработан российскими физиками И. В. Гребенщиковым и А. Н. Терениным.

Отражение света крайних участков спектра видимого света - красного и фиолетового - ослабляется незначительно. Поэтому оптический объектив с просветлённой оптикой в отражённом свете имеет сиреневый оттенок. Сейчас даже самые простые фотоаппараты имеют просветлённую оптику.


Согласно континуальной концепции Гюйгенса – Френеля, свет – это волновой процесс. Пустоты с точки зрения континуальной концепции описания природы не существует. Свет распространяется согласно принципу Гюйгенса –Френеля, согласно которому каждая точка среды, до которой дошло колебание-возмущение является источником вторичных (когерентных) волн.

В настоящее время теория волновой оптики имеет прочный статус и применяется в различных сферах практической деятельности. Рассмотрим использование волновых свойств света в просветлении оптики.

Просветление оптики – это нанесение на поверхность линз, граничащих с воздухом, очень тонкой прозрачной плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления линз данной оптической системы. Просветление оптики происходит путём напыления на поверхность линз, на границе вещество-воздух, тончайшей плёнки, или нескольких слоёв плёнок один поверх другого. Эта манипуляция позволяет увеличить светопропускание оптической системы и повысить контраст изображения за счёт подавления бликов, возникающих при частичном отражении света от поверхности линзы. Величины показателей преломления чередуются по величине и подбираются таким образом, чтобы за счёт явления интерференции света уменьшить (или совсем устранить) нежелательное отражение световых лучей от линз оптической системы.

Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие пленки загрязнений (жировых или масляных) на поверхности просветляющего покрытия нарушают его работу и увеличивают отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем разрушают не только просветляющие плёнки, но и поверхность самого материала линзы. По методике нанесения и составу просветляющего покрытия просветление бывает физическим – напыление и химическим – травление.

Просветление оптики – антибликовое покрытие применяется во многих областях, где свет проходит через оптический элемент и требуется снизить потери интенсивности или устранить отражение. Наиболее распространёнными случаями являются линзы очков и объективы камер, биноклей, перископов, прицелов и других оптических систем.

Список литературных и информационных источников

1 Горбачев В.В. Концепции современного естествознания / В.В. Горбачев. – М.: Оникс 21 век Мир и образование, 2016. – 704 с.

2 Карпенков С.Х. Концепции современного естествознания: Учебник для студентов вузов. – 11-е изд., перераб. и доп. – М.: КНОРУС, 2012. – 670 с.

Применения интерференции очень важны и обширны. Интерференция света имеет самое широкое применение для измерения длины волны излучения, исследования тонкой структуры спектральной линии, определения плотности, показателей преломления и дисперсионных свойств веществ, для измерения углов, линейных размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. На использовании интерференции света основано действие интерферометров и интерференционных спектроскопов; метод голографии также основан на интерференции света. Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла, в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твердых телах, для создания особо узкополосных светофильтров и др.

Некоторые применения интерференции:

Проверка качества обработки поверхностей.

С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до 1/10 длины волны, т.е. с точностью до 10-6 см. Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности поверхности размером до 10-6 см вызовут заметные искривления интерференционных полос, образующихся при отражении света от проверяемой поверхности и нижней грани эталонной пластины.

Просветление оптики.

Объективы современных фотоаппаратов и кинопроекторов, перископы подводных лодок и различные другие оптические устройства состоят из большого числа оптических стекол – линз, призм и др. Проходя через такие устройства, свет отражается от многих поверхностей. Число отражающих поверхностей в современных фотообъективах превышает 10, а в перископах подводных лодок доходит до 40. При падении света перпендикулярно поверхности доля отраженной от нее энергии составляет 5-9% от всей энергии. Поэтому сквозь прибор часто проходит всего 10-20% поступающего в него света. В результате этого освещенность изображения получается малой. Кроме того, ухудшается качество изображения. Часть светового пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкого изображения. На фотографических изображениях, например, по этой причине образуется "вуаль". Для устранения этих неприятных последствий отражения света от поверхности оптических стекол надо уменьшить долю отражаемой энергии света. Даваемое прибором изображения делается при этом ярче, "просветляется". Отсюда и происходит термин просветление оптики . Просветление оптики основано на интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления nп, меньшим показателя преломления стекла nс. Для простоты рассмотрим нормальное падение света на пленку. Разность хода световых волн 1 и 2 (рис. 0), отраженных от верхней и нижней поверхностей пленки, равна удвоенной толщине пленки 2h. Длина волны lп в пленке меньше длины волны l в вакууме в n раз:

Для того, чтобы волны 1 и 2 ослабляли друг друга, разность хода должна равняться половине длины волны в пленке:

2h = lп/2 = l/2nп (1)

Отражение света крайних участков спектра – красного и фиолетового – ослабляется незначительно. Поэтому объектив с просветленной оптикой в отраженном свете имеет сиреневый оттенок. Сейчас даже простые дешевые фотоаппараты имеют просветленную оптику.

Интерферометры – измерительные приборы, в которых используется интерференция волн. Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков, которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина, вид которой, т. е. форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

Методы получения когерентных пучков в интерферометрах очень разнообразны, поэтому существует большое число различных конструкций интерферометров. По числу интерферирующих пучков света оптические интерферометры можно разбить на многолучевые и двухлучевые.

Примером двухлучевого интерферометра может служить интерферометр Майкельсона (рис.1). Параллельный пучок света источника L, попадая на полупрозрачную пластинку P1, разделяется на пучки 1 и 2. После отражения от зеркал M1 и M2 и повторного прохождения через пластинку P1 оба пучка попадают в объектив O2, в фокальной плоскости D которого они интерферируют. Оптическая разность хода D = 2(AC – AB) = 2l, где l – расстояние между зеркалом M2 и мнимым изображением M1¢ зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1¢ и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму концентрических колец. Если же M2 и M1¢ образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M2M1¢ и представляющие собой параллельные линии.

Интерферометр Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины света, доказана независимость скорости света от движения Земли. Перемещая одно из зеркал интерферометра Майкельсона, получают возможность плавно изменять D, а зависимость интенсивности центрального пятна от D, в свою очередь, дает возможность анализировать спектральный состав падающего излучения с разрешением 1/D см-1. На этом принципе построены Фурье-спектрометры, применяющиеся для длинноволновой инфракрасной области спектра (50–1000 мкм) при решении задач физики твердого тела, органической химии и химии полимеров, диагностики плазмы.

Существуют двухлучевые интерферометры, предназначенные для измерения показателей преломления газов и жидкостей,– интерференционные рефрактометры. Один из них – интерферометр Жамена (рис. 3). Пучок света S после отражения от передней и задней поверхностей первой пластины P1 разделяется на два пучка S1 и S2. Пройдя через кюветы K1 и K2, пучки, отразившиеся от поверхностей пластины P2, попадают в зрительную трубу T, где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n1, а другая с n2, то по смещению интерференционной картины на число полос m по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти Dn=n1–n2=ml/l (l – длина кюветы).

Разновидностями интерферометра Жамена являются интерферометр Маха – Цендера и интерферометр Рождественского (рис.4), где используются две полупрозрачные пластинки P1 и P2 и два зеркала M1 и M2. В этих интерферометрах расстояние между пучками S1 и S2 может быть сделано очень большим, что облегчает установку в один из них различных исследуемых объектов, поэтому они широко применяются в аэрогазодинамических исследованиях.

В интерферометре (рис. 5) Рэлея интерферирующие пучки выделяются с помощью двух щелевых диафрагм D. Пройдя кюветы K1 и K2, эти пучки собираются в фокальной плоскости объективом O2, где образуется интерференционная картина полос равного наклона, которая рассматривается через окуляр O3. При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Если показатели преломления n1 и n2 веществ в кюветах, то из-за разности хода в кюветах верхняя картина сместится относительно нижней. Измеряя величину смещения по числу полос m, можно найти Dn.

Для измерения угловых размеров звезд и угловых расстояний между двойными звездами применяется звездный интерферометр Майкельсона (рис. 6). Свет от звезды, отразившись от зеркал M1, M2, M3, M4, образует в фокальной плоскости телескопа интерференционную картину. Угловое расстояние между соседними максимумами q = l/D (рис. 6, б). При наличии двух близких звезд, находящихся на угловом расстоянии j, в телескопе образуются две интерференционные картины, также смещенные на угол j. Изменением D добиваются наихудшей видимости картины, что будет при условии j = 1/2q = l/2D, откуда можно определить j.

Многолучевой интерферометр Фабри – Перо (рис. 7) состоит из двух стеклянных или кварцевых пластинок P1 и P2, не обращенные друг другу и параллельные между собой поверхности которых нанесены зеркальные покрытия с высоким (85–98%) коэффициентом отражения. Параллельный пучок света, падающий из объектива O1, в результате многократных отражений от зеркал образует большое число параллельных, когерентных пучков с постоянной разностью хода между соседними пучками. В результате многолучевой интерференции в фокальной плоскости L объектива O2 образуется интерференционная картина, имеющая форму концентрических колец с резкими интенсивными максимумами, положение которых зависит от длины волны. Поэтому интерферометр Фабри – Перо разлагает сложное излучение в спектр. Применяется интерферометр Фабри – Перо как интерференционный спектральный прибор высокой разрешающей силы. Специальные сканирующие интерферометры Фабри – Перо с фотоэлектрической регистрацией используются для исследования спектров в видимой, инфракрасной и сантиметровой областях длин волн. Разновидностью интерферометра Фабри – Перо являются оптические резонаторы лазеров, излучающая среда которых располагается между зеркалами интерферометра. К многолучевым интерферометрам также относятся различного рода дифракционные решетки, которые используются как интерференционные спектральные приборы.

Читайте также: