Реферат на тему процессы переноса при термоэлектрических явлениях эффект пельтье

Обновлено: 02.07.2024

Возможности его применения неограниченны. Множество лабораторий и исследовательских центров занимаются разработкой способов его применения, потому что открытие, сделанное французским ученым, позволяет сделать жизнь человека комфортной, красочной, а блага цивилизации – доступными широкому кругу потребителей.

В данной курсовой работе мы рассмотрим явление Пельтье и его применение.

1. ЭФФЕКТ ПЕЛЬТЬЕ

1.1 Открытие эффекта Пельтье

Эффект Пельтье был открыт французом Жаном-Шарлем Пельтье в 1834 году. При проведении одного из экспериментов он пропускал электрический ток через полоску висмута, с подключенными к ней медными проводниками (рис. 1.1.). В ходе эксперимента он обнаружил, что одно соединение висмут-медь нагревается, другое – остывает.

Рис. 1.1 - Схема опыта для измерения тепла Пельтье

Сам Пельтье не понимал в полной степени сущность открытого им явления. Истинный смысл явления был позже объяснен в 1838г. Ленцем.

В своём опыте Ленц экспериментировал с каплей воды, помещённой на стыке двух проводников (висмута и сурьмы). При пропускании тока в одном направлении капля воды замерзала, а при изменении направления тока - таяла. Тем самым было установлено, что при прохождении тока через контакт двух проводников в одном направлении тепло выделяется, в другом - поглощается. Данное явление было названо эффектом Пельтье .

1.2 Объяснение эффекта Пельтье

Тепло Пельтье пропорционально силе тока и может быть выражено формулой:

где q - заряд прошедший через контакт, П - так называемый коэффициент Пельтье, который зависит от природы контактирующих материалов и их температуры. Коэффициент Пельтье может быть выражен через коэффициент Томпсона:

где  - коэффициент Томпсона, Т – абсолютная температура.

Необходимо отметить, что коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице 1.

Значения коэффициента Пельтье для различных пар металлов

Величина выделяемого тепла Пельтье и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения, поэтому Q п может быть выражено еще одной формулой:

dQ п = П12 Ч I Ч dt.

Здесь П12=П1-П2 - коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье П1 и П2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: Qп>0, П12>0, П1>П2.

При поглощении тепла Пельтье оно считается отрицательным и соответственно: Qп

Рис. 1.2 - Выделение тепла Пельтье (контакт А)

Рис. 1.3 - Поглощение тепла Пельтье (контакт А)

Такую цепь, принято называть термоэлементом, а ее ветви - термоэлектродами. Через цепь течет ток I, созданный внешним источником e. Рис. 1.2. иллюстрирует ситуацию, когда на контакте А (ток течет от ПП1 к ПП2) происходит выделение тепла Пельтье Qп (А)>0, а на контакте В (ток направлен от ПП2 к ПП1) его поглощение - Qп (В) ТВ.

На рис. 1.3. изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В. Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: Qп (А) 0) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье ( Q п

Рис. 1.4 - Выделение тепла Пельтье на контакте полупроводников p и n -типа

На рис. 1.5. (ec - зона проводимости, ev - валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n к p -полупроводнику (n ® p).

Рис. 1.5 - Поглощение тепла Пельтье на контакте полупроводников p и n -типа

Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться.

Применение полупроводников разных типов в термоэлектрических модулях представлено на рис. 1.6.

Рис. 1.6 - Использование полупроводниковых структур в термоэлектрических модулях

Такая цепь позволяет создавать эффективные охлаждающие элементы.

2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ

Похожие страницы:

Висмут и его соединения в природе

. явление, названное эффектом Пельтье, долгое время не находило практического применения, так как возникающее . лучших ядерных теплоносителей. Перспективно и использование его в реакторах с жидкометаллическим топливом - ураном, растворенным .

Вища фізика. Конспект лекцій

Частина 1. Механіка. Тема 1. Вступ. Кінематика поступального руху. Вступ. Кінематика поступального руху (2 год.) Мета: Ввести основні поняття механіки. План Елементи кінематики. Поступальний рух. Радіус-вектор, траєкторія, шлях, переміщення Швидкість, .

Тепловые преобразователи

. обратимых явлений, обратный эффект был открыт в 1834 г. Жаном Пельтье и назван его именем. Если . резистивных элементов. Термодиоды и термотранзисторы находят применение в датчиках температуры, работающих в диапазоне от .

Системы охлаждения центрального процессора

. века эффекте, по имени его первооткрывателя получившего название эффекта Пельтье. Эффект заключается . технологии, основанные уже на применении "открытой жидкости", не . более значительных результатов с применением дополнительных средств. Следует отметить .

Волоконно-оптические сети и системы связи

. расположены оптический изолятор, микрохолодильник (элемент Пельтье), терморезистор, выполняющий роль термодатчика, и . 1999. Ю. В. Байбородин, С. А. Гаража. Электрооптический эффект в кристаллах и его применение в приборостроении. Из-во Машиностроение. Москва .

Гост

ГОСТ

где $q$ -- заряд, $П$ -- коэффициент Пельтье, который зависит от контактирующих материалов и их температуры. $Q_P>0$, если она выделяется.

Объяснение эффекта Пельтье в классической теории

Классическая электронная теория проводимости трактовала явление Пельтье так: электроны, которые переносятся током из одного металла в другой, ускоряются или замедляются под воздействием внутренней контактной разности потенциалов между металлами. В одном случае кинетическая энергия электронов растет, а затем выделяется как теплота. В другом случае, кинетическая энергия уменьшается, и это уменьшение пополняется за счет тепловых колебаний атомов, в результате чего происходит охлаждение.

Следовало бы ожидать, что коэффициент эффекта Пельтье будет равен контактной разности потенциалов, но это не так. В соответствии с классической теорией средняя кинетическая энергия теплового движения электронов в контактирующих металлах считается одинаковой, а это не так. Дело в том, что положения уровней Ферми в разных металлах различно. Классическая теория учитывает только разницу потенциальных энергий по разные стороны границы раздела металлов, при этом считает, что кинетические энергии электронов одинаковы. Однако следует учесть изменение полной энергии электрона его при переносе из одного металла в другой.

Готовые работы на аналогичную тему

Для большинства пар проводников коэффициент Пельтье имеет значение порядка $^-\ ^В$ (вольт).

Эффект Пельтье для полупроводников

Эффект Пельтье, как в прочем все термоэлектронные явления, особенно сильно проявляется в цепях из электронных и дырочных полупроводников.

Допустим, что имеется контакт дырочного полупроводника и электронного, причем ток идет от дырочного проводника к электронному. В таком случае дырки в дырочном полупроводнике и электроны в электронном полупроводнике станут двигаться навстречу друг другу. Электроны, из свободных зон электронного полупроводника пройдя границу раздела, попадают в заполненную зону дырочного полупроводника и там аннигилируется с дыркой. Как следствие такой рекомбинации высвобождается энергия, которая выделяется в виде тепла в контакте полупроводников.

Рассмотрим случай, когда ток идет от электронного полупроводника к дырочному. В этом случае, электроны в электронном полупроводнике и дырки в дырочном полупроводнике движутся в противоположные стороны. Дырки, перемещающиеся от границы раздела полупроводников, пополняются в результате образования новых пар при переходе электронов из заполненной зоны дырочного полупроводника в свободную зону. На образование подобных пар необходима энергия, которая предоставляется тепловыми колебаниями атомов решетки. Под воздействием электрического поля возникающие электроны и дырки движутся в противоположные стороны. Непрерывное рождение новых пар идет пока ток течет через контакт. В результате этого процесса теплота поглощается.

Явление Пельтье в полупроводниках используют в охлаждающих устройствах.

Тепло Джоуля - Ленца и тепло Пельтье

Надо отметить, что между явлением Пельтье и выделением тепла Джоуля -- Ленца есть существенные различия. Количество теплоты, которая выделяется в соответствии с законом Джоуля -- Ленца ($Q\sim I^2$) не зависит от направления тока. Теплота, которая выделяется (или поглощается) в результате эффекта Пельтье пропорциональна первой степени силы тока ($Q_P\sim I$) и изменяет знак при смене направления тока. Кроме того, тепло Джоуля - Ленца зависит от сопротивления проводника, теплота Пельтье от него не зависит.

Обычно, теплота Пельтье существенно меньше, чем тепло Джоуля -- Ленца. Для того, чтобы выявить эффект именно от явления Пельтье следует как можно сильнее уменьшить тепло Джоуля - Ленца, применяя толстые проводники с минимальным сопротивлением.

Задание: Покажите, что если считать электронный газ в проводнике невырожденным, то коэффициент Пельтье равен контактному скачку потенциала.

Количество электронов (N), которое проходит через единичную площадку, перпендикулярную к направлению тока, за $1 с$ равно:

где $j$ -- плотность тока, $q_e\ $-- заряд электрона.

Энергия электрона равна сумме его кинетической ($E_k$) и потенциальной энергий ($E_p=-q_e\varphi $). Если через $\left\langle E_k\right\rangle $ обозначить среднюю энергию для N электронов, то поток энергии ($P$) равен:

\[P=-\frac\left(\left\langle E_k\right\rangle -q_e\varphi \right)\left(1.2\right),\]

где $\left\langle E_k\right\rangle \ne \frac$ kT-- не равно средней кинетической энергии равновесного электронного газа, что объяснимо тем, что в случае вырожденного газа не все электроны могут ускоряться электрическим полем.

Рассмотрим проводники 1 и 2 при одинаковой температуре. К каждой единице поверхности контакта в проводнике 1 подводится в единицу времени энергия $P_1$, а отводится в проводнике 2 энергия равная $P_2$. Значения потенциалов с обеих сторон контактной плоскости равны $_1$ и $_2$. Причем $_1$ $\ne $ $_2$. Кроме того в общем случае, имеем, что:

\[\left\langle E_\right\rangle \ne \left\langle E_\right\rangle \left(1.3\right).\]

Для поддержания температуры контакта без изменений с каждой единицы поверхности в единицу времени нужно отводить (или подводить) энергию, равную $P_1-P_2.\ $Из выражения (1.3) следует, что:

\[P_1-P_2\ne 0\ \left(1.4\right).\]

Это означает, что выделяется (или поглощается) тепло Пельтье ($Q_p$). В том случае, если $S$ -- площадь контактирующих поверхностей, то тепло Пельтье равно:

\[Q_p=\left(P_1-P_2\right)St=\frac\left[\left(\left\langle E_\right\rangle -\left\langle E_\right\rangle \right)-q_e\left(_1-\ _2\right)\right]It\left(1.5\right),\]

где $I=jS$ -- сила тока. Мы знаем, что теплоту Пельтье выражают как:

Или для нашего случая из выражения (1.7) можно записать:

Сравним выражение (1.7) и формулу (1.5), получим для коэффициента Пельтье выражение:

\[П_=\frac\left[\left(\left\langle E_\right\rangle -\left\langle E_\right\rangle \right)-q_e\left(_1-\ _2\right)\right]\left(1.8\right).\]

Так как нас интересует тепло в контакте, и мы не рассматриваем тепло Джоуля -- Ленца в объеме, то в формуле (1.5) следует под $P_1\ и\ P_2$ понимать их значения у самой плоскости контактов. Значит выражение $_1-\ _2=U_$ - контактный скачок потенциала.

Если электронный газ в проводниках является невырожденным, то ускоряются полем все электроны. Распределение импульсов описывается законом Максвелла, и оно зависит только от температуры, тогда $\left\langle E_\right\rangle =\left\langle E_\right\rangle $, следовательно:

В таком случае, коэффициент Пельтье равен контактному скачку потенциала, при этом тепло Пельтье равно работе, которую совершает ток из-за перепада напряжений.

Что и требовалось показать.

Задание: Чему равен коэффициент Пельтье при температуре T=0 K (случай сильно вырожденного электронного газа)?

В состоянии сильного вырождения (T=0 K) все квантовые состояния в зоне проводимости с энергией, которая меньше уровня Ферми полностью заняты электронами. При этом ускоряться полем могут только электроны, которые имею энергии равную энергии Ферми (в первом приближении энергию Ферми примем равной химическому потенциалу $\mu $). Поэтому в формуле для коэффициента Пельтье, которую мы получили в предыдущем примере:

\[П_=\frac\left[\left(\left\langle E_\right\rangle -\left\langle E_\right\rangle \right)-q_e\left(_1-\ _2\right)\right]\left(2.1\right)\]

под $\left\langle E_\right\rangle \ и\ \left\langle E_\right\rangle $ надо понимать максимальные кинетические энергии электронов и принять, что:

\[\left\langle E_\right\rangle =<\mu >_2,\ \left\langle E_\right\rangle <=\mu >_1\left(2.2\right).\]

Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока:

Q — количество выделенного или поглощённого тепла;

I — сила тока;

t — время протекания тока;

П — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α вторым соотношением Томсона [1] П = αT, где Т — абсолютная температура в K.

Классическая теория объясняет явление Пельтье тем, что при переносе электронов током из одного металла в другой, они ускоряются или замедляются внутренней контактной разностью потенциалов между металлами. В случае ускорения кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. В обратном случае кинетическая энергия уменьшается, и энергия пополняется за счёт энергии тепловых колебаний атомов второго проводника, таким образом он начинает охлаждаться. При более полном рассмотрении учитывается изменение не только потенциальной, но и полной энергии.


Причина возникновения эффекта Пельтье на контакте полупроводников с одинаковым видом носителей тока (два полупроводника n-типа или два полупроводника p-типа) такая же, как и в случае контакта двух металлических проводников. Носители тока (электроны или дырки) по разные стороны спая имеют различную среднюю энергию, которая зависит от многих причин: энергетического спектра, концентрации, механизма рассеяния носителей заряда. Если носители, пройдя через спай, попадают в область с меньшей энергией, они передают избыток энергии кристаллической решетке, в результате чего вблизи контакта происходит выделение теплоты Пельтье (Qп>0) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье (Qп

Нет ничего плохого в том, когда человек владеет богатством. Но плохо, если богатство завладевает человеком. © Билли Грэм ==> читать все изречения.

Содержание

ВВЕДЕНИЕ………………………………………………………………. 3
1. ЭФФЕКТ ПЕЛЬТЬЕ………………………………………………………4
1.1. История открытия……………………………………………………….4
1.2. Теоретическое обоснование эффекта Пельтье………………………. 6
2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ………………………………. 14
2.1. Модули Пельтье………………………………………………………..14
2.2.Особенности эксплуатации модулей Пельтье……………………. 19
2.3. Полупроводниковые холодильники Пельтье………………………..23
2.4. Применение эффекта Пельтье………………………………………..27
ЗАКЛЮЧЕНИЕ……………………………………………………………..30
СПИСОК ЛИТЕРАТУРЫ………………………………………………….32

Работа состоит из 1 файл

курсач.doc

1.2. Теоретическое обоснование эффекта Пельтье………………………. 6

2. ПРИМЕНЕНИЕ ЭФФЕКТА ПЕЛЬТЬЕ………………………………. 14

2.2.Особенности эксплуатации модулей Пельтье……………………. 19

2.3. Полупроводниковые холодильники Пельтье………………………..23

2.4. Применение эффекта Пельтье………………………………………..27

Возможности его применения неограниченны. Множество лабораторий и исследовательских центров занимаются разработкой способов его применения, потому что открытие, сделанное французским ученым, позволяет сделать жизнь человека комфортной, красочной, а блага цивилизации – доступными широкому кругу потребителей.

Отрадно, что научные направления в этой области постоянно развиваются, и российские ученые находятся в авангарде этих исследований.

В данной курсовой работе мы рассмотрим явление Пельтье и его применение.

1.1. История открытия

В начале 19 века основные научные направления и теории еще только формировались, а основной движущей силой были всевозможные эксперименты, которые проводились настоящими энтузиастами своего дела, в основном, в кустарных условиях и на доморощенной инструментальной базе.

Эффект Пельтье был открыт французом Жаном-Шарлем Пельтье в 1834 году.

Начав работать в часовой мастерской в 15 лет, в возрасте 21 года он уже открывает в Париже собственный магазин и в том же 1806 году женится на Милли Дюфон. А за 20 лет до предстоящего открытия Пельтье получил небольшое наследство, по родственной линии жены, позволившее ему полностью отказаться от необходимости зарабатывать на хлеб насущный и посвятить все свое время любимому делу — экспериментальной физике, анатомии, метеорологии и ряду других направлений естествознания.

При проведении одного из экспериментов он пропускал электрический ток через полоску висмута, с подключенными к ней медными проводниками (рис. 1.)

Рисунок 1. Схема опыта для измерения тепла Пельтье

В ходе эксперимента он обнаружил, что одно соединение висмут-медь нагревается, другое – остывает, т.е. он обнаружил, что проходящий через спай разнородных металлов ток создает разность температур между спаем и свободными концами проводников.

Причем, если нагрев проводников при прохождении тока к тому времени уже был вполне объясним (закон Джоуля), то охлаждение ниже температуры окружающей среды казалось чудом. Впрочем, чудом было и то, что Пельтье удалось увидеть эту разницу на металлической паре, так как она не могла превышать пары градусов. Но Пельтье так и не смог понять и объяснить суть происходящего.

Истинный смысл явления был позже объяснен в 1838г. Ленцем.

В своём опыте Ленц экспериментировал с каплей воды, помещённой на стыке двух проводников (висмута и сурьмы). При пропускании тока в одном направлении капля воды замерзала, а при изменении направления тока - таяла. Тем самым было установлено, что при прохождении тока через контакт двух проводников в одном направлении тепло выделяется, в другом - поглощается. Данное явление было названо эффектом Пельтье.

К слову, сегодня, без мультиметра и заводских электрических элементов или блоков питания, не многие, даже вооруженные знаниями и описанием термоэлектрических эффектов, смогут повторить опыт Пельтье 175-летней давности.
Но наука шла вперед, и, в скором времени, появилась теория, описывающая термоэлектрические эффекты (Ленц) и некоторые недостающие звенья (Томсон, более известный как лорд Кельвин). В начале 20 века немецкий инженер Альтенкирх развил теорию и ввел понятия холодильного коэффициента и Z-эффективности, показав, что эффект Пельтье на металлических спаях, ввиду достижимой разницы температур всего в несколько градусов, не пригоден для практического применения. И только спустя несколько десятков лет, прежде всего усилиями академика А. Иоффе и разработанной им теории твердых растворов, были теоретически и практически получены результаты, давшие импульс широкому практическому применению эффекта Пельтье.

1.2.Теоретическое обоснование эффекта Пельтье

Из курса физики мы знаем, что ток — это упорядоченное движение заряженных частиц. Под заряженными частицами обычно понимаются свободные электроны, а упорядоченность возникает при подключении источника электродвижущей силы, переводящей электроны из хаотического теплового (броуновского) движения в более осмысленное, с человеческой точки зрения. Впрочем, броуновское движение не прекращается и с появлением электрического тока. Лучшими проводниками тока при комнатной температуре являются металлы.

Кроме металлов в природе существуют диэлектрики — вещества, плохо проводящие электрический ток. Это не значит, что в диэлектриках нет свободных электронов — их, в кубическом сантиметре даже самых лучших изоляторов, может быть сотни триллионов! И все же этого недостаточно для возникновения явления проводимости. Вещество становится проводящим, когда концентрация носителей тока увеличивается еще в тысячи раз, такую проводимость имеют полупроводники, а подняв удельное число носителей на пару порядков, получаем полуметаллы (сильно легированные полупроводники, или твердые растворы), дальнейшее увеличение концентрации носителей характеризует уже настоящие проводники — металлы.

Z=a 2 /(ρ l), ( Z = α²σ /l),

где a – коэффициент термоэдс;

ρ – удельное сопротивление;

σ — удельная электрическая проводимость

l – удельная теплопроводность полупроводника, состоящая из теплопроводностей кристаллической решетки и электронов.

Параметр Z – функция температуры и концентрации носителей заряда, причем для каждой заданной температуры существует оптимальное значение концентрации, при которой величина Z максимальна. Введение в полупроводник тех или иных примесей – основное доступное средство изменять его показатели (a, ρ, l) в желательную сторону.
Выбор вещества в качестве термоэлектрика, в котором с нужными качествами сочетаются все три параметра, оказался нетривиальной задачей. Для начала 20 века доступны были только металлы, не обладающие высокой добротностью и не позволившие получать практическую пользу от эффектов термоэлектричества, за исключением, пожалуй, использования термопар для измерительных целей.

Контактная разность потенциалов создаёт внутреннее контактное поле. Если через контакт идёт ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта.

Рисунок 2. Принцип работы ТЭМ.

Тем самым создается ситуация, когда на левом спае (от полупроводника n-типа) происходит постоянная встреча и рекомбинация основных носителей. В результате этой рекомбинации освобождается энергия, которая выделяется в виде тепла и происходит нагрев соединения.

А на правом — происходит формирование этих свободных носителей. Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться, и наблюдается понижение температуры кристаллической решетки.

Изменение полярности подключения источника питания приведет к эффекту смены теплового состояния — теперь нагреваться будет правый от полупроводника n-типа спай, а охлаждаться — левый.

В отличие от тепла Джоуля-Ленца, которое пропорционально квадрату силы тока (Q = R·I 2 ·t), тепло Пельтье пропорционально силе тока в первой степени (QП~I) и может быть выражено формулой:

где q - заряд прошедший через контакт,

П - так называемый коэффициент Пельтье.

Коэффициент Пельтье может быть выражен через коэффициент Томпсона:
П = a · T

где a - коэффициент Томпсона,

T - абсолютная температура.

Коэффициент Пельтье, определяющий количество тепла Пельтье, выделяющегося на контакте, зависит от природы контактирующих веществ и температуры контакта: П12=a12·Т=(a1-a2)·T, где a1 и a2 абсолютные коэффициенты термоэдс контактирующих веществ. Если для большинства пар металлов коэффициент термоэдс имеет порядок 10 -5 -10 -4 В/К, то для полупроводников он может оказаться гораздо больше (до 1,5·10 -3 В/К).

Читайте также: