Реферат испытания на усталость

Обновлено: 05.07.2024

Для того чтобы оценить способность какой-либо детали противостоять усталостному разрушению, необходимо, в первую очередь, знать, как материал сопротивляется усталости, т. е. иметь такую механическую характеристику, которая могла бы количественно охарактеризовать способность материала сопротивляться усталостному разрушению. С этой целью проводятся испытания на усталость. Испытанию подвергаются… Читать ещё >

  • техническая механика: сопротивление материалов

Характеристики сопротивления усталости ( реферат , курсовая , диплом , контрольная )

Для того чтобы оценить способность какой-либо детали противостоять усталостному разрушению, необходимо, в первую очередь, знать, как материал сопротивляется усталости, т. е. иметь такую механическую характеристику, которая могла бы количественно охарактеризовать способность материала сопротивляться усталостному разрушению. С этой целью проводятся испытания на усталость. Испытанию подвергаются лабораторные образцы, имеющие в пределах рабочей части строго цилиндрическую форму. Их диаметр обычно составляет 5… 10 мм, шероховатость поверхности образцов не грубее Ra = 0,32. Для проведения стандартных испытаний на усталость необходимо иметь не менее десятка одинаковых образцов.

Наиболее распространены испытания на чистый изгиб при симметричном цикле изменения напряжений; их проводят в следующем порядке.

В первом образце создают циклы напряжений, характеризуемые значениями а,тх = о; и ат," = стцНапряжение а принимают достаточно большим (немного меньшим предела прочности материала ег") для того, чтобы разрушение образца происходило после сравнительно небольшого числа циклов N. Результат испытания образца наносят на график в виде первой точки (рис. 100), абсцисса которой равна (в принятом масштабе) числу циклов вызвавших разрушение образца, а ордината — значению напряжения сг,.

Зависимость числа циклов разрушения от максимального напряжения.

Рис. 100. Зависимость числа циклов разрушения от максимального напряжения.

Затем другой образец испытывается до разрушения при напряжениях отахп и отт =-аи. Результат испытания отобразится следующей точкой. Продолжая испытания остальных образцов, уменьшая с каждым разом значения максимальных напряжений, получают ряд других точек. Соединяя полученные по данным опытов точки плавной кривой, строят так называемую кривую усталости (выносливости). Первым, кто разработал и провел систематические экспериментальные исследования на усталость, был немецкий ученый А. Веллер, поэтому кривую усталости в литературе обычно называют кривой Веллера.

Кривая усталости показывает зависимость числа циклов нагружений до разрушения от максимального напряжения, создаваемого в образце. Данная кривая характерна тем, что, начиная с некоторого напряжения, она идет практически горизонтально. Это означает, что при определенном напряжении образец может, не разрушаясь, выдержать бесконечно большое число циклов. Экспериментальные испытания стальных образцов показали, что если образец не разрушился до N = 10 7 циклов, то образец не разрушится и при более длительном испытании.

Предварительно задаваемая наибольшая продолжительность испытания на усталость называется базой испытаний. Для сталей обычно принято Nc = 2−10 6 циклов.

Для стальных образцов в обычных условиях база испытания равна 10 млн. циклов.

Введение

понятия базового числа циклов позволяет принять следующее определение.

Предел выносливости — это наибольшее по величине значение максимального напряжения цикла, при котором образец выдерживает без разрушения базовое число циклов.

Предел выносливости, определенный путем стандартных испытаний, является одной из механических характеристик материала.

Предел выносливости материала для различных видов нагружения можно определить по следующим эмпирическим формулам:

История развития изучения усталости материалов. Изучение физических причин усталостного разрушения материалов. Усталостная прочность материалов при повторно-переменном нагружении. Исследование усталостных разрушений в нефтегазовой промышленности.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 19.12.2019
Размер файла 334,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Оренбургский государственный университет

Коротков В. Г., д-р техн. наук, профессор,

Минькина Д.Д., Андреянов Т.Ю.

1. Что такое усталость материалов

Усталость материала - процесс постепенного накопления повреждений под действием переменных динамических нагрузок, приводящий к изменению свойств материала, образованию трещин, их развитию и разрушению материала за указанное время.

Усталостное разрушение - разрушение материала под действием повторнопеременных напряжений.

Выносливость - способность материала сопротивляться усталостному разрушению.

Предел выносливости (усталости) уR - наибольшее (предельное) напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклов.

2. Краткая история развития изучения усталости материалов

Вильгельм Альберт изучал обрывы цепей подъема железной шахты, возникающие в результате повторных небольших нагрузок. Его вывод заключался в том, что усталость не была связана с случайной перегрузкой, но зависела от нагрузки и количества повторений циклов нагрузки.

3. Механизм усталости

Физические причины усталостного разрушения материалов достаточно сложны и еще не до конца изучены. Одной из основных причин усталостного разрушения принято считать образование и развитие трещин.

Механизм усталостного разрушения во многом связан с неоднородностью реальной структуры материалов (различие размеров, очертаний, ориентации соседних зерен металла; наличие различных включений - шлаков, примесей; дефекты кристаллической решетки, дефекты поверхности материала - царапины, коррозия и т. д.). В связи с указанной неоднородностью при переменных напряжениях на границах отдельных включений и вблизи микроскопических пустот и различных дефектов возникает концентрация напряжений, которая приводит: к микропластическим деформациям сдвига некоторых зерен металла (при этом на поверхности зерен могут появляться полосы скольжения) и накоплению сдвигов (которое на некоторых материалах проявляется в виде микроскопических бугорков и впадинок - экструзий и интрузий); затем происходит развитие сдвигов в микротрещины, их рост и слияние; на последнем этапе появляется одна или несколько макротрещин, которая достаточно интенсивно развивается (растет).

Края трещины под действием переменной нагрузки притираются друг об друга, и поэтому зона роста трещины отличается гладкой (полированной) поверхностью. По мере роста трещины поперечное сечение детали все больше ослабляется, и наконец происходит внезапное хрупкое разрушение детали, при этом зона хрупкого долома имеет грубозернистую кристаллическую структуру (как при хрупком разрушении).

4. Основные виды усталости

Пороговая усталость - это такое состояние материала, при котором начинают появляться первые признаки необратимого неравномерно напряженного состояния.

Накопление усталости - это необратимый процесс (относительный) накопления неравновесно напряженного состояния, приводящего в дальнейшем к разрушению материала. Накопленную усталость, если она является не запредельной, можно устранить с помощью термической обработки детали.

Предельно допустимая усталость - такая степень неравновесно напряженного состояния, которая не является причиной его разрушения и которая может быть устранена при помощи термической обработки.

Критическая усталость - это такое неравновесно напряженное состояние материала, при котором он неспособен противодействовать разрушающей силе гораздо меньшей предела прочности этого материала

Полная усталость - это такое неравновесно напряженное состояние материала, при котором он способен к саморазрушению, или разрушается под воздействием незначительной внешней силы, то есть при полной 100% усталости материал разрушается даже без видимых причин.

Частичная усталость - это такое неравновесно напряженное состояние материала, при котором он еще способен оказывать значительное сопротивление внутренним напряжениям или внешней разрушающей силе. При частичной усталости материала может быть возвращен в исходное состояние путем термической обработки.

Локальная усталость - это усталость материалав отдельных локальных зонах.

Общая усталость - это усталость материала по всему объему детали.

Обратимая усталость - это такая величина неравновесно напряженного состояния, которая может быть уменьшена или полностью устранена за счет улучшающих обработок.

Остаточная усталость - это частично сохраненная напряженное состояние в материале после проведения термической обработки.

Термическая усталость - разрушение материала, постепенно развивающееся под действием многократно повторяющихся температурных напряжений.

Поверхностная усталость - это повреждение материала в результате повторных напряжений поверхностных и близко к ним расположенных слоев, если количество этих напряжений превышает предел выносливости материала. Усталость характеризуется удалением частиц металла с образованием раковин.

Ударная усталость - процесс накопления повреждений и развития трещин, вызванное повторными ударными нагрузками. Оценивают предел выносливости при ударном циклическом нагружении путем приложения к образцу многократных ударов или наложением периодических ударов на плавную гармоническую нагрузку.

Коррозионная усталость металла - разрушение металла под воздействием периодической динамической нагрузки (знакопеременных напряжений) и коррозионных сред. Коррозионная усталость металла сопровождается развитием межкристаллитных и транскристаллитных трещин (по границам зерен), которые разрушают металл изнутри.

Фреттинг-усталость -- процесс разрушение поверхностей деталей машин, проявляющееся в резко интенсифицированном окислении или схватывании. Значительная интенсификация окисления и схватывания вызвана динамическим характером нагружения, при котором на контакте резко увеличивается градиент деформаций и температур.

Она характеризуется возникновением повреждений на соприкасающихся номинально неподвижных поверхностях, совершающих небольшие периодические относительные смещения.

5. Усталостные кривые

Усталостная прочность материалов при повторно-переменном нагружении во многом зависит от характера изменения напряжений во времени.

Периодическая нагрузка - переменная нагрузка с установившимся во времени характером изменения, значения которой повторяются через определенный промежуток (период) времени.

Цикл напряжений - совокупность всех значений переменных напряжений за время одного периода изменения нагрузки. Цикл напряжений может описываться любым периодическим законом, чаще всего синусоидальным.

Однако прочность материала при циклическом нагружении зависит не от закона изменения напряжений во времени, а в основном от значений наибольшего (максимального, уmax) и наименьшего (уmin) напряжений в цикле.

Симметричный цикл - максимальное и минимальное напряжения равны по абсолютной величине и противоположны по знаку. ( уmax ? ?уmin, R=-1)

Асимметричный цикл - максимальное и минимальное напряжения не равны по абсолютной величине ( уmax ? ?уmin).

При этом асимметричный цикл может быть знакопеременным или знакопостоянным

В дополнение к уже известным нам механическим характеристикам материала, введем характеристики, связанные со спецификой циклического нагружения. Они могут быть определены путем специально поставленных экспериментов - испытаний на усталость (выносливость).

Схема простейшей машины для испытаний на усталость выглядит следующим образом: образец 1 устанавливается в патроне 2 машины, который вращается с определенной скоростью; на другом конце образца устанавливается подшипник 3, через который передается поперечная сила F, изгибающая образец. При вращении образца в его наружных волокнах будут возникать то растягивающие, то сжимающие напряжения (симметричный цикл). Такое циклическое нагружение приводит, в конце концов, к разрушению образца, после чего машина автоматически останавливается, а специальный счетчик фиксирует число циклов (число оборотов образца) до разрушения образца.

Обработка результатов усталостных испытаний обычно сопровождается построением кривой усталости. Кривую усталости строят по точкам в координатах: число циклов N - максимальное по модулю напряжение у = уmax или в координатах (у, lg N), (lg у, lg N).

Кривая усталости показывает, что с увеличением числа цикла максимальное напряжение, при котором происходит разрушение материала, значительно уменьшается. При этом для многих материалов, например углеродистой стали, можно установить такое наибольшее напряжение цикла, при котором образец не разрушается после любого числа циклов (горизонтальный участок диаграммы), называемое пределом выносливости (уR).

Так как испытания нельзя проводить бесконечно большое время, то число циклов ограничивают некоторым пределом, который называют базовым числом циклов. В этом случае, если образец выдерживает базовое число циклов, то считается, что напряжение в нем не выше предела выносливости.

Предел выносливости при асимметричном цикле

Испытания при симметричном цикле (при R= -1) оказываются наиболее простыми с точки зрения их реализации. Однако чтобы обеспечить корректность расчета, необходимы сведения о пределах выносливости для любой асимметрии цикла (т.к. в реальных конструкциях большинство деталей работает при асимметричном нагружении). В расчетной практике обычно пользуются двумя типами диаграмм: диаграммой предельных напряжений и диаграммой предельных амплитуд.

Диаграмма предельных напряжений (диаграмма Смита).

Диаграмма Смита строится, как минимум, по трем режимам нагружения (по трем точкам), для каждого из которых определяют предел выносливости уR: первый режим (точка 1) - обычный симметричный цикл нагружения (R=-1, уm=0, уmax=у-1, уmin=-у-1); второй режим (точка 2) - асимметричный цикл, как правило, отнулевой (R=0, уm= у0/2, уmax0, уmin=0); третий режим (точка 3) _простое статическое растяжение(R=1, уmaxminm= ув). Полученные точки соединяем плавной линией (1-2-3), ординаты точек которой соответствуют пределам выносливости материала при различных значениях коэффициента асимметрии цикла.

Луч, проходящий под углом в через начало координат диаграммы предельных напряжений, характеризует циклы с одинаковым коэффициентом асимметрии R:

Тогда, для определения предела выносливости при заданной асимметрии цикла R нужно по приведенной формуле вычислить величину угла в и провести луч под этим углом до пересечения с линией 1-2-3, ордината точки пересечения и даст нам искомый предел выносливости уR. Опуская перпендикуляр на ось абсцисс, найдем среднее напряжение цикла уm, а на пересечении перпендикуляра со второй ветвью диаграммы - минимальное напряжение уmin.

Диаграмма предельных амплитуд (диаграмма Хейга)

Диаграмма Хейга строится в координатах: среднее напряжение цикла уm - амплитуда цикла уa. При этом для ее построения необходимо провести усталостные испытания так же, как минимум, для трех режимов: 1-симметричный цикл нагружения(R= _1,уa=у-1, уm=0); 2 - отнуле-вой цикл (R=0, уam= у0/2); 3_статическое растяжение (R=1, уa=0, уm= ув). Соединяя экспериментальные точки (1, 2, 3) плавной кривой, получим график, характеризующий зависимость между значениями предельных амплитуд и значениями предельных средних напряжений в цикле.

Здесь также можем провести луч, характеризующий циклы с одинаковой асимметрией:

Тогда, для определения предела выносливости при заданной асимметрии цикла R нужно по приведенной формуле вычислить величину угла в и провести луч под этим углом до пересечения с линией 1-2-3, ордината точки пересечения даст нам величину предельной амплитуды уa и значение предельного среднего напряжения уm в цикле. Предел выносливости уR найдем в виде:

6. Усталостные разрушения в нефтегазовой промышленности

усталость материал нагружение разрушение

Разрушение зубчатой муфты центробежного компрессора, произошло после наработки 194000 часов. Номинальная частота вращения вала компрессора 8864 об/мин. При исследовании деталей разрушенной зубчатой муфты на фланцевом соединении муфты со стороны мультипликатора оставшиеся во фланце 7 болтов разрушены по зоне перехода резьбовой части к телу болта. Повреждения пяти оставшихся во фланце болтов имеют характер усталостного разрушения, на изломах этих болтов наблюдаются площадки, перпендикулярные к оси болта, где происходило зарождение усталостной трещины. Эти площадки переходят в зоны подрастания усталостной трещины (зона усталости) с гладкой полусферической поверхностью со следами наклепа и зоны последующего долома с крупнозернистым строением. Два оставшихся во фланце болта имеют излом, характерный для среза, которой произошел после усталостного разрушения других болтов и, соответственно, резкого уменьшения прочности фланцевого соединения зубчатой муфты со стороны мультипликатора. Зубчатая муфта со стороны мультипликатора имеет незначительные повреждения зубьев, а со стороны компрессора - все зубья шестерни и колеса повреждены. Это также подтверждает факт первоначального разрушения фланцевого соединения со стороны мультипликатора. При этом оставшийся без одной опоры промежуточный вал при своем вращении привел к полному разрушению зубчатой пары муфты со стороны компрессора. Причиной разрушения зубчатой муфты компрессора явились возникшие в процессе длительной эксплуатации усталостные трещины в металле болтов зубчатой муфты со стороны компрессора, развитие которых привело к долому этих болтов с последующим срезом остальных болтов фланцевого соединения муфты. Для исключения подобных инцидентов необходимо заменять болты зубчатой муфты через каждые 50 тысяч часов наработки.

7. Методы предотвращения усталостного разрушения

Проблема предотвращения усталостных разрушений весьма актуальна во всех отраслях машиностроения, особенно в таких, где аварии вследствие разрушения ответственных деталей ведут к катастрофическим последствиям (авиация, железнодорожный транспорт и т. д.).

Технологические методы обеспечения надежности и износостойкости поверхностей деталей узлов трения подразделяют на несколько групп: химико-термическая обработка, объемная и поверхностная закалка, электрохимическая обработка, напыление порошковых покрытий, ионно-плазменная обработка.

Целью химико-термической обработки (далее ХТО) является создание на стальной поверхности тонкого легированного слоя за счет диффузии извне легирующих элементов. К ХТО относят: цементирование, азотирование, борирование, насыщение хромом, никелем, цианирование (насыщение одновременно азотом и углеродом), борохромирование (одновременное насыщение бором и хромом), карбоборирование (одновременное насыщение углеродом и бором) и др. Толщина упрочненного слоя может превышать 2 мм. Химико-термическая обработка получила наибольшее распространение из-за простоты, доступности и высокой эффективности. Процесс протекает медленно: скорость науглероживания порядка 0,1 мм/ч. Однако, если повысить температуру до 950-980°С, процесс существенно ускоряется.

Поверхностная закалка - операция сопровождающая химико-термическую обработку, а также имеет и самостоятельное значение. Она применяется для образования твердого износостойкого слоя на поверхности деталей из средне- и высокоуглеродных сталей и некоторых чугунов. Ей предшествует объемная термообработка: нормализация или объемная закалка и высокий отпуск. Поверхностная закалка состоит из двух операций: нагрева поверхностного слоя и быстрого его охлаждения. Наиболее распространенным и эффективным является высокочастотный метод нагрева. К генератору высокой частоты подключается охлаждаемая катушка из нескольких витков. Внутри катушки возникает высокочастотное электромагнитное поле, в которое помещают деталь. Вследствие явления электромагнитной индукции в детали возникают вихревые токи (токи Фуко), которые текут лишь в тонком поверхностном слое, где и выделяется вся образующаяся теплота. Поверхностный слой разогревается до температуры закалки за очень короткое время, недостаточное для того, чтобы тепло распространилось вглубь детали. Затем нагретая поверхность резко охлаждается потоком жидкости (обычно воды).

Электрохимические покрытия. В современной технологии широко используется метод электролиза. Чаще всего применяются электролитическое хромирование, серебрение, нанесение покрытия из олова, свинца, цинка, индия и сплавов легкоплавких металлов. Вещества могут наноситься и как рабочие слои, и как элементы многослойных покрытий. Ведущим методом является хромирование с целью повышения износостойкости.

Ионно-плазменные методы весьма эффективны, но их применение требует высокого разрежения (они осуществляются в вакуумных камерах), поэтому они достаточно дорогостоящие и применяются лишь для весьма ответственных деталей, работающих при высоких температурах в условиях адгезионного и окислительного изнашивания. В условиях вакуума наносимый металл превращается в газ, пар, ионизированный пар и плазму, а затем в атмосфере реакционного или инертного газа оседает на поверхности детали.

1) Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990.

2) Коршунова Т.Е. Влияние термической обработки на структуру и свойства углеродистых сплавов. Владивосток: Изд-во ВГУЭС, 1995.

3) Кушнаренко В.М., Чирков Ю.А, Репях В.С., Ставишенко В.Г., УСТАЛОСТНЫЕ РАЗРУШЕНИЯ ДЕТАЛЕЙ НЕФТЕГАЗОВОГО ОБОРУДОВАНИЯ, М.: Вестник ОГУ, 2012 г., 279 с.

Первые наблюдения усталостного разрушения относятся к концу 18 века, когда у длительно эксплуатируемых дилижансов в Англии и почтовых карет во Франции неожиданно для инженерного мира стали хрупко ломаться оси, изготовленные из кованого железа, обладающего высокой пластичностью. Специалисты того времени объясняли это явление перерождением материала за счет его усталости в процессе длительной эксплуатации под действием переменных напряжений, возникающих из-за неровностей дороги. С тех пор термин "Усталость материалов", хотя не отражающий полностью сложные процессы, протекающих в металле под воздействием напряжений, переменных во времени, нашёл высокое распространение в инженерных методах расчёта надёжности элементов конструкций.

Первые систематические экспериментальные исследования сопротивления усталостному разрушению стальных образцов при действии переменных нагрузок были проведены немецким ученым А. Велером, который опубликовал результаты исследований в виде итоговых таблиц в 1870 г. Графическое представление этих результатов в виде кривых усталости впервые было осуществлено Л. Шпангенбергом в 1875 г., хотя в мировой практике эти кривые связываются только с именем А. Велера.

Интенсивное развитие исследования усталости материалов получили в 1945—1960-х годах в связи с усталостными поломками авиационных конструкций, прежде всего имевших катастрофические последствия. Тогда же были подробно исследованы закономерности рассеяния данных экспериментального определения предела выносливости и количества циклов до разрушения материалов и созданы методы их учёта при проектировании машин и конструкций, сформулированы основные представления о разрушении при малоцикловой нагрузке, развито новые подходы к оценке долговечности материалов и конструкций, когда за основу прогноза разрушения брали не напряжение, а деформацию, в частности её пластическую составляющую.

В 1961 году П. Перис предложил уравнение, которое связывает скорость развития усталостной трещины с величиной коэффициента интенсивности напряжений. На основе этих и других критериев механики разрушения выполнен значительный объём исследований, в результате чего установлены основные закономерности развития усталостных трещин с учётом всего комплекса факторов, имеющих место в условиях эксплуатации.

Усталость материалов и в настоящее время является одной из основных причин отказа деталей машин и элементов конструкции, подверженных действию напряжений, циклически изменяющихся во времени. В связи с этим для повышения ресурса и надежности подобных конструкций важное значение приобретают вопросы выбора материала, обоснования режимов технологии производства полуфабрикатов и деталей и организации контроля технологического процесса, обеспечивающие стабильное и высокое сопротивление элементов конструкций усталостному разрушению.

Решения проблемы повышения ресурса и надёжности машин обусловливает разработку и внедрение вероятностных методов расчёта на прочность при переменных напряжениях, учитывающих случайный характер действующих нагрузок и вариацию характеристик сопротивления усталости материалов и деталей.

Характеристики сопротивления усталостному разрушению материала и изделий определяются в результате испытаний на усталость образцов, моделей, натурных деталей и конструкций в целом, что требует больших материальных затрат и весьма длительного времени, которого, как правило, не хватает конструктору на стадии проектирования и доводки конструкции. В связи с этим ученые многих стран ведут поиски расчётных (косвенных) методов оценки характеристик сопротивления усталостному разрушению и методов ускоренных и форсированных испытаний на усталость.

1. УСТАЛОСТНОЕ РАЗРУШЕНИЕ

Усталостное разрушение – разрушение материала под действием повторно-переменных напряжений.

Усталость материала – постепенное накопление повреждений в материале под действием переменных напряжений, приводящих к образованию трещин в материале и разрушению.

Выносливость – способность материала сопротивляться усталостному разрушению.

1.1. Разновидности усталости

Когда величины нагрузок и перемещений такие, что разрушение происходит более чем через 10 000 циклов, явление обычно называется многоцикловой усталостью. Когда же величины нагрузок и перемещений такие, что разрушение происходит меньше чем за 10 000 циклов, явление называется малоцикловой усталостью .

Когда циклические нагрузки и деформации возникают в деталях в результате действия циклически переменного температурного поля, явление обычно называется термической усталостью.

Разрушения, носящее название поверхностная усталость, обычно происходит при наличии вращающихся контактирующих поверхностей. Проявляется оно в виде питтинга , растрескивания и крошения контактирующих поверхностей в результате действия контактных напряжений, под влиянием которых на небольшой глубине у поверхности возникают максимальные по величине циклические касательные напряжения. Эти напряжения приводят к возникновению трещин, выходящих на поверхность, при этом некоторые частицы материала отделяются. Это явление часто может рассматриваться как разновидность износа .

Фреттинг-усталость — процесс накопления повреждений и срабатывание материалов поверхностей, контактирующих и совершающих колебательные относительные перемещения с малой амплитудой под действием циклической нагрузки, которое вызывает переменные деформации сдвига поверхностных слоёв, схватывания и отделения частиц, появление оксидов , ускоренное образование трещин , и разрушения объекта. Поверхностные повреждения и микротрещины, появляющиеся в результате фреттинга играют роль зародышей усталостных трещин, в результате роста которых усталостное разрушение происходит при таких нагрузках, которые в других условиях не вызывали бы разрушения.

Ударная усталость наблюдается, когда разрушение происходит при повторном воздействии ударных нагрузок вследствие образования и распространения усталостных трещин.

Коррозионная усталость представляет собой сложный вид разрушения, при котором совместно сказываются неблагоприятные эффекты коррозии и знакопеременного нагрузки, приводящие к разрушению. В процессе коррозии на поверхности металла часто образуются ямки, которые становятся концентраторами напряжений. В результате концентрации напряжений процесс усталостного разрушения ускоряется. Кроме того, трещины в хрупком слое продуктов коррозии служат зародышами усталостных трещин, распространяющихся в основной металл. С другой стороны, в результате действия циклических напряжений или деформаций происходит растрескивание и отслаивание продуктов коррозии, то есть открывается доступ коррозионной среды к новым слоям металла. Таким образом, оба процесса ускоряют друг друга, и опасность разрушения возрастает.

1.2. Характеристики усталости материала

Номинальные значения максимальных напряжений в условиях переменного нагружения меньше предела прочности и в основном меньше предела текучести материала.

Свойство материала работать в условиях циклических нагрузок характеризуется границей выносливости — максимальным по абсолютному значению напряжением цикла, при котором ещё не происходит разрушения от усталости в течение заданного количества циклов нагружения, которую называют базой испытаний. Её величина зависит от структуры и дефектов материала, технологии изготовления и обработки, состояния поверхности, среды и температуры испытаний, концентрации напряжений, размеров образца, режима приложения нагрузки и так далее, и может изменяться (при самых неблагоприятных условиях уменьшаться в 5-10 раз по сравнению с пределом прочности материала). Эти особенности вызывают значительные сложности при проектировании машин и конструкций в связи с необходимостью исключения их усталостных поломок.

Способность материала противостоять разрушению при напряжениях, переменных во времени, называется выносливостью.

Основные характеристики сопротивления усталости определяют из кривой усталости, характеризующей зависимость между максимальными напряжениями или амплитудами цикла и циклической долговечностью образцов. Графическое представление полученной зависимости между амплитудами напряжений цикла и числом циклов до разрушения называют кривой усталости или диаграммой (кривой) Веллера.


В общем кривую усталости, которая описывает зависимость между максимальными напряжениями и количеством циклов до разрушения, можно разделить на три участка. На участке I разрушения происходит в результате направленной пластической деформации до величины предельной деформации, которая примерно равна предельной деформации при статической нагрузке. На участке II разрушение происходит после относительно небольшого количества циклов нагрузки и рост усталостной трещины сопровождается существенными пластическими деформациями. Такой вид разрушения называется разрушением от малоцикловой усталости. На участках II и III разрушение происходит вследствие зарождения и развития усталостной трещины. На изломе, как правило, можно выделить два участка: мелковолокнистого строения, которая характерна для роста усталостной трещины и крупнозернистый участок окончательного разрушения.

На участке III материал разрушается после большого количества циклов нагрузки незначительной амплитуды. В связи с этим участок II называют участком малоцикловой усталости; III — участком многоцикловой усталости, или просто усталости.

Под циклической долговечностью понимают количество циклов напряжений или деформации, выдерживающих объектом при нагрузке до предельного состояния (образование усталостной трещины определённой длины или полного разрушения).

Если приложения нагрузок к материалу носит периодический характер, то совокупность всех значений напряжений, возникающих в материале называют циклом напряжений .

На сопротивление усталости в основном влияют минимальные и максимальные напряжения цикла и амплитуда цикла напряжений . Отношение минимального напряжения цикла к максимальному с учётом знаков напряжений называется — коэффициент асимметрии цикла.

Кроме свойств материала, на усталостную прочность оказывают влияние следующие факторы:

2. масштабный фактор, то есть влияние абсолютных размеров детали (чем больше размеры детали, тем ниже усталостная прочность);

3. качество обработки поверхности (с уменьшением шероховатости поверхности детали растет усталостная прочность);

4. эксплуатационные факторы (температура, коррозия, частота нагружения, радиационное облучение и т.д.);

5. наличие поверхностного слоя, упрочненного различными технологическими методами.

1.3. Испытания на усталость

Испытания на усталость — испытание на действие циклической нагрузки объекта для определения характеристик сопротивления усталости.

При испытании на усталость, определяют предел выносливости . Для определения предела выносливости строят кривые усталости. При этом испытывают не менее десяти образцов для одного уровня нагрузки. Кривые усталости строят в полулогарифмических или логарифмических координатах.

Существуют различные схемы испытаний: изгиб, кручение, растяжение, сжатие. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении цилиндрического образца, при котором один изгибающий цикл соответствует одному обороту.

1.4. Подходы к изучению усталости

Проблему усталости материалов изучают специалисты в области механики, физики, химии, инженерных наук и тому подобное. Их исследования направлены как на изучение природы усталостного разрушения материалов и построение соответствующих теорий, так и на создание методов проектирования машин и конструкций, исключающих появление их поломок от усталости в процессе эксплуатации.


  • Методы, основанные на напряжениях ( многоцикловая усталость — усталость материала, при которой усталостное разрушения происходит без заметного накопления деформаций, главным образом за упругой деформации).

  • Методы, основанные на деформациях ( малоцикловая усталость — это усталость материала, при которой усталостное разрушение происходит в основном при упруго-пластическом деформировании).

  • Методы, основанные на энергии деформации.

  • Методы, основанные на коэффициенте интенсивности напряжений ( механика разрушения ).

Основным методом предотвращения усталостного разрушения является модификация конструкции механизма с целью исключения циклических нагрузок, либо замена материалов на менее склонные к усталостному разрушению. Значительное увеличение выносливости даёт химико-термическая обработка металлов , например, поверхностное азотирование .

Газотермическое напыление , особенно высокоскоростное газопламенное напыление , создаёт напряжение сжатия в покрытии материала и способствует снижению склонности деталей к усталостному разрушению.

Термин “усталость” в большинстве случаев используют для описания потери рабочих качеств или способности к функционированию после длительной работы без перерыва. Иногда он относится к временному режиму так, что прочность восстанавливается после некоторого перерыва в работе. Он, также, может применяться к долговременным состояниям, в которых прочность не восстанавливается никогда. Непосредственное влияние может казаться безобидным, но если деформирование повторяется все время, то рабочие качества снижаются и, в конце концов, могут быть полностью утрачены.

Усталость в металлах относится к явлениям последнего вида. Это процесс, который является необратимым и который может, в конечном счете, привести к разрушениям, таким как сломанные железнодорожные рельсы, потерянные зубья в шестернях, треснутый вал двигателя вертолета, негерметичность корабельного дна и т.д. Для того чтобы случилась авария, нет необходимости в чрезвычайно сложных условиях, ранее конструкции могли выдержать и большие нагрузки. Однако обычным свойством конструкция является то, что они могут находиться в эксплуатации значительную часть их проектного ресурса. Таким образом, они повторно подвергаются внешнему воздействию, день за днем, год за годом. Каждый период воздействия вносит незначительный, но необратимый вклад в процесс усталости. Это может случиться, если даже все вызванные внешней нагрузкой напряжения, несомненно, находятся в линейной, упругой области, намного ниже предела прочности материала.

Основными внешними воздействиями, которые ведут к усталостному разрушению, являются циклические, т.е. периодические силы, они вносят соответствующие компоненты внутренних циклических напряжений. Силы такого рода изначально присутствуют во вращающихся механизмах, используемых в автомобилях и станках.

СПИСОК ЛИТЕРАТУРЫ
1. Дарков А.В., Шпиро Г.С. Сопротивление материалов. – М.: Высшая школа. 1995.- 662 с.

2. Когаев В.П., Дроздов Ю.Н. Прочность и износостойкость деталей машин. – М.: Высшая школа, 1991. – 320 с.

3. Панасюк В. В. и др. Механика разрушения и прочность материалов. Т. 4. Усталость и циклическая трещиностойкость конструкционных материалов. — М .: Наукова думка, 1990. — 679 с

4. Писаренко Г. С. , А. Л. Цветок, Е. С. Уманский. Сопротивление материалов. Учебник / — М .: Высшая школа, 1993. — 655 с.

5. Трощенко В. Т. деформирования и разрушение металлов при многоцикловом нагружении. — К .: Наук, мысль, 1981. — 344 с.

Изменение состояния материала при усталостном процессе отражается на его механич. св-вах, макроструктуре, микроструктуре и субструктуре. Эти изменения протекают по стадиям и зависят от исходных св-в, вида напряжённого состояния, истории нагружения и влияния среды. На определённой стадии начинаются необратимые явления снижения сопротивления материала разрушению, характеризуемые как усталостное повреждение. Сначала в структурных составляющих материала и по границам их сопряжения (зёрна поликрист. металла, волокна и матрица композитов, мол. цепи полимеров) образуются микротрещины, к-рые на дальнейших стадиях перерастают в макротрещины либо приводят к окончат. разрушению элемента конструкции или образца для механич. испытаний.

Количественно усталостный процесс описывается зависимостью между накопленным повреждением и числом циклов или длительностью нагружения по параметру величины циклич. напряжений или деформаций. Соответствующая зависимость между числом циклов и стадией повреждения (в т. ч. возникновением трещины или окончат. повреждением) наз. кривой усталости. Эта кривая — осн. хар-ка У. м. Накопление циклич. повреждения отражает деформирование материала как макро- и микронеоднородной среды (для металлов — поликрист. конгломерат, для полимеров — конгломерат мол. цепей, для композитов — регулярное строение из матрицы и волокон). Циклич. нагружение таких неоднородных структур порождает в наиболее напряжённых структурных звеньях необратимые деформации (упругопластические, вязкоупругие), накапливающиеся с нарастанием числа циклов и длительности пребывания под циклич. нагрузкой. Их увеличение до критич. значений, свойственных материалу и среде, в к-рой он находится, приводит к зарождению макротрещины как предельного состояния на первой стадии усталостного разрушения. Кинетика изменения состояния материала на этой стадии проявляется субмикроскопически в изменении плотности дислокаций и концентрации вакансий; микроскопически — в образовании линий скольжения, остаточных микронапряжений, искажении микрогеометрии свободной поверхности; механически — в изменении твёрдости, параметров петли упругопластич. гистерезиса, циклич. модуля упругости, а также макрофиз. св-в (электрич., магн. и акустич. сопротивлений, плотности). На второй стадии усталостного разрушения накопление повреждения оценивается скоростью прорастания макротрещины и уменьшением сопротивления материала статическому (квазихрупкому или хрупкому) разрушению, определяемому изменением статич. прочности, в т. ч. хар-ками вязкости разрушения как критич. значениями интенсивностей напряжений у края усталостной трещины.

На сопротивление У. м. существенно влияет активная среда и повышенная темп-ра; при этом на разрушение оказывает влияние как число циклов, так и длительность нагружения. Сопротивление У. м. уменьшается с увеличением загрязнённости неметаллич. включениями, неравномерности распределения легирующих элементов, с укрупнением зерна, а также при повреждении поверхности. Сопротивление У. м. увеличивается при обработке поверхности, повышающей прочность и остаточную напряжённость сжатия поверхностного слоя (химико-термич. обработка, наклёп, поверхностная закалка). Т. к. усталостные разрушения зарождаются в области структурных несовершенств, а последние обычно распределяются случайным образом, то хар-кам У. м. (числам циклов и разрушающим напряжениям) свойственно распределение, подчиняющееся вероятностным закономерностям. Испытания на У. м. производятся на машинах, позволяющих создавать циклич. нагружение в широком диапазоне частот и напряжённых состояний[1].

Читайте также: