Реферат на тему наследование признаков

Обновлено: 05.07.2024

Наследственность человека ( реферат , курсовая , диплом , контрольная )

Наследственность человека это определенная информация, которая заложена в человеке с самого рождения. Она обуславливается наличием в генотипе доминантных или рецессивных генов. Доминантными признаками являются курчавые волосы, карие глаза, раннее облысение, веснушки и т. д. Рецессивными же признаками, напротив, являются прямые волосы, голубые или серые глаза, рыжие волосы. Наследственность человека может нести как положительные качества, так и отрицательные. К положительным можно отнести удовлетворительное здоровье, хорошие умственные способности, наклонности к искусству или технике. А к отрицательным, пожалуй, различные наследственные болезни, как правило, неизлечимые. Главной причиной наследственных заболеваний является нарушение структуры хромосом, изменение их числа в генотипе как результат мутации. На наследственность главным образом влияют такие факторы как состояние окружающей среды, наличие вредных привычек. Чтобы предотвратить развитие плохой наследственности и повлиять на ее положительный ход, нужна профилактика. Она включает в себя естественно отказ от вредных привычек, здоровый образ жизни, потребление в пищу экологически чистой продукции. И еще немаловажно перед вступлением в брак посетить медико — генетические консультации.

Наследственность человека

Причиной схожести между кровными родственниками является наследственность. Определенные свойства и особенности не только всего рода или расы, но и отдельных индивидуумов закономерно наследуются потомками. Носителями наследственных свойств являются хромосомы. Они входят в состав всех соматических клеток (кроме не имеющих клеточного ядра красных клеток крови).

Подобным же образом возникают и другие наследственные свойства. Несмотря на почти заслуживающее упрека весьма упрощенное изложение принципов действия механизмов этого сложного процесса, наличие общего представления о них позволяет понять и причины возникновения различий между братьями и сестрами в одной семье, при наличии у них одних и тех же родителей. Большое количество генов (а по подсчетам их более 50 000) позволяет осуществляться большому количеству комбинационных возможностей.

Схематическое изображение усвоения признаков наследственности поясняет принцип распределения наследственных свойств у последующего поколения.

Эта закономерность была отмечена еще монахом Грегором Менделем. В вопросах наследственности человека следует учитывать различие степени сложности процессов, а также взаимное влияние всех факторов. В настоящее время учение о механизмах наследственности человека (генетика) превратилось в самостоятельную научную дисциплину. В ее задачи входит выяснение причин и условий возникновения наследственных заболеваний, определение наносимого ими ущерба здоровью, разработка методов ранней диагностики и целенаправленного воздействия на них, и, в конечном итоге, информирование родителей, желающих, несмотря на такие заболевания, иметь детей, о степени риска для их потомства.

X (только хромосома X): синдром Ульриха-Тернера (нарушение развития и половых функций женского организма);

XXY: синдром Кляйнфельтера (бесплодие, евнуховидное телосложение и пр.);

XYY: синдром XYY: формирование мужского типа;

XXX: сверхсамка;

XXXY: тройной X-Y-синдром: несмотря на доминирующие Х-хромосомы формируется мужской тип (бесплодие) и т. д.

Наряду с неправильным числом хромосом, причиной нарушений функционирования механизма наследственности могут быть повреждения самих хромосом (разрывы, перекручивания, нарушения положения, мутации). По данным последних исследований, генетические отклонения являются причиной или способствующим фактором около 2000 болезней.

Наследственные болезни

К распространенным наследственным болезням относятся, например, следующие:

Дальтонизм (отсутствие восприятия красного и зеленого цветов): поражает преимущественно мужской пол.

Синдром Харлера, синдром Хантера: болезнетворное накопление клетками организма углеводоподобных веществ (мукополисахаридов).

Нейрофиброматоз: образование заметных узловатых утолщений в подкожной клетчатке.

Метгемоглобинемия: аномалии состава и функций гемоглобина.

Фенилкетонурия: этот врожденный недуг приобрел особое значение, т.к. стал как бы моделью для борьбы с наследственным нарушением обмена веществ. Из-за отсутствия фермента фенилаланингидроксилазы нарушается регулярность расщепления аминокислоты фенилаланина, что вызывает накопление фенилаланина и продукта его распада — фенилбензовиноградной кислоты. Данные вещества препятствуют обмену веществ нервных клеток, следствием чего может быть тяжелое нарушение умственного развития (бензовинограднокислотное слабоумие или болезнь Фёллинга).

При своевременном обнаружении этой болезни за счет специальной фенилаланиновой диеты можно обеспечить нормальное развитие новорожденного вплоть до достижения им зрелого возраста. В ГДР у всех новорожденных берется проба крови (проба Гутри), что позволяет своевременно обнаружить данную болезнь приблизительно у одного новорожденного на 9000 человек).

Особое значение для медицины имеет вопрос о том, вызваны ли такие распространенные заболевания как рак, диабет, гипертония и т. д. наследственными факторами? Если для рака, по крайней мере в его распространенных и опасных формах, наследственный фактор в большинстве случаев исключается, то сахарный диабет и другие заболевания передают по наследству предрасположенность к ним или возникают в период внутриутробного развития. Последующее фактическое проявление болезни зависит от уклада жизни, других заболеваний, окружающей среды [19, "https://referat.bookap.info"].

Значение знаний о наследственности человека

К тому же люди усугубляют и без того достаточно драматичную ситуацию ещё и курением, а в силу профессиональной специфичности вынуждены работать в условиях повышенной запылённости (в шахтах, мукомольной, деревообрабатывающей промышленности). Пример: при подробном изучении больных с ранней эмфиземой лёгких подмечено, что все они жили или долгое время работали в условиях повышенной запылённости. Но главное в их крови обнаружена недостаточность одного из белков. Именно с этой наследственной особенностью связана болезненная реакция, приводящая к расширению альвеол лёгких, истончению и гибели сосудов в них, что само по себе чревато постепенным снижением газообменной функции. Медицине известны и весьма курьёзные случаи экогенетических реакций, например, на вещества, которые у большинства из нас с положительными эмоциями. У некоторых людей (все они носители мутаций) шоколад и определённые сорта сыра вызывают тяжелейшую мигрень. Что же касается курения, то необходимо ещё упомянуть о том, что имеются наследственные различия в обмене или превращении никотина, которые, как оказалось, реализуются в виде рака мочевого пузыря. Итак, обобщая всё ранее сказанное, — следует заметить, что очень важно знать о наследственности человека. Зная свою наследственность, каждый человек будет знать что ему вредно и что полезно. Очень важно вести здоровый образ жизни: закаливаться, заниматься спортом, отказаться от вредных привычек; особенно людям с наследственными болезнями — ведь именно на них в большей степени отрицательно влияют загрязнения окружающей среды и различные аллергены.

Методы изучения наследственности человека

К основным методам изучения наследственности человека относятся.

2. Цитогенетический метод (цито — это клетка). Цитогенетическим методом под световым микроскопом, применяя специальные методики окрашивания, изучают хромосомы различных клеток человека.

Материалом для цитогенетических исследований могут быть клетки периферической крови, например, лимфоциты, клетки кожи (фибробласты), клетки, полученные из амниотической жидкости плода и др. Медики изучают особенности кариотипа больного человека. Кариотип — это совокупность хромосом клетки. У человека 46 хромосом, 23 пары гомологичных хромосом. Если число хромосом меняется хотя бы на одну хромосому в сторону уменьшения или увеличения — это признак серьезного генетического заболевания. Каждая пара хромосом человека имеет определенную форму, характеризуется расположением центромеры, окраской, длиной плеч. При различных заболеваниях эти внешние признаки строения хромосом могут меняться и служат критерием для постановки раннего диагноза заболевания. Это особенно важно, когда исследуются клетки, взятые из амниотической жидкости беременной женщины, что позволяет еще до рождения ребенка установить наследственную патологию и назначить нужное лечение.

Для окраски хромосом чаще всего используют краситель Романовского — Гимзы, 2%-ный ацеткармин или 2%-ный ацетарсеин (название красителей). Они окрашивают хромосомы целиком, равномерно и могут быть использованы для выявления численных аномалий хромосом человека (45, 47 и т. д. ).

Для получения детальной картины структуры хромосом используют различные способы дифференциального окрашивания. В G-методе по длине хромосомы выявляется ряд окрашенных и неокрашенных полос. Чередование полос и их размеры строго индивидуальны и постоянны для каждой пары гомологичных хромосом, поэтому по дифференциальной окраске можно легко определить, к какой паре относится хромосома, если даже пары сходны между собой по размерам и форме. При различной патологии рисунок специфической исчерченности также меняется, что служит важным диагностическим критерием (рис. 6).

Много наследственных заболеваний сцеплены с половыми хромосомами. Половой хроматин определяют анализом эпителиальных клеток в соскобе слизистой оболочки щеки человека. У женщин вторая Х-хромосома обнаруживается в виде округлого характерного пятнышка в ядре клетки, ее называют тельцем Барра. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании — синдроме Шерешевского — Тернера.

3. Биохимические методы позволяют выявить изменения в обмене веществ, для уточнения диагноза заболевания. Заболевания, в основе которых лежат нарушения обмена веществ, составляют значительную часть наследственных заболеваний, так как изменения, которые происходят на уровне генов, не могут не повлечь за собой нарушения синтеза различных белков, принимающих важное участие в регуляции при дифференциальной окраске процессов жизнедеятельности.

4. Близнецовый метод позволяет оценить относительную роль среды и генетических факторов в развитии конкретного признака или заболевания. Особенно большой интерес для науки представляет изучение близнецовых пар однояйцовых, т. е. монозиготных близнецов, которые были разлучены в детстве и воспитывались в разных семьях, в разных условиях. Поскольку у таких людей набор хромосом полностью одинаков, на развитие конкретного признака или заболевания будут влиять именно различия в окружающей среде. Эти исследования показали, что далеко не все наследственные заболевания обязательно проявляются у конкретного человека, на их развитие большое влияние оказывает образ жизни самого человека, т. е. окружающая среда, например для таких наследственных болезней как сахарный диабет или шизофрения. Близнецовый метод применяется и для изучения дизиготных, разнояйцовых братьев и сестер, которые хотя и имеют различные генотипы, но при этом обладают большим сходством, так как несут гены одной супружеской пары.

5. Популяционно-генетический метод дает возможность рассчитать частоту нормальных и патологических генотипов в популяции: гетерозигот, гомозигот доминантных и рецессивных, а также частоту нормальных и патологических фенотипов. Это метод медицинской статистики. Следует помнить, что наследственные заболевания распределены по различным регионам земного шара, среди различных рас и народностей неравномерно. Знание частоты заболеваний в данном регионе способствует правильной организации профилактических мероприятий.

6. Методы пренатальной (внутриутробной, до рождения человека) диагностики представляют собой совокупность исследований, позволяющих обнаружить заболевание до рождения ребенка. К основным методам пренатальной диагностики относятся ультразвуковое обследование, биопсия (взятие небольшого кусочка ткани из органа или какой-либо части тела для микроскопического исследования), хориона (наружная оболочка плода) и многие другие.

7. Метод моделирования изучает болезни человека на животных, которые могут болеть этими заболеваниями. В основе лежит закон Вавилова о гомологичных рядах наследственной изменчивости, например, гемофилию, сцепленную с полом, можно изучать на собаках, эпилепсию — на кроликах, сахарный диабет, мышечную дистрофию — на крысах, незаращение губы и неба — на мышах.

8. Генетика соматических клеток изучает наследственность и изменчивость соматических клеток, т. е. клеток тела, не половых. Соматические клетки имеют весь набор генетической информации, на них можно изучать генетические особенности целостного организма.

Соматические клетки человека получают для генетических исследований из материала биопсий (прижизненное иссечение тканей или органов), когда для исследования берется небольшой кусочек ткани. Как правило, это делается во время операций, когда надо установить имеет ли данное образование, например, опухоль, злокачественную или доброкачественную природу.

В настоящее время применяют следующие методы генетики соматических клеток: простое культивирование, гибридизация, клонирование и селекция. Простое культивирование — это размножение клеток на питательных средах, чтобы получить их в достаточном количестве, для цитогенетического, биохимического, иммунологического и других методов.

При гибридизации соматических клеток можно скрещивать клетки, полученные от разных людей, а также клетки человека с клетками мыши, крысы, морской свинки, обезьяны и других животных. Такие исследования позволяют установить группы сцепления, а используя хромосомные перестройки выявлять последовательность расположения генов и строить генетические карты хромосом человека.

Клонирование — это получение потомства одной клетки (клона). Все клетки в результате клонирования будут одинакового генотипа.

Селекция — это отбор клеток с заранее заданными свойствами. Затем проводится выращивание и размножение этих клеток на специальных питательных средах. Например, можно использовать питательную среду без лактозы, но с добавлением других сахаров, и из большого числа клеток, помещенных в нее, могут оказаться несколько, способных жить в отсутствии лактозы. Потом из таких клеток получают клон.

наследственность гемофилия доминантный дальтонизм

Список использованной литературы

1. Ауэрбах Ш. Наследственность. — М., 1969

2. Берг Л. и Давыденков С. Н. Наследственность и наследственные болезни человека. — М., 1971.

3. Левонтин Р. Человеческая индивидуальность: наследственность и среда. — М., 1993 г.

4. Конюхов Б. В. и Пашин Ю. В. Наследственность человека. — М., 1971

5. Соколов Н. П. Наследственные болезни человека. — М., 1965

6. Тарасова Н. Д. и Лушанова Г. Н. Что вы знаете о своей наследственности?. — М., 2001.

Название работы: Закономерности наследование признаков человека

Предметная область: Биология и генетика

Описание: Закономерности наследование признаков человека Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1866 году Опыты над растительными гибридами. Статья не привлекла внимания .

Дата добавления: 2013-01-07

Размер файла: 33.83 KB

Работу скачали: 158 чел.

Закономерности наследование признаков человека

Наследственность – это свойство организма воспроизводить себе подобное, преемственность в поколениях.

Наследование – процесс передачи генетической информации от одного поколения к другому.

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридного. После анализа результатов скрещивания гороха, Г. Мендель сформулировал основные закономерности наследования признаков:

  1. Закон доминирования или закон единообразия гибридов первого поколения. При скрещивании особей отличающихся друг от друга одному признаку, в первом поколении гибридов получаются потомки, схожие только с одним из родителей. Соответствующий признак другого родителя не проявляется. Проявившийся в первом поколении гибридов признак называется доминантным, а непроявившийся – рецессивным.
  2. Закон расщепления гибридов 2-го поколения описывает появление во втором поколении гибридов особей с доминантными и рецессивными признаками в соотношении 3:1. Введены буквенные символы: Р – родительские организмы, F 1 – первое поколение гибридов, F 2 – второе поколение, полученное от скрещивания особей первого поколения между собой. А – доминантный признак, а - рецессивный признак, или ген. Соответствующие друг другу гены называются аллельными. Аллель – одна из двух и более альтернативных форм гена, имеющая определенную локализацию в хромосоме и уникальную последовательность нуклеотидов. Организмы, имеющие либо два доминантных (АА), либо два рецессивных (аа) аллеля, называются гомозиготными. Всё их потомство ( F 1) будет нести как ген доминантного, так и ген рецессивного признака, т.е. будет гетерозиготным.

Генотипом называют совокупность генов, характеризующую данный организм.

Фенотип – это совокупность признаков, проявляющихся в результате действия генов в определенных условиях среды.

Дигибридным называется скрещивание, отличающееся по двум (или нескольким) разным признакам.

  1. Закон независимого наследования признаков : при дигибридных и полигибридных скрещиваниях гибридов каждая пара признаков наследуется независимо друг от друга и может независимо комбинироваться с другими признаками.

Менделирование – наследование определенного признака (болезни) в соответствии с законами Г. Менделя. Менделирующими признаками называют те, наследование которых происходит по закономерностям, установленным Г. Менделем. Менделевские законы справедливы для аутосомных генов. Если гены локализованы в половых хромосомах, или в одной хромосоме сцепленно, то результаты скрещивания не будут следовать законам Г. Менделя.

Типы наследования менделирующих признаков человека.

Гены, локализованные в половых хромосомах, по-разному распределяются у мужчин и женщин. В клинической практике значение имеют Х-сцепленные заболевания, т.е. такие, когда патологический ген расположен на Х-хромосоме. Учитывая то, что у женщин имеются две Х-хромосомы, а мужчин одна, женщина, унаследовав патологический аллель, будет гетерозиготой, а мужчина – гемизиготой. Этим определяется разновидности Х-сцепленного наследования: доминантное и рецессивное.

Основные признаки Х-сцепленного доминантного типа наследования:

  1. болезнь встречается у мужчин и женщин, но у женщин примерно в 2 раза чаще;
  2. больной мужчина передаёт мутантный аллель всем своим дочерям и не передаёт сыновьям, поскольку последние получают от отца У-хромосому;
  3. больные женщины передают мутантный аллель 50% своих детей независимо от пола;
  4. женщины в случае болезни страдают менее тяжело (они гетерозиготны), чем мужчины, являющиеся гемизиготами.

Основные признаки Х-сцепленного рецессивного типа наследования

  1. заболевание встречается в основном у лиц мужского пола;
  2. признак (заболевание) передаётся от больного отца через его фенотипически здоровых дочерей половине его внуков;
  3. заболевание никогда не передаётся от отца к сыну;
  4. у женщин-носителей иногда выявляются субклинические признаки патологии;
  5. в браке женщины-носительницы с больным мужчиной 50% дочерей будут больны, 50% дочерей будут носителями; 50% сыновей также будут больны, а 50% сыновей – здоровые.

У-сцепленное, или голандрическое, наследование.

В настоящее время в У-хромосоме выявлена локализация около 20 генов, отвечающих за сперматогенез, интенсивность роста и другие признаки. Признак, гены которого локализованы в У-хромосоме, передаётся от отца всем мальчикам и только мальчикам.

Если два разных гена находятся в одной и той же хромосоме, наблюдается сцепление генов, что и обуславливает совместную передачу этих генов потомству. Сцепление генов является следствием физической целостности структуры, несущей гены. Такой структурой является хромосомы. Правильное объяснение явлению сцепления генов дали американские исследователи Т. Морган и его сотрудники в 1910 году.

Основные положения хромосомной теории наследственности (Т. Морган и его сотрудники).

  1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов в каждой из негомологичных хромосом уникален.
  2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).
  3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцепленно) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.
  4. Сцепление не абсолютно, т.к. в профазе мейоза может происходить кроссинговер. Дело в том, что во время мейоза при конъюгации хромосом происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление и есть кроссинговер. Он может произойти в любом участке гомологичных хромосом. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления, и наоборот. Расстояние между хромосомами измеряется в % кроссинговера. 1% кроссинговера, или сантиморганида, - это расстояние между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы.

Принцип построения генетических карт хромосом разработала школа

Т. Моргана в 1911-1914 г.г.

Генетическая карта хромосомы – это отрезок прямой, на котором обозначен порядок расположения генов и указано расстояние между ними в процентах кроссинговера.

Генетическим маркером для составления карты может быть любой наследуемый признак – цвет глаз или длина отрезков ДНК. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения. Самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов.

У женщин 22 пары аутосом и две одинаковые половые хромосомы ХХ.

У мужчин 22 пары аутосом и половые хромосомы Х и У (неодинаковые). В процессе мейоза каждая из пары гомологичных хромосом уходит в разные гаметы. Так как у женщин 23 пары гомологичных хромосом, то во все гаметы попадает 22 аутосомы и одна Х-хромосома (гаметы одинаковы), поэтому женский пол гомогаметный.

У мужчин образуется два типа гамет: 22+Х и 22+У, поэтому мужской пол гетерогаметный. Вероятность рождения девочек так же, как и мальчиков, составляет 50%.

Пол будущего ребёнка определяется сочетанием половых хромосом в момент оплодотворения. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, то рождается девочка, а если яйцеклетку оплодотворяет сперматозоид с У-хромосомой, то рождается мальчик.

Медико-профилактический факультет
Кафедра: Медицинской биологии и генетики

Екатеринбург, 2012
СОДЕРЖАНИЕ
Введение 3
Глава 1. Закономерности наследования по Г. Менделю 4
1.1 Биография Грегора Иоганна Менделя 4
1.2 Моногибридное и дигибридноескрещивание 5
1.3 Менделирующие признаки человека 8
Глава 2. Взаимодействие аллельных и неаллельных генов 9
1.1 Биография Николая Владимировича Тимофеева-Ресовского 9
1.2 Биография Михаила Ефимовича Лобашева 91.3 Взаимодействие аллельных генов 10
1.4 Взаимодействие неаллельных генов 11
1.5 Пенетрантность и экспрессивность 12
1.6 Эффект положения и модифицирующее действие генов 131.7 Генокопии и фенокопии 13
Заключение 14
Список литературы 15

В процессе эволюционного развития формы жизниперетерпели кардинальные изменения, однако принципы организации и функционирования генома сохранились – это то общее, что объединяет всех нас – от простейших проявлений форм жизни до человека.
Как и любая другая наука генетика имеет свой предмет изучения – закономерности наследственности и изменчивости организмов и методы исследования, включающие как специфические, используемые только генетикой, так инеспецифические, применяемые в смежных с генетикой областях.

В генетике, как и в любой другой науке, все методы подразделяются на два вида: специфические – используемые только в этой дисциплине, и неспецифические – применяемые в смежных дисциплинах.
I. Специфические методы генетики.
1. Гибридологический метод
Основные черты метода:
а) Мендель учитывал не весь многообразныйкомплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным признакам (одному или нескольким);
б) Менделем был проведен точный количественный учет наследования каждого признака в ряду последующих поколений;
в) Менделем исследовался характер потомства каждого гибрида в отдельности.
2. Генеалогический метод. В основу метода положено составление и анализ родословных.II. Неспецифические методы генетики.
1. Близнецовый метод. Используется, прежде всего для оценки соотносительной роли наследственности и среды в формировании признака.
2. Цитогенетический метод. Заключается в изучении хромосомного набора клеток организма с использованием микроскопа.
3. Популяционно-статистический метод. Позволяет изучить распространение отдельных генов илихромосомных аномалий в популяциях.
4. Мутационный метод. Метод обнаружения мутаций в зависимости от особенностей объекта – главным образом способа размножения организмов.
5. Рекомбинационный метод. Основан на частоте рекомбинаций между отдельными парами генов, представленными в одной хромосоме. Позволяет составлять карты хромосом, на которых указывается.

Часть открытий из области основных закономерностей наследования признаков принадлежит Менделю. Он проводил опыты по гибридизации гороха. Он отбирал растения, отличающиеся парой альтернативных признаков: желтая или зелёная окраска зерна, гладкая или морщинистая кожура, красные или белые цветки. Проверяя стойкое наследование взятых признаков, т.е. выбирал чистые линии.

Мендель шел в своих исследованиях от простого к сложному. Он вначале анализировал наследование одной пары признаков (моногибридное скрещивание). При скрещивании растений с желтыми и зелёными семенами в первом поколении (F1) всё потомство имело жёлтые семена (доминирующий признак). Зелёный – подавляемым (рецессивный). Один и тот же результат наблюдался при скрещивании ♂ жёлтых с ♀ зелёными, так и ♂ зелёных с ♀ желтыми. Такое единообразие гибридов F1 получило название правило доминирования или Первый закон Менделя.

При самоопылении гибридов F1 во втором поколении F2 наблюдалось расщепление 3:1, т.е. 3 жёлтых и 1 зелёный. Такая закономерность получила название Второй закон Менделя или закон расщепления.

При изучении результатов дигибридного скрещивания, т.е. по 2 парам альтернативных признаков, Мендель наблюдал независимое наследование признаков (9:3:3:1). При полигибридном скрещивании расщепление можно выразить по формуле (3+1)n , где n – число пар альтернативных признаков. Закон независимого расщепления по парам неаллельных признаков – 3 закон Менделя.

Причина успеха Менделя в правильном выборе объекта, в разработке и применении принципа гибридологического анализа.

Его метод гибридологического анализа используется в генетике и сейчас.

Организмы должны быть одного вида

Чётко различаться по отдельным признакам

Признаки должны быть константными, т.е. свободно передаваться из поколения в поколение.

Необходима характеристика и количественный учёт всех классов расщепления потомства в первом и последующих поколениях.

То, что признаки не исчезают в F1 , а проявляются вновь в последующих поколениях, позволило Менделю сформулировать гипотезу о дискретном характере вещества наследственности.

Установленные Менделем закономерности наследования признаков получили цитологические обоснования после открытия хромосом.

Похожие страницы:

Закономерности наследования признаков при половом размножении

. установленных фактов. Приоритет открытия законов наследования призна ков принадлежит Г.Менделю. Результаты своих опытов Г.Мендель . двум парам альтернативных признаков. Установив закономерности наследования по отдельным парам признаков, Мендель провел опыты, .

Закономерности наследование признаков человека

. – наследование определенного признака (болезни) в соответствии с законами Г. Менделя. Менделирующими признаками называют те, наследование которых происходит по закономерностям, установленным Г. Менделем .

Основы психогенетики

. и, следовательно, для него справедливы закономерности, установленные для конкретных психических функций. Однако . ходе этих исследований Менделем были открыты количественные закономерности наследования признаков. Заслуга Менделя в области генетики .

Предмет, методы и история развития генетики. Значение генетики для практики

. , К. Корренс и Э. Чермак повторно открыли законы, установленные Г. Менделем в 1865 году. В настоящее время генетика . метод удачно применил для выяснения закономерностей наследования признаков Г. Мендель. Особенно широко математические методы исследований .

Генетика. Конспект лекций

. особь – гибридом. Закономерности наследования признаков при внутривидовой гибридизации были установлены Грегором Менделем (1865 г.) с . попупяционных результатов. В основе метода лежит закономерность, установленная в1908 г. англ. математиком Дж. ФАКТОРЫ .

Читайте также: