Реферат на тему геометрические фигуры

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Кое-кто, возможно, считает, что различные замысловатые линии, фигуры, поверхности можно встретить только в книгах учёных-математиков. Однако, стоит осмотреться, и мы увидим, что многие предметы имеют форму, похожую на уже знакомые нам геометрические фигуры. Оказывается их очень много. Просто мы их не всегда замечаем.

Цель работы – исследовать какие геометрические фигуры, тела встречаются вокруг нас.

Исходя из поставленной цели, были поставлены следующие задачи:

- изучить использование геометрических форм и линий в практической деятельности человека;

- изучить некоторые природные творения в виде геометрических фигур;

- изучить использование геометрических фигур животными.

Методы исследования:

- изучение дополнительной литературы по данному вопросу

- наблюдение в повседневной жизни.

Геометрия у древних людей.

Треугольники, квадраты, ромбы, окружности… каждый ученик сталкивается с ними в школе на уроках геометрии.

Научная формулировка гласит, что геометрия – это раздел математики, который изучает пространственные фигуры и формы.

Ещё в эпоху неолита люди составляли на стенах пещер орнаменты из треугольников, ромбов, прямоугольников, кругов. Древние художники тонко чувствовали красоту геометрических форм; наскальные рисунки, выполненные с большой любовью к природе, радовали глаз. (рис.1) Человек отмечал равенство, симметрию, подобие фигур. Со временем он научился использовать свойства фигур в практической жизни. Геометрия – древнейшая наука, а первые геометры производили расчеты свыше тысячи лет назад.

Геометрические фигуры интересовали наших предков не только потому, что помогали решать практические задачи. Некоторые из фигур имели для людей магическое значение. Так, треугольник считался символом жизни, смерти и возрождения; квадрат – символом стабильности. Вселенную, бесконечность обозначали правильным пятиугольником – пентагоном, правильный шестиугольник – гексагон, являлся символом красоты и гармонии. Круг – знаком совершенства.

Геометрия в быту.

Стены, пол и потолок являются прямоугольниками (не будем обращать внимания на проёмы окон и дверей). Комнаты, кирпичи, шкаф, железобетонные блоки, напоминают своей формой прямоугольный параллелепипед. Посмотрим на паркетный пол. Планки паркета – прямоугольники или квадраты. Плитки пола в ванной, метро, на вокзалах чаще бывают правильными шестиугольниками или восьмиугольниками, между которыми уложены небольшие квадратики.

Многие вещи напоминают окружность – обруч, кольцо, дорожка вдоль арены цирка. Арена цирка, дно стакана или тарелки имеют форму круга. Фигура, близкая к кругу, получится, если разрезать поперек арбуз. Нальем в стакан воду. Её поверхность имеет форму круга. Если наклонить стакан, чтобы вода не выливалась, тогда край водной поверхности станет эллипсом. А у кого-то есть столы в виде круга, овала или очень плоского параллелепипеда.(рис. 2)

Ведро имеет форму усеченного конуса, у которого верхнее основание больше нижнего. Впрочем, ведро бывает и цилиндрической формы. Вообще, цилиндров и конусов в окружающем нас мире очень много: трубы парового отопления, кастрюли, бочки, стаканы, абажур, кружки, консервная банка, круглый карандаш, бревно и др. ( рис.2)

Геометрия в архитектуре.

Дом приблизительно имеет вид прямоугольного параллелепипеда. В современной архитектуре смело используются самые разные геометрические формы. Многие жилые дома, общественные здания украшаются колоннами. (рис 2а)

А как красив Московский Кремль. Прекрасны его башни! Сколько интересных геометрических фигур положено в их основу! Например, Набатная башня. На высоком параллелепипеде стоит параллелепипед поменьше, с проемами для окон, а ещё выше воздвигнута четырехугольная усечённая пирамида. На ней расположены четыре арки, увенчанные восьмиугольной пирамидой (см. рис.8). Геометрические фигуры различной формы можно узнать и в других замечательных сооружениях, возведенных русскими зодчими. (рис.7а – собор Василия Блаженного)

Выразительный контраст треугольника и прямоугольника на фасаде привлекает внимание посетителей музея Гронингена (Голландия) (рис.9) Круглая, прямоугольная, квадратная – все эти формы прекрасно уживаются в здании Музея современного искусства в Сан-Франциско (США) (см. рис.10). Здание Центра современного искусства имени Жоржа Помпиду в Париже – сочетание гигантского прозрачного параллелепипеда с ажурной металлической арматурой. (рис.11) Главные элементы здания больницы в Берлине (Германия) – прямоугольники и окружности ( рис.12). Геометрическая форма железнодорожной станции в аэропорту Лиона (Франция) напоминает древнюю гигантскую птицу и при этом сооружение суперсовременно (рис.13).

А сколько геометрических фигур можно найти в конструкциях мостов. На парапете моста часто укрепляют спасательные круги. Они по форме очень близки к тору.(см. рис.14)

4. Геометрия транспорта

По улице движутся автомобили, трамваи, троллейбусы. Их колеса с геометрической точки зрения – круги. В окружающем нас мире встречается много различных поверхностей, сложных по форме, не имеющих специальных названий.

Паровой котел напоминает цилиндр. В нем находится пар под высоким давлением. Поэтому стенки цилиндра слегка (незаметно для глаза) изгибаются, образуя поверхность очень сложной и неправильной формы, которую инженеры должны знать, чтобы суметь правильно рассчитать котел на прочность. Сложную форму имеет и корпус подводной лодки. Он должен быть хорошо обтекаемым, прочным и вместительным. От формы корабельного корпуса зависит и прочность корабля, и его устойчивость и скорость. Результат работы инженеров над формой современных автомобилей, поездов, самолетов - высокие скорости движения. Если форма будет удачной, обтекаемой, сопротивление воздуха значительно уменьшается, за счет чего увеличивается скорость. Сложную форму имеют и детали машин – гайки, винты, зубчатые колеса и т.д. (рис15,15а, 16)

Рассмотрим ракеты и космические корабли. Корпус ракеты состоит из цилиндра (в котором находятся двигатель и горючее), а в конической головной части помещается кабина с приборами или с космонавтом.

Комбинации окружающем нас мире.

Телевизионная башня, построенная замечательным русским советским инженером В.Г. Шуховым. Она состоит из частей, которые математики называют гиперболоидами вращения. Хотя сами части кривые, они сложены из прямолинейных металлических балок. Этим Шухов облегчил возведение башни (рис.17, 17а –Эйфелева башня).

Колонны в большинстве случаев – цилиндры, но могут иметь и более сложную форму. А обелиски в память погибших – четырехгранные столбы, сужающиеся к верху.

6. Природные творения в виде геометрических фигур.

До сих пор рассматривали некоторые геометрические формы, созданные руками человека. Но ведь в самой природе очень много замечательных геометрических форм. Необыкновенно красивы и разнообразны многоугольники, созданные природой.

Кристалл соли имеет форму куба. (рис.19а) Кристаллы горного хрусталя напоминают отточенный с двух сторон карандаш. Алмазы чаще всего встречаются в виде октаэдра, иногда куба (см. рис 19). Существуют и многие микроскопические многоугольники. В микроскоп можно увидеть, что молекулы воды при замерзании располагаются в вершинах и центрах тетраэдров. Атом углерода всегда соединен с четырьмя другими атомами тоже в форме тетраэдра. Одна из самых изысканных геометрических фигур падает на нас с неба в виде снежинок.

Обычная горошина имеет форму шара. И это неспроста. Когда стручок гороха созреет и лопнет, горошины упадут на землю и благодаря своей форме покатятся во все стороны, захватывая всё новые территории. Горошины кубической или пирамидальной формы так и остались бы лежать возле стебля. Шаровую форму принимают капельки росы, капли ртути из разбитого градусника, капли масла, оказавшиеся в толще воды… Все жидкости в состоянии невесомости обретают форму шара. Отчего шар так популярен? Это объясняется одним замечательным свойством: на изготовление шара расходуется значительно меньше материала, чем на сосуд любой другой формы того объёма. Поэтому, если вам нужен вместительный мешок, а ткани не хватает, шейте его в форме шара. Шар – единственное геометрическое тело, у которого наибольший объём заключен в наименьшую оболочку.

7. Использование геометрических форм животными.

Животные, конечно, же геометрию не изучали, но природа наделила их талантом строить себе дома в форме геометрических тел.

Многие птицы – воробьи, крапивники, лирохвосты – строят свои гнёзда в форме полушара (см. рис.20).

Есть архитекторы и среди рыб: в пресных водах живет удивительная рыба колюшка. В отличие от многих своих соплеменников она живет в гнезде, которое имеет форму шара (см. рис. 21). Но самые искусные геометры – пчёлы. Они строят соты из шестиугольников. Любая ячейка в сотах окружена шестью другими ячейками. А основание, или донышко, ячейки представляет собой трехгранную пирамиду. Такая форма выбрана неспроста. В правильный шестиугольник поместится больше меда, а зазоры между ячейками будут наименьшими! Разумная экономия усилий и строительных материалов (см. рис.22).

Изучение основных свойств треугольника, прямоугольника, ромба и квадрата. Признаки равенства прямоугольных треугольников. Замечательные линии и точки в треугольнике. Доказательство теоремы Пифагора. Виды четырёхугольников. Основные геометрические фигуры.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.06.2015
Размер файла 326,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подготовила Большухина Олеся

Треугольник - это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой ( C, рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( B, рис.22 ), то это тупоугольный треугольник.

Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) - равносторонний, если все его стороны равны ( a = b = c ). В общем случае ( a ? b? c ) имеем неравносторонний треугольник.

Основные свойства треугольников

В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 є .

Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 є.

4. Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний угол BCD. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним: BCD = A + B.

5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a b - c; b a - c; c a - b).

Признаки равенства треугольников

Треугольники равны, если у них соответственно равны:

a) две стороны и угол между ними;

b) два угла и прилегающая к ним сторона;

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого; 3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 ) - снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана - это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE,CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр - это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N - середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном - снаружи; в прямоугольном ? в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузойc.

Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть

c 2 + 4 ( ab / 2 ) = c 2 + 2 ab ,

c 2 + 2 ab = ( a + b ) 2 ,

Соотношение сторон в произвольном треугольнике

В общем случае ( для произвольного треугольника ) имеем:

c 2 = a 2 + b 2 - 2ab · cos C,

где C - угол между сторонами a и b .

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую - шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.

Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны: AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны: AB||CD, BC||AD

3. Прилегающие стороны прямоугольника всегда перпендикулярны: AB + BC, BC + CD, CD + AD, AD + AB

4. Все четыре угла прямоугольника прямые: ?ABC = ?BCD = ?CDA = ?DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов: ?ABC + ?BCD + ?CDA + ?DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины: AC = BD

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон: 2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов: ?ABC = ?CDA = 180° ?BCD = ?DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

Ромбом называется параллелограмм, у которого все стороны равны.

Так как ромб является параллелограммом, то он обладает всеми свойствами параллелограмма.

1. Противоположные стороны ромба равны: AB=BC=CD=AD (т.к. все стороны равны).

2. Противоположные углы ромба равны: A=C B=D.

3. Диагонали ромба точкой пересечения делятся пополам: BO=OD AO=OC.

4. Сумма углов, прилежащих к одной стороне ромба, равна 180°: A+D=180°.

Свойства ромба, присущие только ему:

5. Диагонали ромба взаимно перпендикулярны: AC?BD.

6. Диагонали ромба являются также биссектрисами его углов (делят углы ромба пополам).

7. Диагонали делят ромб на четыре равных прямоугольных треугольника.

Треугольники ABO, СBO, CDO, ADO -- равные прямоугольные треугольники.

Квадрат - это четырехугольник у которого все четыре стороны и углы одинаковы. Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.

Основные свойства квадрата

Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.

1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны: AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны: AB||CD, BC||AD

3. Все четыре угла квадрата прямые: ?ABC = ?BCD = ?CDA = ?DAB = 90° 4. Сумма углов квадрата равна 360 градусов: ?ABC + ?BCD + ?CDA + ?DAB = 360°

5. Диагонали квадрата имеют одинаковой длины: AC = BD

6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры

7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам

8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности

9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата: ДABC = ДADC = ДBAD = ДBCD?ACB = ?ACD = ?BDC = ?BDA = ?CAB = ?CAD = ?DBC = ?DBA = 45°

10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные: ДAOB = ДBOC = ДCOD = ДDOA

ЧЕТЫРЁХУГОЛЬНИК

Четырёхугольник -- это многоугольник, содержащий четыре вершины и четыре стороны.

Четырёхугольник, геометрическая фигура -- многоугольник с четырьмя углами, а также всякий предмет, устройство такой формы.

Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.

Четырехугольники бывают выпуклые и невыпуклые

· Параллелограмм -- четырёхугольник, у которого все противоположные стороны параллельны;

· Прямоугольник -- четырёхугольник, у которого все углы прямые;

· Ромб -- четырёхугольник, у которого все стороны равны;

· Квадрат -- четырёхугольник, у которого все углы прямые и все стороны равны;

· Трапеция -- четырёхугольник, у которого две противоположные стороны параллельны;

· Дельтоид -- четырёхугольник, у которого две пары смежных сторон равны.

ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

геометрический фигура теорема пифагор

К основным геометрическим фигурам на плоскости относятся точка и прямая линия.

Отрезок, луч, ломаная линия -- простейшие геометрические фигуры на плоскости.

Точка -- это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур) в любом изображении или чертеже.

Всякая более сложная геометрическая фигура -- это множество точек, которые обладают определенным свойством, характерным только для этой фигуры. Прямую линию, или прямую, можно представить себе как бесчисленное множество точек, которые расположены на одной линии, не имеющей ни начала, ни конца. На листе бумаги мы видим только часть прямой линии, так как она бесконечна.

Часть прямой линии, ограниченная с двух сторон точками, называется отрезком прямой, или отрезком.

Луч -- это направленная полупрямая, которая имеет точку начала и не имеет конца. Если на прямой вы поставили точку, то этой точкой прямая разбивается па два луча, противоположно направленных. Такие лучи называются дополнительными.

Ломаная линия -- это несколько отрезков, соединенных между собой так, что конец первого отрезка является началом второго отрезка, а конец второго отрезка -- началом третьего отрезка и т. д., при этом соседние (имеющие одну общую точку) отрезки расположены не на одной прямой. Если конец последнего отрезка не совпадает с началом первого, то такая ломаная линия называется незамкнутой. Если конец последнего отрезка ломаной совпадает с началом первого отрезка, то такая ломаная линия называется замкнутой. Примером замкнутой ломаной служит любой многоугольник.

ОКРУЖНОСТЬ

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, -- радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Основные термины

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной

1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

2. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

2. Дуги, заключенные между параллельными хордами, равны.

3. Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM*MB = CM*MD.

Свойства окружности

1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая).

2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA*MB = MC*MD.

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью

1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

2. Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

3. Вписанный угол, опирающийся на диаметр, равен 90°.

4. Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Длины и площади

1. Длина окружности C радиуса R вычисляется по формуле:

2. Площадь S круга радиуса R вычисляется по формуле:

3. Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

4. Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Вписанные и описанные окружности

Окружность и треугольник центр вписанной окружности -- точка пересечения биссектрис треугольника, ее радиус r вычисляется по формуле:

где S -- площадь треугольника, а -- полупериметр;

· центр описанной окружности -- точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c -- стороны треугольника, -- угол, лежащий против стороны a, S -- площадь треугольника;

· центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;

· центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник -- правильный.

Окружность и четырехугольники

· около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

· в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

· около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;

· около трапеции можно описать окружность тогда и только тогда, когда эта трапеция -- равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;

· в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

1) учебник по геометрии 7-9 класс Авторы: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.

Подобные документы

Свойства и численное значение площади геометрической фигуры. Вычисление площади квадрата, прямоугольника, трапеции, и треугольника. Измерение отрезков. Значение и область применения теоремы Пифагора. Алгебраическое и геометрическое доказательства Евклида.

презентация [267,8 K], добавлен 04.09.2014

Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

творческая работа [17,4 K], добавлен 25.06.2009

Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

презентация [376,2 K], добавлен 28.02.2012

Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

курс лекций [3,7 M], добавлен 23.04.2011

Меры площади, использовавшиеся в Древней Руси, их эволюция и современное состояние. Площадь многоугольника и прямоугольника. Определение и доказательство площади квадрата. Формула площади параллелограмма и треугольника, трапеции. Теорема Пифагора.

реферат [389,2 K], добавлен 05.02.2011

Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

презентация [174,3 K], добавлен 18.12.2012

Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

Нажмите, чтобы узнать подробности

Цель – показать необходимость изучения этой науки (геометрии), которая дает возможность понять, а также рассмотреть значение геометрических законов и закономерностей, их практическое применение при проектировании и постройке сооружений.

Фигура – это произвольное множество точек на плоскости. Точка, прямая, отрезок, луч, треугольник, круг, квадрат и так далее – всё это примеры геометрических фигур.
Основными геометрическими фигурами на плоскости являются точка и прямая. Этим фигурам в геометрии не даётся определений. Неопределяемыми геометрическими фигурами на плоскости являются точка и прямая. Точки принято обозначать прописными латинскими буквами: А, В, С, D …. Прямые обозначаются строчными латинскими буквами: а, b, с, d ….

1.Основные геометрические понятия.

Основные геометрические понятия возникли еще в доисторические времена. Наблюдая за формами растений и животных, гор и извилинами рек, за особенностями ландшафта и далекими планетами, человек заимствовал у природы ее правильные формы, размеры и свойства. Материальные потребности побуждали человека строить жилища, изготавливать орудия труда и охоты, лепить из глины посуду и прочее. Все это постепенно способствовало тому, что человек пришел к осознанию основных геометрических понятий. Одним из первых достижений абстрактного мышления древнего человека стало понимание прямой линии.

Прямая не проходит через точку, если точка не принадлежит ей.

Пряма́я — одно из фундаментальных понятий геометрии.
При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии (евклидовой).Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками. Аналитически прямая задаётся уравнением (в трёхмерном пространстве — системой уравнений) первой степени.

К основным свойствам прямой относятся:

Черед две различные точки проходит одна единственная прямая. Следовательно две прямые не могут иметь более одной общей точки.

Две разные прямые, имеющие общую точку, пересекаются в ней. В связи с тем, что две точки определяют прямую, проходящую через них, прямую обозначают сочетанием букв, к примеру, прямая АВ, прямая PQ.

Точка М, лежащая на прямой а, разбивает её на две части. Каждая из которых называется полупрямой или лучом. Точка М служит началом каждого их этих лучей. Две точки М и N разбивают прямую на три части: два луча МР и NQ и отрезок MN.

Прямая разбивает плоскость на 2 части. Часть плоскости лежащая по одну сторону от этой прямой, называется полуплоскостью.

Если прямые не имеют общих точек, говорят, что они параллельны.

Если две прямые имеют одну общую точку, говорят, что они пересекаются в этой точке.

Две прямые в трёхмерном евклидовом пространстве скрещиваются, если не существует плоскости, их содержащей. Иначе говоря, две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными.

2. Параллелограмм.

Параллелограмм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — черта, линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Признаки параллелограмма:
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий:
1. Если в четырёхугольнике противоположные стороны попарно равны, то четырёхугольник - параллелограмм
2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник - параллелограмм
3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник - параллелограмм

Параллелограмм, у которого все углы прямые, называется прямоугольником.
Теорема. Если в параллелограмме диагонали равны, то он является прямоугольником.
Параллелограмм, у которого все стороны равны, называется ромбом.
Теорема. Если в параллелограмме диагонали перпендикулярны, то он является ромбом.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции. Расстояние между основаниями называется высотой трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Отрезок, соединяющий середины диагоналей, равен полуразности оснований.

В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Трапеция, у которой боковые стороны равны, называется равнобокой или равнобедренной.
Свойства равнобедренной трапеции.

Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.

В равнобедренной трапеции углы при любом основании равны.

В равнобедренной трапеции длины диагоналей равны.

Если трапецию можно вписать в окружность, то она равнобедренная.

Около равнобедренной трапеции можно описать окружность.

Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.

4.Окружность.

Окружность – это плоская замкнутая линия, все точки которой находятся на одинаковом расстоянии от некоторой точки (точки О), которая называется центром окружности.
(Окружность — геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки.)
Круг – это часть плоскости, ограниченная окружностью. Точка О также называется центром круга. Расстояние от точки окружности до её центра, а также отрезок, соединяющий центр окружности с её точкой, называется радиусом окружности/круга.

Хорда - греческое - струна, стягивающая что-то
Диаметр - "измерение через"
Углы могут встречаться во все более возрастающем количестве, приобретать, соответственно, все больший разворот – пока не исчезнут окончательно и плоскость не станет кругом. Это очень простой и одновременно очень сложный случай, о котором мне хотелось бы поговорить подробно. Здесь необходимо отметить, что как простота, так и сложность обусловлены отсутствием углов. Круг прост, поскольку давление его границ, в сравнении с прямоугольными формами, нивелировано – различия здесь не так велики. Он сложен, поскольку верх неощутимо перетекает в левое и правое, а левое и правое – в низ.

В Древней Греции круг и окружность считались венцом совершенства. Действительно, в каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе. Это свойство окружности сделало возможным возникновение колеса, поскольку ось и втулка колеса должны все время быть в соприкосновении. В школе изучается много полезных свойств окружности. Одной из самых красивых теорем является следующая: проведем через заданную точку прямую, пересекающую заданную окружность, тогда произведение расстояний от этой точки до точек пересечения окружности с прямой не зависит от того, как именно была проведена прямая. Этой теореме около двух тысяч лет. Эта фигура получается, если провести дуги окружностей с центрами в вершинах равностороннего треугольника, соединяющие две другие вершины. Если провести к этой фигуре две параллельные касательные, то расстояние между ними будет равно длине стороны исходного равностороннего треугольника, так что такие катки ничем не хуже круглых. В дальнейшем были придуманы и другие фигуры, способные выполнять роль катков.

У каждого треугольника имеется, и притом единственная, окружность девяти точек. Это окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника : основания его высот D1 D2 и D3, основания его медиан D4, D5 и D6 середины D7, D8 и D9 отрезков прямых от точки пересечения его высот Н до его вершин. Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это -точки ее касания с четырьмя окружностями специального вида. Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек D10, D11, D12 и D13 называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек. Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой Н- его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

5.Треугольник.

Треуго́льник (в евклидовом пространстве) — это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки, образующие треугольник, называются вершинами треугольника, а отрезки — сторонами треугольника.
Стороны треугольника образуют в вершинах треугольника три угла. Другими словами, треугольник — это многоугольник, у которого имеется ровно три угла.

Вершины — три точки А, В и С. Стороны — отрезки АВ, ВС и СА.
Углы — ∟ ВАС, ∟ СВА и ∟ АСВ.
Периметр треугольника — сумма длин трех сторон треугольника.

Медиана треугольника (m)— отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Биссектриса треугольника (b) — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. Высота треугольника (h)— перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

В любом треугольнике медианы пересекаются в одной точке, биссектрисы пересекаются в одной точке, высоты или их продолжения также пересекаются в одной точке.

Теорема. Сумма углов треугольника 180°. Каждая сторона треугольника меньше суммы двух других сторон.

1) против большей стороны лежит больший угол.

2) против большего угла лежит большая сторона.

В прямоугольном треугольнике гипотенуза больше катета

Классификация треугольников по углам. В треугольнике может быть только один тупой угол. В треугольнике может быть только один прямой угол. По сторонам.
Треугольник называется равнобедренным, если две его стороны равны.
Равные стороны называются боковыми сторонами, а третья сторона — основанием равнобедренного треугольника.

5.1. Теоремы треугольника.

В равнобедренном треугольнике углы при основании равны.
Теорема

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Равносторонний треугольник — все стороны и углы равны.

Если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.
В равных треугольниках против соответственно равных сторон лежат равные углы.

5.2.Признаки треугольника.

ПЕРВЫЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема. Если сторона и два прилежащих угла одного треугольника соответственно равны стороне и двум прилежащим углам другого треугольника, то такие треугольники равны.

ТРЕТИЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

5.3.Прямоугольный треугольник.

СВОЙСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

• Сумма двух острых углов прямоугольного треугольника равна 90°.
• Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
• Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

ПРИЗНАКИ РАВЕНСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету.

5.4. История изучения треугольника.

6.Многоугольник.

Многоугольник — фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек.
Точки А, В, С, D, Е… — вершины многоугольника. Отрезки АВ, ВС, CD, DE, ЕА,… - стороны многоугольника.
Периметр многоугольника (гречечкое пери - вокруг, около) — сумма длин всех сторон.
Многоугольник с n вершинами называется n-угольником; он имеет n сторон.
Две вершины многоугольника, принадлежащие одной стороне, называются соседними.
Диагональ многоугольника (греческое dia - через, gonia - угол, т.е. проходящая через углы) — отрезок, соединяющий любые две несоседние вершины.
Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая — внешней областью многоугольника. Фигуру, состоящую из сторон многоугольника и его внутренней области, также называют многоугольником.

Многоугольник называется выпуклым:

1) если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины

2) если вместе с любыми своими 2 точками он содержит и соединяющий их отрезок.

Сумма углов выпуклого п-угольника равна (n- 2) 180°.

Многоугольником может называться замкнутая ломаная с самопресечениями и правильные звёздчатые многоугольники.

Площадь многоугольника — это величина той части плоскости, которую занимает многоугольник.

1) равные многоугольники имеют равные площади;

2) если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
3) площадь квадрата равна квадрату его стороны.

7. Многранники. Виды многранников

В современном мире нас окружает множество построек состоящих из сложных геометрических фигур, большинство из которых являются многогранниками. Примеров тому очень много, достаточно посмотреть по сторонам и мы заметим что здания, в которых мы живём, магазины, в которые ходим, школы и детские сады и т.д. представлены в виде многогранников.

Призма – это многогранник, две грани которой ABCDE и abcde ( основания призмы ) – равные многоугольники с соответственно параллельными сторонами, а остальные грани ( AabB, BbcC и т.д. ) - параллелограммы, плоскости которых параллельны прямой ( Aa, или Bb, или Cc и т.д. По основанию:

-Небоскрёб Flat Iron (Утюг) на пересечении Бродвея и Пятого Авеню. Построен в 1902 году. 21 этаж, 87 метров

-Пентагон — здание Министерства обороны США в форме пятиугольника. Находится в штате Вирджиния недалеко от Вашингтона.

-Наклонная призма – боковое ребро наклонено к основанию под углом отличны от 90є.

Прямая призма – боковое ребро расположено перпендикулярно к основанию.

7.2. Параллелепипед

Параллелепипед - призма, в основании которой находится параллелограмм.

Наклонный, Прямой, Прямоугольный – это прямой параллелепипед,

в основании которого прямоугольник.

Куб – это прямой параллелепипед,

все грани которого квадраты

7.3. Пирамида

Пирамида – это многогранник, одна из граней которого – произвольный n-угольник, а остальные “n” граней – треугольники, имеющие общую вершину.

-Университетский волейбольно-баскетбольный стадион в Калифорнии

В основании - Квадрат

-Торговый центр в Турции

Цилиндр – это тело, ограниченное частью замкнутой цилиндрической поверхности и частью двух плоскостей, параллельных между собой

Водонапорная башня в Минске, Нефтехранилища, Небоскреб в США

Конус - это геометрическое тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины и частью пересекающей её плоскости.

Как самостоятельные сооружения конусы в строительстве не используются. Практически всегда они составляют какую-то часть здания, например крыши и архитектурные украшающие детали.

Также в строительстве используют конические сваи.

7.6. Сфера и шар.

Сфера – это множество всех точек пространства, находящихся на положительном расстоянии R от данной точки О, называемой центром сферы.

Шар – это множество всех точек пространства, расстояние которых от данной точки не превосходит заданного положительного числа R. Шар получается при вращении полукруга относительно диаметра.

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями.

Шаровой сегмент – это часть шара, отсекаемая от него плоскостью.

ТРК Вояж, г. Санкт-Петербург, Здание в Париже (Франция)

Здание Национального Конгресса в США

Итак, при постройке, как современных зданий, так и зданий прошлых веков необходимы знания геометрии. Архитектурное формообразование с помощью геометрических построений сохраняется во всех случаях. Эта проблема стояла перед архитекторами прошлых веков, не исчезла она и сегодня.

7.7. Двойной квадрат

Два квадрата, сложенные вместе, образуют двойной квадрат. Сложив два двойных квадрата, получим квадрат, повторяющий своими очертаниями исходный квадрат. Это простое аддитивное свойство квадрата широко использовалось в архитектуре эпохи Возрождения.

7.8. Восьмиугольные звезды.

Использование восьмиугольных звезд в архитектурных конструкциях не вызывает никаких сомнений. Автором этого проекта является Леонардо да Винчи.

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Шинкоренко Мария Петровна

В работе рассматриваются фигуры, изучаемые в геометрии, происхождения их названий, изображение на плоскости. Найдены ответы на вопросы: какие геометрические фигуры встречаются в предметах и объектах, которые нас окружают? Можно ли развёрнуть геометрические тела? Как геометрические фигуры превратить в ёлочные игрушки?

В результате работы созданы модели новогодних игрушек из моделей геометрических тел.

ВложениеРазмер
soderzhanie_raboty_1.docx 1.95 МБ
geometricheskie_figury.pptx 2.19 МБ
Предварительный просмотр:
Предварительный просмотр:

Подписи к слайдам:

Гипотеза: в повседневной жизни есть место геометрии. Цель: познакомиться с геометрическими телами Задачи: 1 . Что такое геометрическая фигура? 2. Какие фигуры изучает геометрия? 3. Откуда произошли названия геометрических фигур? 4. Как изображают пространственные фигуры на плоскости? 5. Можно ли развёрнуть геометрические тела? 6 . Выяснить, какие геометрические фигуры встречаются в предметах и объектах, которые нас окружают? 7. Как геометрические фигуры превратить в ёлочные игрушки? 8. Выполнить презентацию и создать модели новогодних игрушек из моделей геометрических тел.

Семейство геометрических фигур Многогранники Призмы Пирамиды Прямоугольные параллелепипеды Куб

Семейство геометрических фигур Тела вращения Цилиндр Шар Конус

Откуда пришли названия геометрических фигур? Почти все названия геометрических фигур греческого происхождения, как и само слово геометрия, происходящее от греческого слова γεωμετρία (геометрия) – землемерие. Слово призма латинская форма πρισμα (призма) – опиленная (имелось в виду опиленное дерево). Слово цилиндр происходит от латинского слова cylindrus ( цилиндрус ), являющегося латинской формой греческого слова χύλινδρος ( кюлиндрос ), означающего валик, каток. Словом пирамида – πυραμιζ – греки называли сооружения, которые воздвигали египтяне в память о своих фараонах . Слово шар латинская форма греческого слова σφατρα ( сфайра ) – мяч, Слово конус – от греческого слова ξωνοσ , что означает шишка .

Изображение пространственных фигур на плоскости В геометрии для облегчения восприятия пространства договорились изображать линии, скрытые от взора наблюдателя, пунктирными.

Геометрические фигуры вокруг нас

Как геометрические фигуры превратить в ёлочные игрушки? Среди человеческих творений самым волшебным являются новогодние игрушки .

Наши выводы: 1 . Познакомились с разными видами многогранников и тел вращения. 2 . Узнали, что названия геометрических тел греческого происхождения. 3 . Научились изображать и изготавливать их. 4 . Подготовили презентацию и изготовили новогодние игрушки из геометрических тел. 5 . Выяснили, что мир, в котором мы живём, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека. 6 . Среди человеческих творений самым волшебным являются новогодние игрушки.

Читайте также: