Реферат механика разрушения горных пород

Обновлено: 05.07.2024

Механическими свойствами твердого тела являются упругость, пластичность, вязкость, прочность.

В твердых телах основными механическими процессами являются деформирование и разрушение.

Деформирование – процесс изменения размеров или формы твердых тел под влиянием внешних сил. Учитывая гипотезу о сплошности, непрерывное тело до деформирования остается непрерывным и после деформирования, т.е. не имеет разрывов и пустот.

Деформация – это относительное изменение размера или формы тела. Деформации бывают обратимыми и необратимыми. Обратимой называется деформация, при которой прежние форма и размеры тела полностью восстанавливаются после воздействия внешних сил, а необратимой, если не восстанавливаются.

Горные породы имеют ионные и атомные кристаллические структуры.

Элементы структуры связаны между собой кулоновскими силами.

Прочность – это способность твердого тела оказывать сопротивление разрушению от внешнего воздействия.

Физико-механические свойства горных пород.

Механические свойства горной породы прежде всего зависят от их минералоги-

ческого состава и строения. Как правило ,твердость плотных осадочных пород

находится в прямой зависимости от твердости их породообразующих минералов.

Твердость обломочных пород типа песчаников и алевролитов главным образом

зависит от минерального состава и строения цементирующего вещества.Твер-

дость обломочных пород одинакового состава ,сцементированных глинистым

цементом, почти в 3 раза меньше твердости аналогичных пород, но сцементиро-

ванных карбонатным цементом. Пористость и выветрилось уменьшает твер-

дость породы. При насыщении пород водой и водными растворами ПАВ

твердость пород значительно снижается. Твердость глинистых пород ,имеющих

высокую пористость ,при увлажнении резко уменьшается.

Под твердостью горной породы понимается ее способность оказывать сопро-

тивление прониканию в нее инородного тела. Классификационная шкала твер-

дости горных пород включает в себя 12 категорий твердости.

Под абразивностью г/порды понимается ее способность изнашивать контак-

Процесс разрушения горных пород при бурении – это разрушение
горных пород на забое скважины вследствие механического или физико-
химического воздействия на породу, производимого с целью формирования
поля механических напряжений, достаточных для нарушения сплошности
определенного объема (слоя) горного массива или преобразования породы в
расплав, пар, раствор, а также удаления образовавшихся продуктов
разрушения, растворения или плавления с забоя скважины на поверхность
или в скважинное пространство. [2, с.3]
Рациональное соотношение операций породоразрушающего
воздействия на породу и удаления продуктов разрушения с забоя из-под
торца бурового инструмента является важным аспектом, определяющим
минимальную энергоемкость и, соответственно, эффективность бурового
процесса.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Основные способы разрушения горных пород. Электроимпульсный способ разрушения и бурение взрывных скважин. Вероятность внедрения канала разряда в горную породу. Исследование эффективности разрушения горных пород и частота посылки импульсов на забой.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 23.12.2014
Размер файла 27,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Разрушение горных пород -- нарушение сплошности природных структур горных пород (минеральных агрегатов, массивов горных пород) под действием естественных и искусственных сил. Разрушение -- сложный физический или физико-химический процесс, характер развития которого зависит от величины и скорости приложения нагрузки, напряженного состояния объекта, его прочности и структурных свойств. В соответствии с этим разрушение может протекать на микро- и макроскопическом уровнях. Микроскопическое разрушение (размеры зоны разрушения до 1 мм) возникает в месте контакта разрушающего элемента с породой и сопровождается разрывом связей между зёрнами или нарушением химических связей в кристалле, микротрещинами, сдвигом вдоль поверхностей скольжения. Макроскопическое разрушение (размеры зоны разрушения 1 см и более) характеризуется развитием одной или многих трещин, нарушающих сплошность массивов в значительных объёмах. Во всех случаях разрушение начинается с процесса на микроскопическом уровне, при определённых условиях приобретающего макроскопические масштабы.

Поверхностный слой горной породы в процессе продвижения забоя приобретает определенные нарушения целостности (развивается система микро- и макротрещин). Изломанная поверхность горной породы на забое скважины увеличивает длину пути поверхностного разряда, что, в свою очередь, должно привести к повышению вероятности внедрения канала разряда в горную породу.

Таким образом, закономерности разрушения горных пород на забое скважины существенно отличаются от аналогичных зависимостей, полученных ранее при экспериментальных исследованиях одноимпульсного разрушения плоских образцов.

1. Основные способы разрушения горных пород

В настоящее время известны механические, физико-химические, термические, термомеханические и др. способы разрушения горных пород (способы бурения) - всего несколько десятков. При механических способах в породах создаются напряжения, превышающие предел их прочности. При термических способах разрушение пород происходит за счет возникновения в них термических напряжений и различного рода эффектов (дегидратация, диссоциация, плавление, испарение и т. д.). При термомеханических способах тепловое воздействие осуществляется целенаправленно для предварительного снижения сопротивляемости породы последующему механическому разрушению. Химические (физико-химические) способы разрушения пород предусматривают использование высокоактивного химического вещества.

При механическом способе разрушения в породе создаются очень значительные местные напряжения, приводящие к ее разрушению. При бурении породы разрушаются в основном за счет сжатия и скалывания.

Механический способ бурения представлен двумя главнейшими видами: ударным и вращательным бурением. При ударном бурении порода разрушается под действием ударов буровыми клиновыми наконечниками, называемыми долотами; при вращательном бурении порода срезается или раздавливается и истирается в забое специальными режущими и дробящими долотами или резцами коронок.

Ударное бурение, в свою очередь, разделяется на штанговое и канатное. В первом случае буровые наконечники опускаются в скважину и приводятся в действие металлическими стержнями - штангами, во втором случае - канатом.

Ударное бурение на штангах может производиться с промывкой забоя скважины или без промывки. Разрушение породы при ударном бурении осуществляется по всей площади поперечного сечения скважины; такой способ бурения называется бурением сплошным забоем.

При механическом вращательном бурении резанием к породоразрушающему инструменту (алмазные, твердосплавные коронки, долота) прикладывают крутящий момент и усилие подачи. Мощность, передаваемая породоразрушающему инструменту, возрастает с увеличением частоты вращения бурового снаряда, осевой нагрузки и сопротивления породы разрушению. Граничными условиями являются: прочность коронок, колонковых и бурильных труб, с одной стороны, и физико-механические свойства пород - с другой.

При бурении резанием с наложением ударов (ударно-вращательное бурение) к породоразрушающему инструменту приложены усилие подачи, крутящий момент и ударные импульсы определенной частоты и силы. При создании колебаний породоразрушающего инструмента породе передается дополнительная удельная энергия, а процесс разрушения породы сопровождается образованием более крупных частиц, что приводит к уменьшению энергоемкости процесса. Изменяя частоту и силу ударов, статическое усилие подачи и окружную скорость, можно в широком диапазоне менять характер воздействия резцов на породу. Для создания ударных импульсов могут быть использованы устройства, работающие в инфразвуковом ( 20 000 Гц) диапазонах частот.

Ударные нагрузки возникают при бурении шарошечными долотами (бурение дроблением и скалыванием). Генераторами инфразвуковых колебаний в настоящее время являются гидроударные и пневмоударные машины. Звуковые и ультразвуковые колебания инструмента создаются магнитострикторами и орбитальными осцилляторами, а также высокочастотными гидроударными машинами.

Бездолотные способы разрушения горных пород связаны с использованием энергии взрыва (взрывное бурение), кавитационной эрозии (имплозионное бурение), энергии удара стальных шариков о породу (шароструйное бурение), энергии струи жидкости (гидромониторное и гидроэрозионное бурение).

При взрывном бурении компоненты, образующие взрывчатую смесь, в капсулах доставляются на забой, где при ударе происходит их смешение. Они могут подаваться на забой и раздельно по трубопроводам; там они смешиваются и взрываются.

При электрогидравлическом бурении электрический разряд в жидкости образует кавитационные полости, при заполнении которых происходит гидравлический удар, или проходит непосредственно через породу благодаря заполнению скважины диэлектрической жидкостью.

При имплозионном бурении в скважину подают герметически закрытые капсулы, из которых предварительно удален воздух. В момент разбивания капсул о забой происходит интенсивное смыкание вакуумной полости. Жидкость, окружающая вакуумную полость, под воздействием гидростатического давления приобретает большую скорость, и порода разрушается под действием импульсов высоких давлений.

Гидромониторное и гидроэрозионное бурение. Энергия высоконапорных струй жидкости может использоваться для разрушения породы в комбинации с резцовыми или шарошечными долотами или самостоятельно. Добавление в рабочую жидкость абразивных частиц повышает эффективность разрушения породы при тех же давлениях. При соответствующей конструкции гидромониторных насадок можно получить эффект кавитации струи промывочной жидкости непосредственно на забое скважины.

разрушение горный порода бурение

2. Электроимпульсный способ разрушения горных пород и бурение взрывных скважин

Одним из самых перспективных оказался электроимпульсный (ЭИ) метод разрушения материалов, сущность которого заключается в разрушающем действии электрических импульсных разрядов в твердых непроводящих и полупроводящих телах.

Теоретическое обоснование и лабораторные исследования ЭИ способа управляемого разрушения твердых диэлектриков и полупроводников, к числу которых по своим электрофизическим свойствам относятся большинство горных пород, дано Воробьевым А.А., Воробьевым Г.А., Чепиковым А.Т. и др.

В основу способа положено установленное в Томском политехническом институте явление превышения электрической прочности жидких диэлектриков над электрической прочностью твердых диэлектриков при малых временах воздействия импульсных напряжений порядка 10 -6 с и менее. [6,7,9,20]. Российская академия естественных наук и Международная ассоциация авторов научных открытий зарегистрировала в 1999г. открытие "Закономерность пробоя твердого диэлектрика на разделе с жидким диэлектриком при действии импульсов напряжения" с приоритетом от 14 декабря 1961 г. (авторы - Воробьев А.А., Воробьев Г.А., Чепиков А.Т.).

При исследованиях электрической прочности жидких и твердых диэлектриков было установлено, с уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков.

При экспозиции напряжения менее 10 -6 с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород. Сопоставление вольт-секундных характеристик пробоя на фронте косоугольного импульса напряжения для горной породы, трансформаторного масла и технической воды (в системе "острие-плоскость").

3. Технология бурения скважин

В самой сущности способа заложена возможность достижения более высокой в сравнении с механическими способами эффективности разрушения с низкими энергетическими затратами. При ЭИ разрушении механизм формирования в материале разрушающего поля напряжений аналогичен разрушению с помощью ВВ. Источник нагружения (канал разряда) находится в твердом теле, разрушение которого происходит за счет усилий растяжения. Учитывая, что прочность материалов на растяжение ниже в 3 - 10 раз, чем на сжатие, эффективность данного способа по сравнению с механическими способами должна пропорционально возрастать. Динамический характер нагружения обеспечивает хрупкое разрушение материала без потерь энергии на пластическую деформацию. По сравнению с использованием взрывчатых веществ ЭИ способ имеет то преимущество, что усилия, создаваемые в канале разряда, обеспечиваются подводом энергии от внешнего емкостного накопителя, и могут регулироваться по величине и во времени воздействия, что позволяет оптимизировать процесс разрушения в зависимости от физико-механических свойств горной породы. При этом энергозатраты на разрушение при электроимпульсном бурении скважин резко снижаются, так как разрушение происходит крупным сколом.

Эффективность электроимпульсного разрушения пород определяется в основном их электрофизическими, а не прочностными свойствами, а поэтому становится особенно высокой в сравнении с механическими способами разрушения по крепким и особо прочным породам. Между тем, электрическая и механической прочностью пород взаимосвязаны, хотя по электрической прочности горные пород отличаются не столь значительно, как по механической. На основании этого можно говорить о малой зависимости эффективности электроимпульсного бурения от крепости горных пород. Были проведены исследования и составлена предварительная классификация пород по их электрической прочности.

4. Вероятность внедрения канала разряда в горную породу

Как выше отмечено, в предпробивной стадии в горной породе под действием приложенного напряжения образуется токопроводящий канал, вероятность образования которого в горной породе зависит от ряда факторов, основными из которых являются: искажение электрического поля при различных диэлектрических проницаемостях твердых тел и жидких сред; влияние ёмкостных токов, протекающих на поверхности твёрдого диэлектрика; свойства поверхности твёрдого диэлектрика, которые способствуют сосредоточению на ней газовых пузырьков, влаги и т.д. Указанные факторы могут оказывать существенное влияние на вероятность пробоя Ш горной породы в её параллельной комбинации с жидкой средой.

При изменении времени запаздывания разряда tз от 0,013 · 10 -6 с до 10 -6 с вероятность внедрения разряда во все исследованные породы, постепенно повышаясь, достигает оптимума. Затем происходит снижение Ш. Поэтому некоторое снижение вероятности внедрения разряда при уменьшении tз, по-видимому, может быть объяснено сближением пробивных напряжений горных пород с напряжениями перекрытия по поверхности образца при увеличении перенапряжения, что отмечено при исследовании пробоя и перекрытия твердых диэлектриков в различных жидкостях при tз -7 с. Это связано, по-видимому, с тем, что началу ионизации в твёрдом диэлектрике предшествует ионизация в жидкости по поверхности образца [19], а процесс формирования разряда носит толчкообразный характер. Развитие в образце горной породы ионизационного процесса, появившегося позднее, чем в жидкости, зависит от скорости развивающегося поверхностного разряда. При относительно высокой скорости развития канала поверхностного разряда (область tз -7 с) сокращается длительность пауз между толчками и повышается вероятность блокировки поверхностным разрядом ионизационных процессов в горной породе, т.к. поверхностный разряд, в основном, развивается между электродами по кратчайшему расстоянию вследствие высокой напряженности поля в этом направлении. Следовательно, развитие ионизации в горной породе может происходить только во время пауз между толчками, когда скорость поверхностного разряда мала. Но в момент толчка ионизация в горной породе блокируется в связи с тем, что область наивысших напряженностей выносится на головку скользящего разряда в направлении к противоположному электроду.

5. Исследование эффективности разрушения горных пород

Выбор оптимальных параметров и формы импульса напряжения и энергетических характеристик канала пробоя сопровождается повышением эффективности разрушения горных пород, имеющих различные физико-механические и электрофизические свойства.

Представляет большой научный и практический интерес исследование влияния различных факторов на эффективность электроимпульсного разрушения, а именно: изменения доли энергии, выделившейся в начале пробоя и перешедшей в энергию ударных волн, время поступления энергии в накал пробоя, изменение межэлектродного расстояния, свойства горных пород и т.д.

Повышение объемной производительности импульса напряжения с увеличением межэлектродного промежутка сопровождается значительным снижением удельной энергоёмкости процесса. Так, при увеличении S в 3 раза (от 10 до 30 мм) для песчаника, гранита и мрамора объёмная производительность повысилась в 20 - 25 раз при снижении энергозатрат в 6 - 8 раз.

Повышение эффективности разрушения горных пород при использовании ПИНФ по сравнению с косоугольной волной напряжения может быть объяснено при рассмотрении характера выделения энергии в канале разряда и влиянием его на образование ударной волны в толще горной породы.

Процесс разрушения горных пород электрическими импульсными разрядами, по аналогии со взрывным разрушением, характеризуется отрывом некоторого объёма горной породы от массива под действием растягивающих напряжений.

Таблица 1. Эффективность разрушения горных пород электрическими импульсными разрядами

Ударные нагрузки возникают при бурении шарошечными долотами (бурение дроблением и скалыванием). Генераторами инфразвуковых колебаний в настоящее время являются гидроударные и пневмоударные машины. Звуковые и ультразвуковые колебания инструмента создаются магнитострикторами и орбитальными осцилляторами, а также высокочастотными гидроударными машинами. Бездолотные способы разрушения горных пород… Читать ещё >

Основные способы разрушения горных пород ( реферат , курсовая , диплом , контрольная )

В настоящее время известны механические, физико-химические, термические, термомеханические и др. способы разрушения горных пород (способы бурения) — всего несколько десятков. При механических способах в породах создаются напряжения, превышающие предел их прочности. При термических способах разрушение пород происходит за счет возникновения в них термических напряжений и различного рода эффектов (дегидратация, диссоциация, плавление, испарение и т. д. ). При термомеханических способах тепловое воздействие осуществляется целенаправленно для предварительного снижения сопротивляемости породы последующему механическому разрушению. Химические (физико-химические) способы разрушения пород предусматривают использование высокоактивного химического вещества.

При механическом способе разрушения в породе создаются очень значительные местные напряжения, приводящие к ее разрушению. При бурении породы разрушаются в основном за счет сжатия и скалывания.

Механический способ бурения представлен двумя главнейшими видами: ударным и вращательным бурением. При ударном бурении порода разрушается под действием ударов буровыми клиновыми наконечниками, называемыми долотами; при вращательном бурении порода срезается или раздавливается и истирается в забое специальными режущими и дробящими долотами или резцами коронок.

Ударное бурение, в свою очередь, разделяется на штанговое и канатное. В первом случае буровые наконечники опускаются в скважину и приводятся в действие металлическими стержнями — штангами, во втором случае — канатом.

Ударное бурение на штангах может производиться с промывкой забоя скважины или без промывки. Разрушение породы при ударном бурении осуществляется по всей площади поперечного сечения скважины; такой способ бурения называется бурением сплошным забоем.

При механическом вращательном бурении резанием к породоразрушающему инструменту (алмазные, твердосплавные коронки, долота) прикладывают крутящий момент и усилие подачи. Мощность, передаваемая породоразрушающему инструменту, возрастает с увеличением частоты вращения бурового снаряда, осевой нагрузки и сопротивления породы разрушению. Граничными условиями являются: прочность коронок, колонковых и бурильных труб, с одной стороны, и физико-механические свойства пород — с другой.

Ударные нагрузки возникают при бурении шарошечными долотами (бурение дроблением и скалыванием). Генераторами инфразвуковых колебаний в настоящее время являются гидроударные и пневмоударные машины. Звуковые и ультразвуковые колебания инструмента создаются магнитострикторами и орбитальными осцилляторами, а также высокочастотными гидроударными машинами.

Бездолотные способы разрушения горных пород связаны с использованием энергии взрыва (взрывное бурение), кавитационной эрозии (имплозионное бурение), энергии удара стальных шариков о породу (шароструйное бурение), энергии струи жидкости (гидромониторное и гидроэрозионное бурение).

При взрывном бурении компоненты, образующие взрывчатую смесь, в капсулах доставляются на забой, где при ударе происходит их смешение. Они могут подаваться на забой и раздельно по трубопроводам; там они смешиваются и взрываются.

При электрогидравлическом бурении электрический разряд в жидкости образует кавитационные полости, при заполнении которых происходит гидравлический удар, или проходит непосредственно через породу благодаря заполнению скважины диэлектрической жидкостью.

При имплозионном бурении в скважину подают герметически закрытые капсулы, из которых предварительно удален воздух. В момент разбивания капсул о забой происходит интенсивное смыкание вакуумной полости. Жидкость, окружающая вакуумную полость, под воздействием гидростатического давления приобретает большую скорость, и порода разрушается под действием импульсов высоких давлений.

Гидромониторное и гидроэрозионное бурение. Энергия высоконапорных струй жидкости может использоваться для разрушения породы в комбинации с резцовыми или шарошечными долотами или самостоятельно. Добавление в рабочую жидкость абразивных частиц повышает эффективность разрушения породы при тех же давлениях. При соответствующей конструкции гидромониторных насадок можно получить эффект кавитации струи промывочной жидкости непосредственно на забое скважины.

Упругость, прочность на сжатие и разрыв, пластичность - наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений. Так, например, от упругих свойств горных пород и упругости пластовых жидкостей зависит перераспределение давления в пласте во время эксплуатации месторождения.

Содержание

1.ПЛОТНОСТЬ.
2.ПРОЧНОСТЬ .
3. УПРУГОСТЬ.
4. ПЛАСТИЧНОСТЬ.
5. ТВЕРДОСТЬ.
6. АБРАЗИВНОСТЬ.
7. ПРОНИЦАИМОСТЬ.
8. КРЕПОСТЬ ГОРНЫХ ПОРОД.

Прикрепленные файлы: 1 файл

Разрушение пород.docx

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт нефти и газа (Нефтегазовое дело)

Кафедраa: Разработка и эксплуатация нефтяных и газовых месторождений.

Выполнил: студент группы ДННБ-21б

Проверила: доц. Егорова. Е

8. КРЕПОСТЬ ГОРНЫХ ПОРОД.

Упругость, прочность на сжатие и разрыв, пластичность - наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений. Так, например, от упругих свойств горных пород и упругости пластовых жидкостей зависит перераспределение давления в пласте во время эксплуатации месторождения. Запас упругой энергии, освобождающейся при снижении давления, может быть значительным источником энергии, под действием которой происходит движение нефти по пласту к забоям скважин. Действительно, если пластовое давление снижается, то жидкость (вода и нефть) расширяется, а поровые каналы сужаются. Упругость пород и жидкостей очень мала, но вследствие огромных размеров пластовых водонапорных систем в процессе эксплуатации значительное количество жидкости (упругий запас) дополнительно вытесняется из пласта в скважины за счет расширения объема жидкости и уменьшения объема пор при снижении пластового давления.Не менее существенный эффект упругости жидкости и пласта заключается в том, что давление в пласте перераспределяется не мгновенно, а постепенно после всякого изменения режима работы скважины, после ввода новой или остановки старой скважины. Таким образом, при большой емкости пласта и высоком пластовом давлении с самого начала эксплуатации пласт будет находиться в условиях, для которых характерны длительные неустановившиеся процессы перераспределения пластового давления. Скорости этих процессов в значительной мере определяются упругими свойствами пород и жидкостей. Оказывается, что по скорости перераспределения давления при известных упругих свойствах пород и жидкости можно судить о проницаемости и других параметрах. В процессе эксплуатации месторождения весьма важно знать также и прочность пород на сжатие и разрыв. Эти данные наряду с модулем упругости необходимы при изучении процессов искусственного воздействия на породы призабойной зоны скважин (торпедирование, гидроразрыв пластов), широко применяемых в нефтепромысловом деле для увеличения притока нефти. При рассмотрении физических свойств горных пород следует учитывать, что в зависимости от условий залегания механические свойства породы могут резко изменяться.

К ним относятся плотность, объемная масса, пористость, трещиноватость. Плотностью называется масса единицы объема твердой фазы (минерального скелета) горной породы. Плотность зависит, главным образом от плотности минералов, слагающих породу. Плотность основных породообразующих минералов в земной коре колеблется в диапазоне от 1900 до 3500 кг/м 3 . Плотность осадочных горных пород находится в пределах от 1850 до 3200 кг/м 3 Чаще всего в геологических разрезах встречаются породы с плотностью от 1850 до 2700 кг/м 3 . Важным структурным фактором является объемная масса горной породы. Это масса единицы объема породы в ее естественном состоянии, то есть с минеральным скелетом, порами и трещинами. Объемная масса имеет то же значение, что и плотность монолитных (без пор и трещин) пород.

Для пористых пород объемная масса всегда меньше их плотности. Объемная масса пород, имеющих в порах и трещинах капельную жидкость, больше объемной массы сухих пород. Разница возрастает по мере роста пористости и минерализации пластовой воды. При увеличении глубины скважины за счет роста горного давления происходит уплотнение пород, смятие пор и пустот, поэтому объемная масса возрастает. Горные породы осадочного комплекса имеют объемную массу, равную 1800-2500 кг/м 3 , а насыщенные водой осадочные породы имеют объемную массу 2000-2700 кг/м 3 . С ростом глубины скважины увеличивается температура горных пород. Повышение температуры вызывает увеличение объема минерального скелета и пластового флюида, поэтому объемная масса несколько снижается.

В работе [5] было предложено плотностью называть осредненные значения объемной массы породы для значительных интервалов и даже полностью для геологического разреза. В таблице 2.1 приведены плотности основных осадочных пород.

Читайте также: