Реферат качество и надежность

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

НАДЕЖНОСТЬ МАШИН И ОБОРУДОВАНИЯ

Надежность  свойство продукции

Надежность – это свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам, условиям использования, технического обслуживания, ремонта и транспортирования.

Под объектом понимается техническое устройство, комплектующие изделия, материалы, топливо и т.д. Естественно, что надежность – свойство, присущее машинам и оборудованию.

Надежность – сложное свойство, включающее , в свою очередь, такие свойства, как безотказность, долговечность, ремонтопригодность и сохраняемость.

Под безотказностью понимается свойство объекта непрерывно сохранять работоспособность в течение определенного времени или определенной наработки.

Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность – свойство объекта, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказа, повреждений и устранению их последствий путем проведения ремонтов и технического обслуживания.

Под сохраняемостью понимается свойство объекта непрерывно сохранять исправное состояние в течение и после хранения и (или) транспортирования.

Для различных объектов и условий их эксплуатации эти свойства могут иметь различную значимость. Например, тормозные устройства, сигнализаторы аварийной ситуации и другие технические средства должны обладать долговечностью, легковые и грузовые автомобили – долговечностью и ремонтопригодностью, лаки , краски – сохраняемостью.

Рассмотрим глубже приведенные определения свойств. Начнем с того, что безотказность и долговечность отражают две стороны события – отказ: первая – то, что он не произойдет в течение заданного времени, вторая – время, в течение которого он не произойдет. Поскольку отказ является случайным событием, то оба эти свойства характеризуются случайными величинами.

Всякое изделие с наработкой в большей или меньшей степени утрачивает безотказность. Вместе с тем есть изделия, продолжительность эксплуатации которых по разным причинам ограничена, в некоторых случаях изделия используются один раз. В случаях, когда продолжительность эксплуатации ограничена, безотказность его становится важнейшей составляющей надежности.

В тех случаях, когда продолжительность эксплуатации изделия неограниченна или очень велика и к тому же последствия отказов не связаны со значительным ущербом, на первый план в комплексе свойств, составляющих надежность, выходит долговечность.

Оценка долговечности изделия во многом зависит от того, является ли оно невосстанавливаемым или восстанавливаемым. На первый взгляд, невосстанавливаемое изделие в случае отказа становится непригодным дли дальнейшего использования. В действительности это не так. Во-первых, наряду с полным отказом, т.е. полной потерей работоспособности изделия, существуют частичные отказы, возникновение которых приводит к снижению эффективности использования изделия по прямому назначению. Во-вторых, одно и то же изделие в зависимости от условий или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым.

Для восстанавливаемых изделий существенное значение приобретает ремонтопригодность.

Ремонтопригодность можно рассматривать как технологичность ремонтного производства, в котором часть деталей, узлов и агрегатов изготавливается заново, часть ранее эксплуатировавшихся деталей, узлов и агрегатов подвергается восстановительным технологическим операциям. Таким образом, пригодность изделия к восстановлению представляет то, чем в первую очередь характеризуется ремонтопригодность.

Другой отличительной особенностью ремонтопригодности от технологичности является различие условий, в которых осуществляется ремонт и основное производство. Текущий ремонт проводится в условиях, близких условиям эксплуатации и ограниченных возможностях для устранения причин, снижающих работоспособность изделия.

Количественную характеристику свойств продукции, составляющих ее качество, называют показателями качества продукции. Надежность – сложное свойство, составляющее качество. Поэтому количественные характеристики свойств, составляющих надежность, принято называть показателями надежности объекта. Аналогичным образом по количеству свойств, которые характеризуют тот или иной показатель надежности, называют: единичным показателем надежности – количественную характеристику только одного свойства надежности объекта; комплексным показателем надежности – двух или более свойств надежности.

Свойства, составляющие надежность, характеризуются значительной степенью изменчивости. Невозможно точно указать, например, момент времени в который произойдет поломка той или иной детали машины. Отказы происходят в случайные моменты времени. Поэтому количественна оценка безотказности, долговечности, ремонтопригодности, сохраняемости различных изделий связана со случайными величинами, подчиняющимися вероятностным законам. При рассмотрении показателей надежности как единичных, так и комплексных руководствуются законами теории вероятностей и математической статистики, применяемыми в этих науках понятиями.

Показатели безотказности. Вероятностью безотказной работы в пределах заданной наработки называется вероятность того, что в пределах заданной наработки не произойдет отказ. Иногда этот показатель кратко называют вероятностью безотказной работы, что, строго говоря, лишено смысла.

Рассмотрим следующую ситуацию. Эксплуатируется невосстанавливаемое техническое устройство, т.е. такое, которое после первого отказа заменяется таким же новым. В этом случае плотность распределения наработки устройства до первого отказа (t) будет определяться как плотность распределения до отказа вообще f(t) (т.е. не обязательно первого), деленная на вероятность безотказной работы устройства при рассматриваемой наработке.

Например, перегорание нити накаливания электрических ламп происходит в результате многих случайных причин и, в частности, при мгновенных повышениях напряжения в сети, различного рода механических воздействиях и т.п. Указанные явления происходят в случайные моменты времени с определенной вероятностью (в случае конечного интервала времени) или плотностью вероятности (в случае бесконечно малого интервала времени). Это суть вероятность или плотность вероятности того, что отказ произойдет в заданном интервале независимо от того, были ли до этого отказы или нет. Такие вероятность или плотность вероятности равны произведению условной вероятности отказа при условии, что при заданной наработке лампочка работала безотказно (иначе бы она перегорела), и вероятности безотказной работы лампочки при заданной наработке:

Аналогичным образом автомобильная шина на каждом километре пробега х, х + х с вероятностью f(х) может получить неустранимые повреждения. Условная вероятность того, что в интервале пробега х, х + х шина получит неустранимые повреждения при условии безотказной работы при пробеге х километров равна

Функция (t) [(х) – в зависимости от размерности наработки] характеризует интенсивность отказов невосстанавливаемого технического устройства в интервале наработки t, t + t. Поэтому условную вероятность (в случае дискретной наработки) или условную плотность вероятности (в случае непрерывной наработки) отказа невосстанавливаемого технического устройства, определенную для рассматриваемой наработки при условии безотказной работы до момента отказа, называют интенсивностью отказа.

Рассмотрим важный и распространенный случай геометрического распределения (в случае дискретной наработки) и экспоненциального распределения (в случае непрерывной наработки).

Известно, что наработка до отказа Х имеет геометрическое распределение, если

P(X =k) = q k p, k = 0, 1, 2, … ,

где р – вероятность отказа в одном испытании; q = (1 – р) – вероятность того, что отказ в данном испытании не произошел. Испытанием, например, может быть один размен монеты в автомате, срабатывание реле и т.п. Вероятность того, что отказ произойдет в одном из испытаний (j = 1, 2, … , k) равна

при геометрическом распределении наработки до отказа не зависит от числа испытаний, предшествующих отказу. Вместе с тем, известно, что математическое ожидание и дисперсия этого числа в случае геометрического распределения соответственно равны

Е(Х) = q/p и D(X) = q/p 2

и, стало быть, в рассматриваемом случае интенсивность отказов является обратной величиной по отношению к математическому ожиданию числа испытаний, предшествующих отказу в интервале 0, .

Интенсивность отказов можно рассматривать как меру старения, износа устройства. Отсюда факт нулевой интенсивности отказов имеет простой физический смысл: устройство практически не стареет. В этом случае математическое ожидание числа испытаний, предшествующих отказу, должно быть бесконечно, а вероятность отказа в одном испытании равна нулю. Поскольку это не так, то нетрудно заметить, что нестареющее устройство может работать в случайным образом меняющихся условиях, например, при мгновенных вскоках напряжения электрического тока, наличии на дорогах острых предметов, способных нанести неисправимые повреждения автомобильным шинам, наличии очень твердых включений в металле, приводящих к поломке режущего инструмента и т.п.

Аналогом геометрического распределения для непрерывных случайных величин является экспоненциальное распределение. Выше мы рассматривали наработку до отказа Х = 0, 1, 2, … как число испытаний. Вместо единичного интервала можно рассматривать интервал Х и тогда величина Х будет принимать значения 0, Х, 2Х и т.д. Вероятность того, что в интервале (Х, Х + Х) произойдет отказ обозначим Х и будем рассматривать случаи, при которых вероятность более одного отказа в интервале Х практически равна нулю. В этом случае можно записать

а вероятность того, что за время t произойдет отказ

т.е., в случае экспоненциального распределения времени безотказной работы технического устройства интенсивность его отказов не зависит от времени.

Математическое ожидание и дисперсия экспоненциального распределения соответственно равны

Построение структурной схемы и расчет надежности системы, определение ее показателей и варианты повышения. Решение вопросов надежности и безопасности современных структурно-сложных технических систем и объектов на всех стадиях их жизненного цикла.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 22.01.2014
Размер файла 77,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

надежность технический система безопасность

Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых техническими системами (ТС) функций, их усложнение приводит к повышению требований к надежности изделий.

Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности ТС является повышение их безотказности.

Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” ТС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект, при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности ТС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта. Некоторые способы расчета структурной надежности рассматриваются в данном пособии .

1. Термины и определения

Надежность - свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Срок службы - календарная продолжительность эксплуатации от ее начала до наступления предельного состояния

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Деление системы на элементы - процедура условная и производится на том уровне, на котором удобно ее рассматривать для решения конкретной задачи.

Объект - это предмет определенного целевого назначения, рассматриваемый в периоды проектирования, производства, эксплуатации, изучения, исследования и испытаний на надежность.

Качество объекта -- совокупность свойств и признаков, определяющих его пригодность удовлетворять определенные потребности в соответствии с его назначением, и выражающая его специфику и отличие от других объектов.

2. Надежность технических систем

Надежность - свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Показатель надежности -- это количественная характеристика одного или нескольких свойств, составляющих надежность объекта. Показатель надежности может иметь размерность (например, вероятность безотказной работы).

При рассмотрении показателей надежности следует различать:

а) наименование показателя (например, средняя наработка на отказ);

б) численное значение, которое может изменяться в зависимости от условий эксплуатации объектов;

в) формулировку сущности этой величины;

г) размерность показателя (при ее наличии).

Формулировка показателя должна содержать указания о способах расчетного или экспериментального определения его численного значения. Многие показатели надежности являются параметрами распределения случайных величин.

Различают единичные и комплексные показатели надежности.

Единичный показатель надежности - это показатель, характеризующий одно из свойств, составляющих надежность объекта (например, наработка на отказ датчика характеризующая безотказность).

Комплексный показатель надежности - это показатель, характеризующий несколько частных свойств надежности объекта. Надёжность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве установки очистки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надёжности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

Надёжность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств: безотказность, долговечность, ремонтопригодность, сохраняемость.

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Наработка - продолжительность или объем работы объекта, измеряемая в любых неубывающих величинах.

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность - свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

Сохраняемость - свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

Показатель надёжности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надёжность. Одни показатели надёжности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.

Технический ресурс - наработка объекта от начала его эксплуатации или возобновления эксплуатации после ремонта до наступления предельного состояния.

Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

Срок службы - календарная продолжительность эксплуатации от ее начала до наступления предельного состояния. Деление системы на элементы -- процедура условная и производится на том уровне, на котором удобно ее рассматривать для решения конкретной задачи. Например, можно рассматривать генератор, трансформатор блочных станций как отдельные элементы, но иногда их удобно объединить в один элемент. Условность подразделения системы на элементы состоит еще и в том, что любой элемент, в свою очередь, может рассматриваться как система. Например, воздушная линия электропередачи (ВЛ) состоит из таких элементов, связанных определенным образом, как гирлянды изоляторов, опоры, фундаменты, провода, тросы, заземлители и т. д. В связи с этим, рассматривая многие свойства и характеристики элементов и систем, в тех случаях, где нет необходимости подчеркивать свойства, присущие только системам или только элементам, будем говорить об объектах. В качестве объекта могут рассматриваться система, подсистема или элемент. Объект - это предмет определенного целевого назначения, рассматриваемый в периоды проектирования, производства, эксплуатации, изучения, исследования и испытаний на надежность. Объектами могут быть системы и их элементы, в частности технические изделия, устройства, аппараты, приборы, их составные части, отдельные детали и т.д.

Качество объекта -- совокупность свойств и признаков, определяющих его пригодность удовлетворять определенные потребности в соответствии с его назначением, и выражающая его специфику и отличие от других объектов. Общей характеристикой показателей надёжности является то, что они имеют вероятностную природу и характеризуют вероятность наступления определённого события или выполнения заданных требований. Возможны оценки надёжности средним значением контролируемой случайной величины (СВ), дополненным доверительными границами. Оценки надёжности дают достаточно полное представление о качестве (эффективности) функционирования технического объекта (системы) в определённых условиях эксплуатации - нормальных условиях. Однако, при эксплуатации электрической сети, хотя и редко, возможны опасные воздействия на элементы сети, не предусмотренные условиями нормальной эксплуатации и приводящие к чрезвычайным ситуациям. В качестве примера можно привести известные случаи массового повреждения ВЛ на обширной территории из-за воздействий гололёдно-ветровых нагрузок на провода и конструкции опор, превосходящих проектные. Высока вероятность террористических актов и случаев вандализма против объектов электроэнергетики, нельзя исключить из рассмотрения военные конфликты и действия.

Резервирование как средство повышения надежности

В настоящее время резервирование является одним из самых распространенных способов повышения характеристик надежности систем. Однако этот метод ведет к усложнению систем, увеличению их массы, стоимости и габаритов.

Поэтому всегда разработчики и конструкторы сталкиваются с задачей как при допустимой массе, стоимости и габаритах получить максимальный выигрыш в надежности.

Для оценки эффективности резервирования вводится понятие - выигрыш надежности резервированной системы по сравнению с нерезервированной:

где Q - вероятность отказа резервированной системы;

Q0 - вероятность отказа нерезервированной системы.

Для резервированных систем характерны следующие свойства:

а) при резервировании с дробной кратностью интенсивность отказов резервированной системы при определенных значениях m и t может быть больше интенсивности отказов нерезервированной системы. Это означает, что система, у которой применено резервирование с дробной кратностью, может быть менее надежной, чем нерезервированная.

б) выигрыш надежности по вероятности отказа тем больше, чем меньше интенсивность отказов нерезервированной системы, т.е. чем более надежная система резервируется. Это основное противоречие всякого резервирования. Т.е. для повышения надежности системы необходима высокая кратность резервирования.

в) значительное увеличение массы системы при резервировании приводит к менее значительному увеличению средней наработки до отказа.

4. Составление структурной схемы надежности технологического процесса

По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы и значениям интенсивностей отказов ее элементов требуется:

1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.

2. Определить - процентную наработку технической системы .

3. Обеспечить увеличение - процентной наработки не менее, чем в 1.5 раза за счет:

а) повышения надежности элементов;

б) структурного резервирования элементов системы.

Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.

На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.

Структурная схема надежности приведена на рисунке 1. Значения интенсивности отказов элементов даны в 1/ч.

Качество — совокупность свойств продукции, определяющих ее пригодность для использования по назначению. Эти свойства изделия обычно проявляются в процессе его эксплуатации, т.е. способности сохранять установленные показатели в течение возможно более длительного времени.

Основными свойствами, определяющими качество изделий (автомобиля) и операций (ремонт автомобиля), являются следующие :

• эксплуатационные и потребительские свойства;

• надежность и долговечность;

• технологичность;

• эстетические и эргономические показатели;

• степень стандартизации и унификации узлов автомобиля.

Вследствие этого потребительским спросом на рынке пользуются автомобили с высокими эксплуатационными показателями паспортных данных, такими как мощность, скорость, расход топлива и т.д. Кроме того, на спрос оказывает влияние свойство технологичности при техническом обслуживании и ремонте автомобиля. Проявляется свойство в том, что быстроизнашиваемые и часто заменяемые стандартные узлы и детали располагаются в авто­мобиле в местах, легкодоступных для их замены с использованием стандартных приспособлений и инструмента, например, замена масляного фильтра, воздушного фильтра, свеч и т.д.

Наиболее важным свойством качества является надежность. Под надежностью понимают способность машины сохранять свои эксплуатационные свойства в течение определенного времени и в определенных условиях. При изменении условий эксплуатации меняется и надежность автомобиля, так, автомобили иностранных марок не всегда показывают такую же надежность на дорогах России по сравнению с зарубежными данными.

Необходимо отметить, что надежность тесно связана с трудозатратами на техническое обслуживание и ремонт. Обычно стоимость запасных частей значительно превышает стоимость самих машин.

Характеризуется надежность рядом признаков, свойств, основными из них являются работоспособность, безотказность, долговечность, ремонтопригодность.

РАБОТОСПОСОБНОСТЬ

Под работоспособностью понимают техническое состояние автомобиля, при котором в данный момент времени он соответствует всем требованиям, установленным лишь для основных параметров, характеризующих нормальное выполнение заданных функций. Например, если на автомобиле не горят фары, он считается работоспособным, так как способен выполнять свои функции в дневное время, однако автомобиль в данный момент считается неисправным.

В течение эксплуатации любой машины ее работоспособность не остается постоянной и зависит от времени работы. Поясним это графиком изменения работоспособности во времени, приведенным на рис. 9.

Время Рис. 9. Изменение работоспособности во времени

Работоспособность на графике может оцениваться любым из основных паспортных данных, например, мощностью двигателя NkBt, частотой вращениям об/мин и др. Участок 1—2 характеризует работу автомобиля в период приработки, нагрузка на все узлы в этот момент должна быть несколько ниже рабочей, что способствует сглаживанию неровностей поверхностных слоев и формированию износостойкого слоя с определенными физико-механическими про-тивоизносными свойствами.

Участок 2 — 3 показывает постепенный переход машины на нормальные паспортные режимы работы, характеризуемые отрезком

Систематическое и своевременное проведение технического обслуживания и мелких ремонтов в процессе эксплуатации автомобиля обеспечивают в течение длительного времени нормальную работоспособность в соответствии с паспортными режимами.

Однако вследствие механических, химических, электрохимических и электрических воздействий происходит потеря работоспособности (участок 4 — 5) и ее восстановление за счет технического обслуживания и мелкого ремонта становится невозможным, возникает необходимость остановки машины на первый капитальный ремонт (точка 5). Правильное и своевременное определение этого момента очень важно, так как дальнейшая эксплуатация по истечении времени Tlu вызывает резкое катастрофическое падение работоспособности (т. 5").

После проведения первого капитального ремонта цикл изменения работоспособности повторяется, что видно из приведенного графика (участки 5 — 6, 6 — 7, 7 — 8, 8 — 9). Число капитальных ремонтов определяется конструкцией автомобиля и задается нормативными данными.

Работоспособность машин снижается чаще всего из-за увеличения зазоров, изменения размеров деталей, качества и свойств металла трущихся поверхностей деталей.

Постепенное изменение размеров, формы и свойств поверхностных слоев материала детали при трении называется изнашиванием, результат процесса изнашивания есть износ, в процессе эксплуатации различают износ нормальный и аварийный.

Нормальный износ имеет место при соблюдении всех параметров режима работы автомобиля. Динамика нарастания износа во времени приводится на рис. 10.

Время Рис. 10. Динамика изменения износа во времени

На оси времени можно выделить три периода:

I — период приработки;

II — период нормального износа;

III — период аварийного (катастрофического) износа.

Резкое увеличение скорости износа во время приработки связывается со сглаживанием неровностей трущихся поверхностей после механической обработки и образованием определенного микрорельефа поверхностного слоя. На втором периоде эксплуатации после формирования микрорельефа на поверхности трения скорость изнашивания деталей стабилизируется, и этот период характеризует нормальную работу узлов автомобиля.

При длительной эксплуатации автомобиля величина износа растет и через определенное время Ти приобретает аварийное критическое значение. Дальнейшая эксплуатация автомобиля должна быть прекращена, так как в результате аварийного износа резко увеличиваются зазоры в сопряжениях, появляются удары, стуки, которые вызывают разрушение отдельных частей и узлов, и их последующий ремонт становится невозможным.

Данный характер изнашивания справедлив почти для всех видов физического износа.

Под физическим износом понимают изменения формы, размеров деталей, устанавливаемые визуально или путем измерений при проведении технического обслуживания и ремонта.

Другим видом изнашивания может быть моральный износ, который определяется отставанием оборудования от уровня новой передовой техники и технологии. Признаками морального износа являются низкие работоспособность, эксплуатационные и потребительские свойства машин, обычно они подлежат замене новыми конструкциями или марками, если отсутствует возможность их модернизации.

БЕЗОТКАЗНОСТЬ

Безотказность — свойство изделия сохранять работоспособность в течение периода наработки без вынужденных перерывов.

Наработка на отказ —- время работы до первого отказа. Под отказом понимают событие, после которого машина полностью или частично утрачивает свои функции. По своему характеру отказы делят на постепенные и случайные.

Постепенным называется отказ, который может быть предсказан в процессе эксплуатации автомобиля. Сюда относятся забивка фильтров, износ шеек коленчатого вала, износ тормозных накладок и т. д., ориентировочное время работы которых обычно известно. Устранение таких отказов производится при планируемых техническом об­служивании или ремонте машин.

Случайным называется отказ, характер и причина появления которого неизвестны, такие отказы прогнозируются на основании теории вероятности и обычно учитываются временем на гарантийный ремонт. Устранение случайных отказов производится заводом-изготовителем, если отказ произошел во время гарантийного срока. Длительность гарантийного срока определяется наработкой на отказ и для различных агрегатов она разная.

РЕМОНТОПРИГОДНОСТЬ

Ремонтопригодность — свойство изделия, заключающееся в его приспособленности к предупреждению, обнаружению и устранению неплановых отказов или неисправностей путем проведения технического обслуживания или ремонта. Расположение узлов на агрегатах и агрегатов на автомобиле должно обеспечивать свободный доступ к ним и хорошую видимость. Оно позволяет оценивать реальное состояние деталей и дает большую вероятность выявления неисправностей на стадии технического обслуживания.

Оценивается ремонтопригодность средним временем восстановления технического состояния машины при неплановом ремонте из-за вынужденного отказа. Ремонтопригодность влияет на коэффициент технического использования автомобилей, характеризующий количество машин, находящихся на линии.

ДОЛГОВЕЧНОСТЬ

Под долговечностью понимают свойство изделия сохранять работоспособность в определенных режимах и условиях эксплуатации до разрушения или другого предельного состояния с учетом остановки на ремонт, например, долговечность коленчатого вала автомобиля определяется временем от начала его работы до выбраковки с учетом восстановления размеров при выполнении ремонтных работ.

Долговечность машин закладывается на стадии конструирования и зависит от конструкции, применяемых материалов, защитных покрытий и других факторов.

Расчетная величина долговечности обеспечивается на стадии производства и зависит от применяемых видов обработки (механической, термической, химико-термической), технического уровня и состояния станочного парка, режимов обкатки и др.

Однако заложенная величина долговечности реализуется в процессе эксплуатации автомобиля и определяется большим количеством Факторов, таких как качество технического обслуживания и ремонта, квалификация обслуживающего персонала, воздействие окружающей среды. Долговечность деталей и узлов, установленных на машину в процессе ремонта, должна быть не ниже замененных и при этом обеспечены те же условия работы. Например, при ремонте системы смазки двигателя при замене масла перед установкой масляного фильтра той же конструкции из системы удаляются продукты износа путем ее промывки по соответствующей технологии.

На долговечность деталей оказывает влияние квалификация как обслуживающего персонала, так и ремонтных предприятий, чем выше квалификация, тем качество ремонта будет выше.

Таким образом, обеспечение долговечности деталей и узлов при выполнении ремонтных работ носит комплексный характер и требует проведения целого ряда организационно-технических работ.

ПОВЫШЕНИЕ НАДЕЖНОСТИ

ГОСТ 27.002—89 предусматривается несколько методов повышения надежности машин, из которых применительно к ремонту автомобилей рекомендуются три: замена ненадежных элементов на более надежные; создание нагруженного резерва в системе; повышение долговечности деталей за счет использования более современных технологий ремонта.

При выполнении ремонтных работ очень часто производится замена изношенных деталей и узлов на новые. Здесь важно, чтобы новые детали имели больший срок службы, чем применявшиеся ранее. Этот вариант не всегда возможен, так как новые элементы стоят намного дороже, и нужно провести предварительный экономический анализ, чтобы, например, установка на автомобиль нового, более совершенного двигателя оказалась экономически выгодной.

Под нагруженным резервом понимают случай, когда несколько элементов системы работают в одном рабочем режиме и выполняют одну и ту же функцию. Отказ одного элемента не вызывает отказа всей системы, поскольку его функции выполняют другие элементы, хотя с некоторой перегрузкой, в этом и состоит понятие резерва, примером может служить тормозная система автомобиля — наиболее низкой надежностью обладают те марки машин, у которых тормозная система каждого колеса запитана от одной центральной. Отказ тормозной системы любого из колес приводит к отказу всей тормозной системы, резерв имеет место только при работе ручного тормоза.

Легковые автомобили многих модификаций имеют раздельную тормозную систему на задние и передние колеса. Надежность такой системы намного выше, так как отказ одной части тормозной системы не приведет к полному ее отказу.

Еще более высокую надежность имеют автомобили с индивидуальной тормозной системой к каждому колесу.

Повышение долговечности деталей за счет использования современных технологий при выполнении ремонтных работ способствует росту надежности машин, например, при окончательной обработке внутренней поверхности цилиндров вместо хонингования используется финишная антифрикционная безабразивная обработка, которая повышает долговечность более чем на 30%.

Практически для всех деталей, подлежащих ремонту, с учетом их формы, размеров, физико-механических свойств и т. д. имеются экономически выгодные технологии. Окончательный выбор остается за ремонтными предприятиями в зависимости от их возможностей.

Ограничение долговечности деталей машин определяется процессами их изнашивания или поломки. Причины появления пре­дельного износа или поломки по своей сути являются причинами остановки на ремонт. Поэтому, прежде чем приступить к замене из­ношенной или разрушенной детали, необходимо четко знать причину отказа, в этом состоит залог качественного и своевременного вы­полнения ремонтных работ.

Качество – это совокупность свойств, определяющих пригодность объекта к выполнению заданных функций при использовании этого объекта по назначению.

Качество в ходе эксплуатации изменяется. В общем случае различают следующие характепристики качества:

Стандарт устанавливает следующий перечень основных групп показателей качества:

1) показатели назначения — характеризуют свойства продукции, определяющие основные функции, для выполнения которых она предназначена (производительность, скорость, мощность и т. д.);

2) показатели надежности — характеризуют свойства безотказ­ности, долговечности, ремонтопригодности и сохраняемости (с ме­тодами их определения познакомимся в данном учебном пособии);

4) эстетические показатели — характеризуют информацион­ную выразительность, рациональность формы, целостность ком­позиции и совершенство производственного исполнения продук­ции (например, соответствие моде, стилю; цвет, четкость испол­нения фирменных знаков и др.);

5) показатели технологичности — характеризуют свойства про­дукции, обусловливающие оптимальное распределение затрат ма­териалов, средств труда и времени при изготовлении продукции (это, например, трудоемкость изготовления, технологическая се­бестоимость изделия);

6) показатели транспортабельности — характеризуют приспо­собленность продукции к перемещению в пространстве (транс­портированию);

7) показатели стандартизации и унификации — характеризуют насыщенность продукции стандартными, унифицированными и оригинальными частями (например, коэффициент применяемос­ти, коэффициент повторяемости);

8) патентно-правовые показатели — характеризуют степень об­новления технических решений, использованных в продукции, их патентную защиту, а также возможность беспрепятственной реа­лизации продукции в России и за рубежом; к патентно-правовым показателям относятся, например, показатели патентной защиты, патентной чистоты;

9) экологические показатели — характеризуют уровень вредных воздействий на окружающую среду, возникающих при эксплуата­ции или потреблении продукции; к экологическим показателям, например, относятся: вероятность выбросов в окружающую среду вредных частиц, газов (и их концентрация), вероятность излуче­ний при хранении или эксплуатации продукции;

10) показатели безопасности — характеризуют особенности про­дукции, связанные с ее безопасностью для обслуживающего персо­нала; к показателям безопасности, например, относятся: вероятность безотказной работы, время срабатывания защитных устройств.

11) экономические показатели — характеризуют затраты на разра­ботку, изготовление, эксплуатацию или потребление продукции;

12) показатели однородности — характеризуют рассеяние фак­тических значений определенного показателя качества у разных единиц продукции одного вида; например: среднеквадратическое отклонение значений показателей качества; размах — разность максимального и минимального результатов измерений.

Показатели качества, так подробно представленные здесь, рас­сматриваются в различных учебных курсах. Эти показатели взаи­мосвязаны. Интересующие нас показатели надежности также на­ходятся в тесной связи с другими показателями качества.

Критерии оценки качества разбивают на две большие группы.

а) себестоимость, б) материалоёмкость;

а) масса и размеры, б) производительность,

в) экономичность, г) экологичность, д) надёжность…

Самым важным эксплуатационным качеством является надёжность, без неё все остальные качества не имеют смысла.

Надёжность – это свойство объекта сохранять во времени в заданных пределах значения параметров, характеризующих способность выполнять заданную функцию.

Основными составляющими надёжности являются пара противоположных понятий.

1. Работоспособность – это состояние объекта, при котором он может выполнять заданные функции, при установленных значениях параметров.

2. Отказ – это событие, в результате которого наступает потеря работоспособности.

Надёжность является сложным свойством объекта, поэтому его подразделяют на несолько более простых свойств: безотказность, сохраняемость, долговечность, ремонтопригоднрсть, безопасность, живучесть.

По возможности устранения отказов все объекты делятся на восстанавливамые и невосстанавливаемые.

Для невосстанавливаемых объектов применяют следующие характеристики надёжности:

- безотказность, сохраняемость, долговечность, ремонтопригодность.

Безотказность – это свойство объекта непрерывно сохранять работоспособность в течение определённой наработки.

Сохраняемость – это свойство объекта сохранять эксплуатационные показатели на заданном уровне в теченик и после срока хранения и транспортировки.

Долговечность – это свойство объекта сохранять работоспособность до предельного состояния при условии проведения необходимых мероприятий по техническому обслуживанию и ремонту изделия.

Ремонтопригодность – это свойство конструкции изделия, заключающееся в приспособленности предупреждать, обнаруживать и устранять отказы.

Для объектов, отказы которых представляют угрозу для людей или окружающей среды применяют два отдельных понятия:

Безопасность – это свойство объекта не создавать или минимизировать угрозу для жизни или здоровья людей, а так же окружающей среды.

Живучесть – это свойство объекта противостоять критическому развитию ситуации при отказе.

Каждое из перечисленных свойств надежности имен большое количество параметров, учесть которые одновременно очень сложно, поэтому применяют комплексные показатели надёжности:

1. Коэффициент технического использования

где То – наработка за определённый период времени; Ттоир – время проведения тех. Нического обслуживания и ремонта за данный период времени .

2. Коэффициет готовности – это вероятность того, что изделии будет работоспособно в произвольно выбранный промежуток времени между техническими обслуживаниями и ремонтами.

Современные технические средства очень разнообразны и состоят из большого количества взаимодействующих механизмов, аппаратов и приборов. Первые простейшие машины и радиоприемники состояли из десятков или сотен деталей, а, к примеру, система радиоуправления ракетами состоит из десятков и сотен миллионов различных деталей. В таких сложных системах в случае отсутствия резервирования отказ всего одного ответственного элемента может привести к отказу или сбою в работе всей системы.

Содержимое работы - 1 файл

Введение.docx

Объект – это предмет определенного целевого назначения, рассматриваемый в периоды проектирования, производства, эксплуатации, изучения, исследования и испытаний на надежность. Объектами могут быть системы и их элементы, в частности технические изделия, устройства, аппараты, приборы, их составные части, отдельные детали и т.д.

Надежность – это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования. Количественно, надёжность оборудования есть величина, обратная интенсивности отказов на заданном интервале времени.

Уровень надежности в значительной степени определяет развитие техники по основным направлениям: автоматизации производства, интенсификации рабочих процессов и транспорта, экономии материалов и энергии.

Современные технические средства очень разнообразны и состоят из большого количества взаимодействующих механизмов, аппаратов и приборов. Первые простейшие машины и радиоприемники состояли из десятков или сотен деталей, а, к примеру, система радиоуправления ракетами состоит из десятков и сотен миллионов различных деталей. В таких сложных системах в случае отсутствия резервирования отказ всего одного ответственного элемента может привести к отказу или сбою в работе всей системы.

Низкий уровень надежности оборудования вполне может приводить к серьезным затратам на ремонт, длительному простою оборудования, к авариям и т.п.

В настоящее время наблюдается быстрое и многократное усложнение машин, объединение их в крупные комплексы, уменьшение их металлоемкости и повышением их силовой и электрической напряженности. Поэтому наука о надежности быстро развивается.

2.Аспекты поддержания надежности и качества объектов.

В зависимости от цели использования и рассмотрения качества к его основным аспектам можно отнести:

Физический аспект, являющийся основным для неделимых объектов, охватывает выбор, совершенствование и создание новых материалов, поиск и реализацию новых физических принципов работы, новых видов энергии и способов ее преобразования, задание щадящих условий применения объектов, совершенствование технологии производства и конструкции и т. п.
Аппаратурный аспект охватывает принципы и методы организации и использования аппаратурной (материальной) избыточности. Это - мажорирование (в частности, дублирование и троирование), распределенное резервирование, статическое и динамическое резервирование, ненагруженный и нагруженный резерв, и т. п.
Информационный аспект надежности включает в себя принципы и методы получения и использования избыточной информации, поступающей на объект, а также передаваемой, перерабатываемой, хранимой и выдаваемой объектом. Это, например, применение избыточных кодов, исправляющих ошибки, и многократное (в частности, двукратное) повторение во времени операций передачи и обработки информации. К информационному аспекту следует отнести также вопросы, связанные с организацией падежного (в частности, нечувствительного к ошибкам) матобеспечения вычислительных машин.

2.1.Физический аспект надежности и качества объекта.

Целью мероприятий, выполняемых в рамках физического аспекта надежности, является создание таких объектов, которые как можно меньше подвержены появлению в них дефектов как при производстве, так и при их эксплуатации. Однако избежать возникновения дефектов в более или менее сложных объектах, особенно при длительной их эксплуатации, нельзя.

2.1.1. Отказы. Физика отказов.

Фундаментальным понятием теории надежности является понятие отказа.

“Отказ - это событие, после возникновения которого изделие утрачивает способность выполнять заданные функции”. Отказы по классифицируют по следующим признакам:

- по степени влияния на работоспособность изделия (полные и неполные);

- по физическому характеру непосредственного проявления (катастрофические (внезапные) и параметрические));

- по связи с другими отказами (зависимые и независимые);

- по времени существования ( устойчивые (необратимые), временные (обратимые, устранимые) и перемежающиеся (мерцающие)).

Основным является разделение отказов на внезапные и постепенные.

Внезапным отказом НАЗЫВАЕТСЯ ТАКОЙ ОТКАЗ, КОТОРЫЙ ВОЗНИКАЕТ В РЕЗУЛЬТАТЕ СКАЧКООБРАЗНОГО ИЗМЕНЕНИЯ ХАРАКТЕРИСТИК ИЗДЕЛИЯ.

Постепенный отказ - это отказ, возникший в результате постепенного изменения характеристик изделия. Отказ вспомогательных элементов, не влияющих на надежность, называют второстепенной неисправностью. Второстепенные неисправности подразделяют на дефекты и неисправности. Дефектами называются неисправности, которые в момент их обнаружения не приводят к повреждению или нарушению работы и регулировке прибора, но могут в будущем вызвать подобные явления.

Неполадками называются неисправности в работе прибора, не оказывающие влияние на выполнение им основных функций.

Как правило, неисправность является следствием изменения состава, структуры или механических свойств материала, конструктивных размеров и состояния их поверхностей.

Возникновение неисправностей обусловлено рядом факторов, среди которых можно выделить конструктивные, технологические и эксплуатационные

К конструктивным факторам относятся:

- расчетные нагрузки, скорость относительного перемещения, давление и др.;

- материалы, их физико- механические характеристики и структура;

- конструктивное исполнение деталей и сборочных единиц, форма и величина зазоров или натягов в сопряжениях и т. л ;

- макрогеометрия. шероховатость, твердость рабочих поверхностей

- условия зашиты, смазывания и охлаждения деталей Технологическими факторами являются:

- способы, точность и стабильность получения заготовок;

- вид механической, термической, упрочняющей н финишной обработки деталей;

- правильность сборки, регулирование, приработки и испытания деталей и узлов машин.

К эксплуатационным относят следующие факторы:

- использование машины по назначению, соблюдение нагрузочных и скоростных режимов, интенсивность эксплуатации;

- условия эксплуатации, своевременность и полнота технического обслуживания и ремонтов и др.

Неисправности деталей машин можно разделить на три группы:

  1. Методология RCM по поддержанию качества объекта.

Основной стратегией RCM-2 является определение и применение индивидуальных методов обслуживания для каждого вида оборудования или причины отказов. Кроме планово-предупредительного обслуживания, как традиционного способа обслуживания, для определенных видов и причин отказов эффективно использовать следующие стратегии :

  • Обслуживание по состоянию;
  • Эксплуатация до отказа;
  • Проведение инспекций по выявлению сложных отказов, а также цепочек отказов.

В методологии RCM-2 основополагающим принципом является принцип недопущения параметров состояния оборудования до значений, которые приводят к нарушению функционирования объекта или системы в конкретном производственном окружении. Это значение в RCM-2 называется точкой F- функциональным отказом. В процессе следования методики RCM-2 необходимо определить событие или время, в которое можно четко понять, что производственный объект входит в состояние отказа (точка P- потенциального отказа). В интервале P-F необходимо осуществить воздействие на объект, чтобы предотвратить отказ. Подбирая интервал P-F, мы можем гибко настроить наши действия по техническому обслуживанию и существенно снизить количество аварийных ситуаций и поломок оборудования.

В практическом смысле RCM-2 — это процедура определения необходимых мер, которые гарантируют, что любой производственный объект продолжает выполнять те функции, которые необходимы владельцу в текущей рабочей ситуации.

Она включает в себя такие вопросы:

  1. Каковы функции объекта (что требуется пользователю от объекта)?
  2. Каким образом объект может отказать (функциональный отказ)?
  3. Что может привести к отказу (вид, причина отказа)?
  4. Что случается при отказе (результат отказа)?
  5. Насколько важен отказ (последствия отказа)?
  6. Можно ли сделать что-то, чтобы предсказать или предотвратить отказ (план действий)?
  7. Что делать, если предсказать или предотвратить отказ нельзя (действия по умолчанию)?

Шаг за шагом отвечая на данные вопросы, используя специальные инструменты, информация, полученная о текущей эксплуатации актива (производственное окружение, нагрузки, неисправности, связанные с активом, данные осмотров, требования и нормативные акты, история эксплуатации, и т. д.),преобразуется в стройную концепцию ТОиР с учетом возможных рисков, оценивая последствия и применяя оптимальные стратегии технического обслуживания для каждого конкретного случая.

Анализ актива по процедуре RCM-2 или анализ RCM-2 проводится с помощью экспертов, владеющих информацией об эксплуатации актива (работники ТО, операторы, производственники, работники производственно технических отделов и т. д.)

Данный подход позволяет быстро документировать принимаемые решения относительно стратегий проведения технического обслуживания и перейти к этапу внедрения результатов с использованием современных программных средств.

Для повышения эффективности процесса передачи знаний компанией Ivara были разработаны и сертифицированы курсы обучения методологии RCM-2 ,что позволяет сотрудникам организации, после обучения, постоянно самостоятельно применять принципы RCM-2 в повседневной рабочей обстановке, а для отслеживания состояния оборудования и параметров производительности разработано программное обеспечение Ivara EXP Enterprise.

Как методология, RCM-2 очень быстро дает результаты. Фактически, если ресурсы правильно сосредоточены и применены, проекты RCM-2 могут окупить себя за несколько месяцев или даже недель. Внедрение RCM-2 позволяет усовершенствовать как требования по ТОиР активов, используемых организацией, так и то, в каком виде воспринимается функция технического обслуживания в целом в организации. Результатом является более рентабельное, гармоничное и успешное техническое обслуживание.

Читайте также: